1
|
Wang Y, Zhang X, Wang J, Wang C, Xiong F, Qian Y, Meng M, Zhou M, Chen W, Ding Z, Yu D, Liu Y, Chang Y, He S, Yang L. Genomic insights into the seawater adaptation in Cyprinidae. BMC Biol 2024; 22:87. [PMID: 38637780 PMCID: PMC11027309 DOI: 10.1186/s12915-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Cyprinidae, the largest fish family, encompasses approximately 367 genera and 3006 species. While they exhibit remarkable adaptability to diverse aquatic environments, it is exceptionally rare to find them in seawater, with the Far Eastern daces being of few exceptions. Therefore, the Far Eastern daces serve as a valuable model for studying the genetic mechanisms underlying seawater adaptation in Cyprinidae. RESULTS Here, we sequenced the chromosome-level genomes of two Far Eastern daces (Pseudaspius brandtii and P. hakonensis), the two known cyprinid fishes found in seawater, and performed comparative genomic analyses to investigate their genetic mechanism of seawater adaptation. Demographic history reconstruction of the two species reveals that their population dynamics are correlated with the glacial-interglacial cycles and sea level changes. Genomic analyses identified Pseudaspius-specific genetic innovations related to seawater adaptation, including positively selected genes, rapidly evolving genes, and conserved non-coding elements (CNEs). Functional assays of Pseudaspius-specific variants of the prolactin (prl) gene showed enhanced cell adaptation to greater osmolarity. Functional assays of Pseudaspius specific CNEs near atg7 and usp45 genes suggest that they exhibit higher promoter activity and significantly induced at high osmolarity. CONCLUSIONS Our results reveal the genome-wide evidence for the evolutionary adaptation of cyprinid fishes to seawater, offering valuable insights into the molecular mechanisms supporting the survival of migratory fish in marine environments. These findings are significant as they contribute to our understanding of how cyprinid fishes navigate and thrive in diverse aquatic habitats, providing useful implications for the conservation and management of marine ecosystems.
Collapse
Affiliation(s)
- Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS81TQ, UK.
| | - Xuejing Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Xiong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Yuting Qian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Min Zhou
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Wenjun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zufa Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang Province's Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics On Special Habitats, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, Heilongjiang, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS81TQ, UK.
| |
Collapse
|
2
|
Costa-da-Silva AC, Aure MH, Dodge J, Martin D, Dhamala S, Cho M, Rose JJ, Bassim CW, Ambatipudi K, Hakim FT, Pavletic SZ, Mays JW. Salivary ZG16B expression loss follows exocrine gland dysfunction related to oral chronic graft-versus-host disease. iScience 2022; 25:103592. [PMID: 35005541 PMCID: PMC8718990 DOI: 10.1016/j.isci.2021.103592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) targets include the oral mucosa and salivary glands after allogeneic hematopoietic stem cell transplant (HSCT). Without incisional biopsy, no diagnostic test exists to confirm oral cGVHD. Consequently, therapy is often withheld until severe manifestations develop. This proteomic study examined saliva and human salivary gland for a biomarker profile at first onset of oral cGVHD prior to initiation of topical steroid therapy. Whole saliva collected at onset of biopsy-proven oral GVHD was assessed using liquid chromatography-coupled tandem mass spectrometry with identification of 569 proteins, of which 77 significantly changed in abundance. ZG16B, a secretory lectin protein, was reduced 2-fold in oral cGVHD saliva (p <0.05), and significantly decreased in salivary gland secretory cells affected by cGVHD. Single-cell RNA-seq analysis of healthy MSG localized ZG16B expression to two discrete acinar cell populations. Reduced ZG16B expression may indicate specific cGVHD activity and possibly general salivary gland dysfunction.
Collapse
Affiliation(s)
- Ana Caroline Costa-da-Silva
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Marit H. Aure
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Joshua Dodge
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Daniel Martin
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Susan Dhamala
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Monica Cho
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Carol W. Bassim
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Kiran Ambatipudi
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | - Jacqueline W. Mays
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Abstract
Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS) to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.IMPORTANCE Type III secretion systems (T3SS) are an essential virulence trait of many bacterial pathogens because of their indispensable role in the delivery of virulence factors. However, expression of T3SS in the noninfection stage is energy consuming. Here, we established a model to explain the differential regulation of T3SS in host and nonhost environments. When Xanthomonas cells are grown in rich medium, the T3SS regulator HrpG is targeted by Lon protease for proteolysis. The degradation of HrpG leads to downregulated expression of HrpX and the hrp/hrc genes. When Xanthomonas cells infect the host, specific plant stimuli can be perceived and induce Lon phosphorylation at serine 654. Phosphorylation on Lon attenuates its proteolytic activity and protects HrpG from degradation. Consequently, enhanced stability of HrpG activates HrpX and turns on bacterial T3SS in the host. Our work provides a novel molecular mechanism underlying host-dependent activation of bacterial T3SS.
Collapse
|
4
|
Abstract
Kinase-mediated phosphorylation is a pivotal regulatory process in stomatal responses to stresses. Through a redox proteomics study, a sucrose non-fermenting 1-related protein kinase (SnRK2.4) was identified to be redox-regulated in Brassica napus guard cells upon abscisic acid treatment. There are six genes encoding SnRK2.4 paralogs in B. napus Here, we show that recombinant BnSnRK2.4-1C exhibited autophosphorylation activity and preferentially phosphorylated the N-terminal region of B. napus slow anion channel (BnSLAC1-NT) over generic substrates. The in vitro activity of BnSnRK2.4-1C requires the presence of manganese (Mn2+). Phosphorylation sites of autophosphorylated BnSnRK2.4-1C were mapped, including serine and threonine residues in the activation loop. In vitro BnSnRK2.4-1C autophosphorylation activity was inhibited by oxidants such as H2O2 and recovered by active thioredoxin isoforms, indicating redox regulation of BnSnRK2.4-1C. Thiol-specific isotope tagging followed by mass spectrometry analysis revealed specific cysteine residues responsive to oxidant treatments. The in vivo activity of BnSnRK2.4-1C is inhibited by 15 min of H2O2 treatment. Taken together, these data indicate that BnSnRK2.4-1C, an SnRK preferentially expressed in guard cells, is redox-regulated with potential roles in guard cell signal transduction.
Collapse
|
5
|
Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea. mBio 2016; 7:mBio.00379-16. [PMID: 27190215 PMCID: PMC4895103 DOI: 10.1128/mbio.00379-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself was not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis. This study advances the fundamental knowledge of signal-guided proteolysis in archaea and sheds light on components that are related to the ubiquitin-proteasome system of eukaryotes. In archaea, the ubiquitin-like proteasome system is found to require function of an E1/MoeB/ThiF homolog, a type 2 JAMM/MPN+ metalloprotease, and a network of AAA ATPases for the targeted destruction of proteins. We provide evidence that the attachment of the ubiquitin-like protein is controlled by an N-terminal degron and stimulates proteasome-mediated proteolysis.
Collapse
|
6
|
Chen L, Li J, Guo T, Ghosh S, Koh SK, Tian D, Zhang L, Jia D, Beuerman RW, Aebersold R, Chan ECY, Zhou L. Global Metabonomic and Proteomic Analysis of Human Conjunctival Epithelial Cells (IOBA-NHC) in Response to Hyperosmotic Stress. J Proteome Res 2015; 14:3982-95. [PMID: 26260330 DOI: 10.1021/acs.jproteome.5b00443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
"Dry eye" is a multifactorial inflammatory disease affecting the ocular surface. Tear hyperosmolarity in dry eye contributes to inflammation and cell damage. Recent research efforts on dry eye have been directed toward biomarker discovery for diagnosis, response to treatment, and disease mechanisms. This study employed a spontaneously immortalized normal human conjunctival cell line, IOBA-NHC, as a model to investigate hyperosmotic stress-induced changes of metabolites and proteins. Global and targeted metabonomic analyses as well as proteomic analysis were performed on IOBA-NHC cells incubated in serum-free media at 280 (control), 380, and 480 mOsm for 24 h. Twenty-one metabolites and seventy-six iTRAQ-identified proteins showed significant changes under at least one hyperosmotic stress treatment as compared with controls. SWATH-based proteomic analysis further confirmed the involvement of inflammatory pathways such as prostaglandin 2 synthesis in IOBA-NHC cells under hyperosmotic stress. This study is the first to identify glycerophosphocholine synthesis and O-linked β-N-acetylglucosamine glycosylation as key activated pathways in ocular surface cells under hyperosmotic stress. These findings extend the current knowledge in metabolite markers of dry eye and provide potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Liyan Chen
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore , 18 Science Drive 4, Singapore 117543, Singapore
| | - Jing Li
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore.,Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine , 1665 Kongjiang Road, Shanghai 200092, China
| | - Tiannan Guo
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich , Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program & Centre for Computational Biology, Duke-NUS Graduate Medical School , 8 College Road, Singapore 169857, Singapore
| | - Siew Kwan Koh
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
| | - Dechao Tian
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore , 6 Science Drive 2, Singapore 117546, Singapore
| | - Liang Zhang
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore , 6 Science Drive 2, Singapore 117546, Singapore
| | - Deyong Jia
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
| | - Roger W Beuerman
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore.,Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School , 8 College Road, Singapore 169857, Singapore
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich , Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland.,Faculty of Science, University of Zurich , Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore , 18 Science Drive 4, Singapore 117543, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore.,Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School , 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
7
|
D'Alton S, Altshuler M, Lewis J. Studies of alternative isoforms provide insight into TDP-43 autoregulation and pathogenesis. RNA (NEW YORK, N.Y.) 2015; 21:1419-1432. [PMID: 26089325 PMCID: PMC4509932 DOI: 10.1261/rna.047647.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
TDP-43 is a soluble, nuclear protein that undergoes cytoplasmic redistribution and aggregation in the majority of cases of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 autoregulates the abundance of its own transcript TARDBP by binding to an intron in the 3' untranslated region, although the mechanisms underlying this activity have been debated. Herein, we provide the most extensive analysis of TARDBP transcript yet undertaken. We detail the existence of a plethora of complex splicing events and alternative poly(A) use and provide data that explain the discrepancies reported to date regarding the autoregulatory capacity of TDP-43. Additionally, although many splice isoforms emanating from the TARDBP locus contain the regulated intron in the 3' UTR, we find only evidence for autoregulation of the transcript encoding full-length TDP-43. Finally, we use a novel cytoplasmic isoform of TDP to induce disease-like loss of soluble, nuclear TDP-43, which results in aberrant splicing and up-regulation of endogenous TARDBP. These results reveal a previously underappreciated complexity to TDP-43 regulated splicing and suggest that loss of TDP-43 autoregulatory capacity may contribute to the pathogenesis of ALS.
Collapse
Affiliation(s)
- Simon D'Alton
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, Florida 32610, USA
| | - Marcelle Altshuler
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, Florida 32610, USA
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
8
|
Grady CR, Knepper MA, Burg MB, Ferraris JD. Database of osmoregulated proteins in mammalian cells. Physiol Rep 2014; 2:e12180. [PMID: 25355853 PMCID: PMC4254105 DOI: 10.14814/phy2.12180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/15/2014] [Accepted: 09/29/2014] [Indexed: 11/24/2022] Open
Abstract
Biological information, even in highly specialized fields, is increasing at a volume that no single investigator can assimilate. The existence of this vast knowledge base creates the need for specialized computer databases to store and selectively sort the information. We have developed a manually curated database of the effects of hypertonicity on target proteins. Effects include changes in mRNA abundance and protein abundance, activity, phosphorylation state, binding, and cellular compartment. The biological information used in this database was derived from three research approaches: transcriptomic, proteomic, and reductionist (hypothesis-driven). The data are presented in the form of grammatical triplets consisting of subject, verb phrase, and object. The purpose of this format is to allow the data to be read from left to right as an English sentence. It is readable either by humans or by computers using natural language processing algorithms. An example of a data entry reads "Hypertonicity increases activity of ABL1 in HEK293." This database was created to provide access to a wealth of information on the effects of hypertonicity in a format that can be selectively sorted.
Collapse
Affiliation(s)
- Cameron R. Grady
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A. Knepper
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maurice B. Burg
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joan D. Ferraris
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Wang R, Ferraris JD, Izumi Y, Dmitrieva N, Ramkissoon K, Wang G, Gucek M, Burg MB. Global discovery of high-NaCl-induced changes of protein phosphorylation. Am J Physiol Cell Physiol 2014; 307:C442-54. [PMID: 24965592 DOI: 10.1152/ajpcell.00379.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High extracellular NaCl, such as in the renal medulla, can perturb and even kill cells, but cells mount protective responses that enable them to survive and function. Many high-NaCl-induced perturbations and protective responses are known, but the signaling pathways involved are less clear. Change in protein phosphorylation is a common mode of cell signaling, but there was no unbiased survey of protein phosphorylation in response to high NaCl. We used stable isotopic labeling of amino acids in cell culture coupled to mass spectrometry to identify changes in protein phosphorylation in human embryonic kidney (HEK 293) cells exposed to high NaCl. We reproducibly identify >8,000 unique phosphopeptides in 4 biological replicate samples with a 1% false discovery rate. High NaCl significantly changed phosphorylation of 253 proteins. Western analysis and targeted ion selection mass spectrometry confirm a representative sample of the phosphorylation events. We analyze the affected proteins by functional category to infer how altered protein phosphorylation might signal cellular responses to high NaCl, including alteration of cell cycle, cyto/nucleoskeletal organization, DNA double-strand breaks, transcription, proteostasis, metabolism of mRNA, and cell death.
Collapse
Affiliation(s)
- Rong Wang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joan D Ferraris
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Yuichiro Izumi
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalia Dmitrieva
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin Ramkissoon
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Guanghui Wang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marjan Gucek
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maurice B Burg
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Izumi Y, Burg MB, Ferraris JD. 14-3-3-β and -{varepsilon} contribute to activation of the osmoprotective transcription factor NFAT5 by increasing its protein abundance and its transactivating activity. Physiol Rep 2014; 2:e12000. [PMID: 24771694 PMCID: PMC4001879 DOI: 10.14814/phy2.12000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Having previously found that high NaCl causes rapid exit of 14‐3‐3 isoforms from the nucleus, we used siRNA‐mediated knockdown to test whether 14‐3‐3s contribute to the high NaCl‐induced increase in the activity of the osmoprotective transcription factor NFAT5. We find that, when NaCl is elevated, knockdown of 14‐3‐3‐β and/or 14‐3‐3‐ε decreases NFAT5 transcriptional activity, as assayed both by luciferase reporter and by the mRNA abundance of the NFAT5 target genes aldose reductase and the sodium‐ and chloride‐dependent betaine transporter, BGT1. Knockdown of other 14‐3‐3 isoforms does not significantly affect NFAT5 activity. 14‐3‐3‐β and/or 14‐3‐3‐ε do not act by affecting the nuclear localization of NFAT5, but by at least two other mechanisms: (1) 14‐3‐3‐β and 14‐3‐3‐ε increase protein abundance of NFAT5 and (2) they increase NFAT5 transactivating activity. When NaCl is elevated, knockdown of 14‐3‐3‐β and/or 14‐3‐3‐ε reduces the protein abundance of NFAT5, as measured by Western blot, without affecting the level of NFAT5 mRNA, and the knockdown also decreases NFAT5 transactivating activity, as measured by luciferase reporter. The 14‐3‐3s increase NFAT5 protein, not by increasing its translation, but by decreasing the rate at which it is degraded, as measured by cycloheximide chase. It is not clear at this point whether the 14‐3‐3s affect NFAT5 directly or indirectly through their effects on other proteins that signal activation of NFAT5. e12000 When NaCl is elevated, knockdown of 14‐3‐3‐β and/or 14‐3‐3‐ε reduces the protein abundance of NFAT5, as measured by Western blot, without affecting the level of NFAT5 mRNA, and the knockdown also decreases NFAT5 transactivating activity, as measured by luciferase reporter. The 14‐3‐3s increase NFAT5 protein, not by increasing its translation, but by decreasing the rate at which it is degraded, as measured by cycloheximide chase.
Collapse
Affiliation(s)
- Yuichiro Izumi
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
11
|
Silva-Sanchez C, Chen S, Li J, Chourey PS. A comparative glycoproteome study of developing endosperm in the hexose-deficient miniature1 (mn1) seed mutant and its wild type Mn1 in maize. FRONTIERS IN PLANT SCIENCE 2014; 5:63. [PMID: 24616729 PMCID: PMC3935489 DOI: 10.3389/fpls.2014.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/07/2014] [Indexed: 05/04/2023]
Abstract
In maize developing seeds, transfer cells are prominently located at the basal endosperm transfer layer (BETL). As the first filial cell layer, BETL is a gateway to sugars, nutrients and water from mother plant; and anchor of numerous functions such as sucrose turnover, auxin and cytokinin biosynthesis/accumulation, energy metabolism, defense response, and signaling between maternal and filial generations. Previous studies showed that basal developing endosperms of miniature1 (mn1) mutant seeds lacking the Mn1-encoded cell wall invertase II, are also deficient for hexose. Given the role of glucose as one of the key sugars in protein glycosylation and proper protein folding; we performed a comparative large scale glycoproteome profiling of total proteins of these two genotypes (mn1 mutant vs. Mn1 wild type) using 2D gel electrophoresis and glycosylation/total protein staining, followed by image analysis. Protein identification was done by LC-MS/MS. A total of 413 spots were detected; from which, 113 spots matched between the two genotypes. Of these, 45 showed >20% decrease/increase in glycosylation level and were selected for protein identification. A large number of identified proteins showed decreased glycosylation levels in mn1 developing endosperms as compared to the Mn1. Functional classification of proteins, showed mainly of post-translational modification, protein turnover, chaperone activities, carbohydrate and amino acid biosynthesis/transport, and cell wall biosynthesis. These proteins and activities were related to endoplasmic reticulum (ER) stress and unfolded protein response (UPR) as a result of the low glycolsylation levels of the mutant proteins. Overall, these results provide for the first time a global glycoproteome profile of maize BETL-enriched basal endosperm to better understand their role in seed development in maize.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Jinxi Li
- Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Prem S. Chourey
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary EntomologyGainesville, FL, USA
- Department of Agronomy, University of FloridaGainesville, FL, USA
- *Correspondence: Prem S. Chourey, United States Department of Agriculture, Agricultural Research Service, 1600 SW 23rd Drive, Gainesville, FL 32608, USA e-mail:
| |
Collapse
|
12
|
Burg MB, Ferraris JD. Salt, skeletons, and suicide. Focus on "Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton". Am J Physiol Cell Physiol 2012; 304:C113-4. [PMID: 23099642 DOI: 10.1152/ajpcell.00319.2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|