1
|
Unal Kocabas G, Yildirim Simsir I, Sarer Yurekli B, Suner Karakulah A, Durmaz B, Pehlivan Koroglu E, Yeral S, Ozcan B, Akdemir A. The association of plasma pancreastatin levels with insulin resistance in patients with gestational diabetes mellitus. Obstet Med 2024; 17:221-225. [PMID: 39640952 PMCID: PMC11615989 DOI: 10.1177/1753495x231216032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/16/2023] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) occurs on the background of increased insulin resistance. We aimed to investigate the levels of plasma pancreastatin (PST) levels and its association with metabolic, demographic, and anthropometric parameters in gestational diabetic and normal glucose-tolerant pregnant women. MATERIALS AND METHODS A total of 165 pregnant women in the 24th-28th week of pregnancy were enrolled in this cross-sectional study. PST levels were measured using ELISA method. RESULTS Median PST levels were similar between GDM (n = 62, 37.6%) and normal glucose-tolerant control group (n = 103, 62.4%). In the GDM group, PST level showed a significant positive correlation with fasting insulin and the homeostasis model assessment of insulin resistance (HOMA-IR). In binary logistic regression analysis, PST levels did not predict the presence of GDM significantly. CONCLUSION Positive correlation of PST with fasting insulin and HOMA-IR suggests that PST could be associated with insulin resistance. Further studies are needed as regards to the role of PST in GDM pathogenesis.
Collapse
Affiliation(s)
- Gokcen Unal Kocabas
- Division of Endocrinology and Metabolism Disorders, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ilgin Yildirim Simsir
- Division of Endocrinology and Metabolism Disorders, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Banu Sarer Yurekli
- Division of Endocrinology and Metabolism Disorders, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Asli Suner Karakulah
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Burak Durmaz
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esma Pehlivan Koroglu
- Division of Endocrinology and Metabolism Disorders, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sena Yeral
- Division of Endocrinology and Metabolism Disorders, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Busra Ozcan
- Division of Endocrinology and Metabolism Disorders, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ali Akdemir
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Singh P, Reza MI, Syed AA, Husain A, Gayen JR. Pancreastatin deteriorates hepatic lipid metabolism via elevating fetuin B in ovariectomized rats. Biochimie 2023; 214:114-122. [PMID: 37364770 DOI: 10.1016/j.biochi.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Hepatic steatosis is an important mstetabolic complication in women encountering postmenopausal phase of life. Pancreastatin (PST), has previously been investigated in diabetic and insulin resistant rodents. The present study highlighted the role of PST in ovariectomized rats. Female SD rats were ovariectomized and subsequently fed high fructose diet for 12 weeks. PST inhibitor peptide was intraperitoneally administered for 14 days and further examined for insulin resistance, glucose intolerance development, body mass composition, lipid profile detection and hepatic fibrosis. Gut microbial alterations has also been investigated. Results showed development of glucose intolerance in high fructose fed ovariectomized rats with reduced level of reproductive hormones including estradiol and progesterone. Enhanced lipid production was detected in these rats as they showed increased triglycerides, lipid accumulation in liver tissue (determined by HE staining, Oil Red O staining, Nile Red staining). Sirius Red and Masson's trichome analysis depicted positive results for fibrosis development. We also found gut microbiota alterations in fecal samples of these rats. Furthermore, PST inhibition decreased the expression of hepatic Fetuin B and resumed gut microbial diversity. PST deregulates hepatic lipid metabolism which leads to altered expression of Fetuin B in liver and gut dysbiosis in postmenopausal rats.
Collapse
Affiliation(s)
- Pragati Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Irshad Reza
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India; Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
4
|
Allu PKR, Kiranmayi M, Mukherjee SD, Chirasani VR, Garg R, Vishnuprabu D, Ravi S, Subramanian L, Sahu BS, Iyer DR, Maghajothi S, Sharma S, Ravi MS, Khullar M, Munirajan AK, Gayen JR, Senapati S, Mullasari AS, Mohan V, Radha V, Naga Prasad SV, Mahapatra NR. Functional Gly297Ser Variant of the Physiological Dysglycemic Peptide Pancreastatin Is a Novel Risk Factor for Cardiometabolic Disorders. Diabetes 2022; 71:538-553. [PMID: 34862200 DOI: 10.2337/db21-0289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022]
Abstract
Pancreastatin (PST), a chromogranin A-derived potent physiological dysglycemic peptide, regulates glucose/insulin homeostasis. We have identified a nonsynonymous functional PST variant (p.Gly297Ser; rs9658664) that occurs in a large section of human populations. Association analysis of this single nucleotide polymorphism with cardiovascular/metabolic disease states in Indian populations (n = 4,300 subjects) displays elevated plasma glucose, glycosylated hemoglobin, diastolic blood pressure, and catecholamines in Gly/Ser subjects as compared with wild-type individuals (Gly/Gly). Consistently, the 297Ser allele confers an increased risk (∼1.3-1.6-fold) for type 2 diabetes/hypertension/coronary artery disease/metabolic syndrome. In corroboration, the variant peptide (PST-297S) displays gain-of-potency in several cellular events relevant for cardiometabolic disorders (e.g., increased expression of gluconeogenic genes, increased catecholamine secretion, and greater inhibition of insulin-stimulated glucose uptake) than the wild-type peptide. Computational docking analysis and molecular dynamics simulations show higher affinity binding of PST-297S peptide with glucose-regulated protein 78 (GRP78) and insulin receptor than the wild-type peptide, providing a mechanistic basis for the enhanced activity of the variant peptide. In vitro binding assays validate these in silico predictions of PST peptides binding to GRP78 and insulin receptor. In conclusion, the PST 297Ser allele influences cardiovascular/metabolic phenotypes and emerges as a novel risk factor for type 2 diabetes/hypertension/coronary artery disease in human populations.
Collapse
Affiliation(s)
- Prasanna K R Allu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Malapaka Kiranmayi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Venkat R Chirasani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Richa Garg
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Durairajpandian Vishnuprabu
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Sudesh Ravi
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Lakshmi Subramanian
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Bhavani S Sahu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sakthisree Maghajothi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Saurabh Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Marimuthu S Ravi
- Department of Cardiology, Madras Medical College and Government General Hospital, Chennai, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arasambattu K Munirajan
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sanjib Senapati
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Ajit S Mullasari
- Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, India
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Sathyamangala V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
5
|
Herold Z, Doleschall M, Somogyi A. Role and function of granin proteins in diabetes mellitus. World J Diabetes 2021; 12:1081-1092. [PMID: 34326956 PMCID: PMC8311481 DOI: 10.4239/wjd.v12.i7.1081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The granin glycoprotein family consists of nine acidic proteins; chromogranin A (CgA), chromogranin B (CgB), and secretogranin II-VIII. They are produced by a wide range of neuronal, neuroendocrine, and endocrine cells throughout the human body. Their major intracellular function is to sort peptides and proteins into secretory granules, but their cleavage products also take part in the extracellular regulation of diverse biological processes. The contribution of granins to carbohydrate metabolism and diabetes mellitus is a recent research area. CgA is associated with glucose homeostasis and the progression of type 1 diabetes. WE-14, CgA10-19, and CgA43-52 are peptide derivates of CgA, and act as CD4+ or CD8+ autoantigens in type 1 diabetes, whereas pancreastatin (PST) and catestatin have regulatory effects in carbohydrate metabolism. Furthermore, PST is related to gestational and type 2 diabetes. CgB has a crucial role in physiological insulin secretion. Secretogranins II and III have angiogenic activity in diabetic retinopathy (DR), and are novel targets in recent DR studies. Ongoing studies are beginning to investigate the potential use of granin derivatives as drugs to treat diabetes based on the divergent relationships between granins and different types of diabetes.
Collapse
Affiliation(s)
- Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest 1083, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| | - Marton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest 1089, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
6
|
The Emerging Roles of Chromogranins and Derived Polypeptides in Atherosclerosis, Diabetes, and Coronary Heart Disease. Int J Mol Sci 2021; 22:ijms22116118. [PMID: 34204153 PMCID: PMC8201018 DOI: 10.3390/ijms22116118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Chromogranin A (CgA), B (CgB), and C (CgC), the family members of the granin glycoproteins, are associated with diabetes. These proteins are abundantly expressed in neurons, endocrine, and neuroendocrine cells. They are also present in other areas of the body. Patients with diabetic retinopathy have higher levels of CgA, CgB, and CgC in the vitreous humor. In addition, type 1 diabetic patients have high CgA and low CgB levels in the circulating blood. Plasma CgA levels are increased in patients with hypertension, coronary heart disease, and heart failure. CgA is the precursor to several functional peptides, including catestatin, vasostatin-1, vasostatin-2, pancreastatin, chromofungin, and many others. Catestatin, vasostain-1, and vasostatin-2 suppress the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human vascular endothelial cells. Catestatin and vasostatin-1 suppress oxidized low-density lipoprotein-induced foam cell formation in human macrophages. Catestatin and vasostatin-2, but not vasostatin-1, suppress the proliferation and these three peptides suppress the migration in human vascular smooth muscles. Chronic infusion of catestatin, vasostatin-1, or vasostatin-2 suppresses the development of atherosclerosis of the aorta in apolipoprotein E-deficient mice. Catestatin, vasostatin-1, vasostatin-2, and chromofungin protect ischemia/reperfusion-induced myocardial dysfunction in rats. Since pancreastatin inhibits insulin secretion from pancreatic β-cells, and regulates glucose metabolism in liver and adipose tissues, pancreastatin inhibitor peptide-8 (PSTi8) improves insulin resistance and glucose homeostasis. Catestatin stimulates therapeutic angiogenesis in the mouse hind limb ischemia model. Gene therapy with secretoneurin, a CgC-derived peptide, stimulates postischemic neovascularization in apolipoprotein E-deficient mice and streptozotocin-induced diabetic mice, and improves diabetic neuropathy in db/db mice. Therefore, CgA is a biomarker for atherosclerosis, diabetes, hypertension, and coronary heart disease. CgA- and CgC--derived polypeptides provide the therapeutic target for atherosclerosis and ischemia-induced tissue damages. PSTi8 is useful in the treatment of diabetes.
Collapse
|
7
|
Eissa N, Elgazzar O, Hussein H, Hendy GN, Bernstein CN, Ghia JE. Pancreastatin Reduces Alternatively Activated Macrophages, Disrupts the Epithelial Homeostasis and Aggravates Colonic Inflammation. A Descriptive Analysis. Biomedicines 2021; 9:biomedicines9020134. [PMID: 33535452 PMCID: PMC7912769 DOI: 10.3390/biomedicines9020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is characterized by modifying alternatively activated macrophages (AAM) and epithelial homeostasis. Chromogranin-A (CHGA), released by enterochromaffin cells, is elevated in UC and is implicated in inflammation progression. CHGA can be cleaved into several derived peptides, including pancreastatin (PST), which is involved in proinflammatory mechanisms. Previously, we showed that the deletion of Chga decreased the onset and severity of colitis correlated with an increase in AAM and epithelial cells’ functions. Here, we investigated PST activity in colonic biopsies of participants with active UC and investigated PST treatment in dextran sulfate sodium (DSS)-induced colitis using Chga−/− mice, macrophages, and a human colonic epithelial cells line. We found that the colonic protein expression of PST correlated negatively with mRNA expression of AAM markers and tight junction (TJ) proteins and positively with mRNA expression of interleukin (IL)-8, IL18, and collagen in human. In a preclinical setting, intra-rectal administration of PST aggravated DSS-induced colitis by decreasing AAM’s functions, enhancing colonic collagen deposition and disrupting epithelial homeostasis in Chga+/+ and Chga−/− mice. This effect was associated with a significant reduction in AAM markers, increased colonic IL-18 release, and decreased TJ proteins’ gene expression. In vitro, PST reduced Chga+/+ and Chga−/− AAM polarization and decreased anti-inflammatory mediators’ production. Conditioned medium harvested from PST-treated Chga+/+ and Chga−/− AAM reduced Caco-2 cell migration, viability, proliferation, and mRNA levels of TJ proteins and increased oxidative stress-induced apoptosis and proinflammatory cytokines release. In conclusion, PST is a CHGA proinflammatory peptide that enhances the severity of colitis and the inflammatory process via decreasing AAM functions and disrupting epithelial homeostasis.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada or (N.E.); (O.E.)
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Omar Elgazzar
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada or (N.E.); (O.E.)
| | - Hayam Hussein
- National Research Centre, Department of Parasitology and Animal Diseases, Veterinary Research Division, Giza 12622, Egypt;
| | - Geoffrey N. Hendy
- Metabolic Disorders and Complications, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Charles N. Bernstein
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Jean-Eric Ghia
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada or (N.E.); (O.E.)
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Correspondence: or
| |
Collapse
|
8
|
Chen C, Yang Y, Ye X, Jin Y, Cai Z, Zheng J. Impact of aerobic exercise on cognitive function in patients with schizophrenia during daily nursing: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e23876. [PMID: 33429747 PMCID: PMC7793402 DOI: 10.1097/md.0000000000023876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES To assess the effect of aerobic exercise (AE) on cognition function in people with schizophrenia (SZ) during daily nursing. METHODS The literature search will be conducted via PubMed, Embase, Cochrane Library, and Web of Science. Weighted mean difference (WMD) or standardized mean difference (SMD) and 95% confidence intervals (CIs) will be adopted to calculate the association between AE and cognitive function in patients with SZ. Publication bias will be performed by Begg test. When there is publication bias, "cut-and-fill method" will be adopted to adjust publication bias. Sensitivity analysis will be used to test the stability of the result. When the heterogeneity is large (I2 ≥ 50%), meta regression will be used to explore the source of inter-study heterogeneity. When the heterogeneity is large (I2 ≥ 50%) and the results are statistically significant (P < .05), age, sex, duration of disease, duration of intervention, amount of exercise per week, improvement of cardiopulmonary health, and other factors will be sub-analyzed. CONCLUSION This meta-analysis will evaluate the impact of aerobic exercise on cognitive function in patients with SZ during daily nursing on the basis of existing evidence. OSF REGISTRATION NUMBER 10.17605/OSF.IO/C8ABX.
Collapse
Affiliation(s)
| | | | | | | | - Ziyao Cai
- Department of Outpatient, Wenzhou Seventh People's Hospital, Wenzhou, P.R. China
| | | |
Collapse
|
9
|
LC-ESI-MS/MS assay development and validation of a novel antidiabetic peptide PSTi8 in mice plasma using SPE: An application to pharmacokinetics. J Pharm Biomed Anal 2019; 180:113074. [PMID: 31891874 DOI: 10.1016/j.jpba.2019.113074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
Abstract
PSTi8 is a 21 amino acid pancreastatin inhibitory peptide that demonstrated potent antidiabetic activity in insulin resistant rodent models. The goal of the current work is to establish and validate the LC-ESI-MS/MS bioanalytical assay of PSTi8 in mice plasma in order to unveil its pharmacokinetic (PK) behaviour for the first time. The MS detection of PSTi8 and diprotin A (internal standard, IS) was conducted with Q1/Q3 SRM transitions at 607.80 ([M+4 H]4+)/771.20 and 342.20/229.10, respectively using positive ESI. Phenomenex Aqua 5μ 125A (250 × 4.6 mm) column was utilized to separate PSTi8 and IS with a mobile phase consists of MeOH-0.1 % formic acid (1:1, v/v) using 0.4 mL/min flow rate. SPE using medium anion exchange cartridge (Oasis MAX) was used for the extraction of analyte and IS from the mice plasma and the extraction recovery was found to be >55 %. PSTi8 displayed good linearity across the 5-1000 ng/mL concentrations range. The intra- and inter- day accuracy was observed between 99.44-110.20 % and 99.66-110.93 %, respectively. The intra- and inter- day precision was observed between 2.61-4.03 % and 2.90-7.16 %, respectively. The intra-day and inter-day accuracy and precision data was within the 100 ± 15 % nominal values recommended by the United States Food and Drug Administration bioanalytical guidance. The LC-MS/MS assay was validated effectively to investigate the PSTi8 plasma concentrations following intravenous and intraperitoneal PK studies in mice. The absolute bioavailability of PSTi8 was 52.74 ± 13.50 %.
Collapse
|
10
|
Valicherla GR, Gupta AP, Hossain Z, Riyazuddin M, Syed AA, Husain A, Lahiri S, Dave KM, Gayen JR. Pancreastatin inhibitor, PSTi8 ameliorates metabolic health by modulating AKT/GSK-3β and PKCλ/ζ/SREBP1c pathways in high fat diet induced insulin resistance in peri-/post-menopausal rats. Peptides 2019; 120:170147. [PMID: 31473204 DOI: 10.1016/j.peptides.2019.170147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/03/2023]
Abstract
Increase in the prevalence of insulin resistance (IR) in peri-/post-menopause women is mainly due to hormone deficiency and lifestyle. PSTi8 (PEGKGEQEHSQQKEEEEEMAV-amide) is a pancreastatin inhibitor peptide which showed potent antidiabetic activity in genetic and lifestyle induced type 2 diabetic mice. In the present work, we have investigated the antidiabetic activity of PSTi8 in rat models of peri-/post-menopausal IR. 4-vinylcyclohexenediepoxide treated and ovariectomized rats were fed with high fat diet for 12 weeks to develop the peri-/post-menopausal IR. PSTi8 peptide was administered after the development of peri-/post-menopausal IR rats. PSTi8 (1 mg/kg, i.p) improved the glucose homeostasis which is characterized by elevated glycogenesis, enhanced glycolysis and reduced gluconeogenesis. PSTi8 suppressed palmitate- and PST- induced IR in HepG2 cells. PSTi8 treatment enhanced energy expenditure in peri-/post-menopausal IR rats. PSTi8 treatment increased insulin sensitivity in peri-/post-menopausal IR rats, may be mediated by modulating IRS1-2-phosphatidylinositol-3-kinase-AKT-GSK3β and IRS1-2-phosphatidylinositol-3-kinase-PKCλ/ζ-SREBP1c signaling pathways in the liver. PSTi8 can act as a potential therapeutic peptide for the treatment of peri-/post-menopausal IR.
Collapse
Affiliation(s)
- Guru R Valicherla
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand P Gupta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Zakir Hossain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shibani Lahiri
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kandarp M Dave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raibarelly, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
11
|
Hossain Z, Valicherla GR, Gupta AP, Syed AA, Riyazuddin M, Chandra S, Siddiqi MI, Gayen JR. Discovery of pancreastatin inhibitor PSTi8 for the treatment of insulin resistance and diabetes: studies in rodent models of diabetes mellitus. Sci Rep 2018; 8:8715. [PMID: 29880906 PMCID: PMC5992141 DOI: 10.1038/s41598-018-27018-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
Pancreastatin (PST) is an endogenous peptide which regulates glucose and lipid metabolism in liver and adipose tissues. In type 2 diabetic patients, PST level is high and plays a crucial role in the negative regulation of insulin sensitivity. Novel therapeutic agents are needed to treat the diabetes and insulin resistance (IR) against the PST action. In this regard, we have investigated the PST inhibitor peptide-8 (PSTi8) action against diabetogenic PST. PSTi8 rescued PST-induced IR in HepG2 and 3T3L1 cells. PSTi8 increases the GLUT4 translocation to cell surface to promote glucose uptake in L6-GLUT4myc cells. PSTi8 treatment showed an increase in insulin sensitivity in db/db, high fat and fructose fed streptozotocin (STZ) induced IR mice. PSTi8 improved the glucose homeostasis which is comparable to metformin in diabetic mice, characterized by elevated glucose clearance, enhanced glycogenesis, enhanced glycolysis and reduced gluconeogenesis. PST and PSTi8 both were docked to the GRP78 inhibitor binding site in protein-protein docking, GRP78 expression and its ATPase activity studies. The mechanism of action of PSTi8 may be mediated by activating IRS1/2-phosphatidylinositol-3-kinase-AKT (FoxO1, Srebp-1c) signaling pathway. The discovery of PSTi8 provides a promising therapeutic agent for the treatment of metabolic diseases mainly diabetes.
Collapse
Affiliation(s)
- Zakir Hossain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Guru R Valicherla
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand P Gupta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sharat Chandra
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Mohammad I Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
12
|
Eissa N, Hussein H, Hendy GN, Bernstein CN, Ghia JE. Chromogranin-A and its derived peptides and their pharmacological effects during intestinal inflammation. Biochem Pharmacol 2018; 152:315-326. [PMID: 29656116 DOI: 10.1016/j.bcp.2018.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the largest endocrine organ that produces a broad range of active peptides. Mucosal changes during inflammation alter the distribution and products of enteroendocrine cells (EECs) that play a role in immune activation and regulation of gut homeostasis by mediating communication between the nervous, endocrine and immune systems. Patients with inflammatory bowel disease (IBD) typically have altered expression of chromogranin (CHG)-A (CHGA), a major soluble protein secreted by EECs that functions as a pro-hormone. CHGA gives rise to several bioactive peptides that have direct or indirect effects on intestinal inflammation. In IBD, CHGA and its derived peptides are correlated with the disease activity. In this review we describe the potential immunomodulatory roles of CHGA and its derived peptides and their clinical relevance during the progression of intestinal inflammation. Targeting CHGA and its derived peptides could be of benefit for the diagnosis and clinical management of IBD patients.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hayam Hussein
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, USA
| | - Geoffrey N Hendy
- Metabolic Disorders and Complications, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University, Montréal, QC, Canada
| | - Charles N Bernstein
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada; Section of Gastroenterology, Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jean-Eric Ghia
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada; Section of Gastroenterology, Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Chromogranins: from discovery to current times. Pflugers Arch 2017; 470:143-154. [PMID: 28875377 DOI: 10.1007/s00424-017-2027-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The discovery in 1953 of the chromaffin granules as co-storage of catecholamines and ATP was soon followed by identification of a range of uniquely acidic proteins making up the isotonic vesicular storage complex within elements of the diffuse sympathoadrenal system. In the mid-1960s, the enzymatically inactive, major core protein, chromogranin A was shown to be exocytotically discharged from the stimulated adrenal gland in parallel with the co-stored catecholamines and ATP. A prohormone concept was introduced when one of the main storage proteins collectively named granins was identified as the insulin release inhibitory polypeptide pancreastatin. A wide range of granin-derived biologically active peptides have subsequently been identified. Both chromogranin A and chromogranin B give rise to antimicrobial peptides of relevance for combat of pathogens. While two of the chromogranin A-derived peptides, vasostatin-I and pancreastatin, are involved in modulation of calcium and glucose homeostasis, respectively, vasostatin-I and catestatin are important modulators of endothelial permeability, angiogenesis, myocardial contractility, and innate immunity. A physiological role is now evident for the full-length chromogranin A and vasostatin-I as circulating stabilizers of endothelial integrity and in protection against myocardial injury. The high circulating levels of chromogranin A and its fragments in patients suffering from various inflammatory diseases have emerged as challenges for future research and clinical applications.
Collapse
|
14
|
Chen W, Fu Y, Yin X, Liu Y. Circulating levels of cortistatin are correlated with metabolic parameters in patients with newly diagnosed type 2 diabetes mellitus. Peptides 2017; 94:86-90. [PMID: 28526556 DOI: 10.1016/j.peptides.2017.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 11/23/2022]
Abstract
Cortistatin (CST) is a recently discovered cyclic neuropeptide with multiple bioactive effects. The aim of this study was to investigate the relationship between plasma CST and various metabolic markers in patients with newly diagnosed type 2 diabetes mellitus (T2DM). For this study, 60 patients with newly diagnosed T2DM and 38 age- and gender-matched healthy controls were recruited. Fasting plasma glucose (FPG), serum insulin and hemoglobin A1c (HbA1c) levels and a blood lipid profile were obtained with commercially available diagnostic reagents. CST plasma levels were determined using an enzyme immunoassay kit. The results showed that the plasma levels of CST were substantially lower in patients with newly diagnosed T2DM compared with the healthy controls. Plasma CST levels were positively correlated with high-density lipoprotein and negatively related to FPG, serum insulin, the homeostasis model assessment of insulin resistance (HOMA-IR) and HbA1c in all subjects. Further analysis showed that CST levels were positively correlated with systolic blood pressure and negatively correlated with FPG, serum insulin, HOMA-IR and HbA1c in patients with newly diagnosed T2DM. Moreover, logistic regression analyses indicated that plasma CST was correlated with newly diagnosed T2DM. In conclusion, patients with newly diagnosed T2DM had significantly lower plasma levels of CST than healthy controls, and plasma CST was associated with glucose metabolism and insulin resistance, indicating a potential role of CST in the development of T2DM.
Collapse
Affiliation(s)
- Wenjia Chen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xinhua Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
15
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
16
|
Bandyopadhyay GK, Mahata SK. Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity. Front Endocrinol (Lausanne) 2017; 8:20. [PMID: 28228748 PMCID: PMC5296320 DOI: 10.3389/fendo.2017.00020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
Abstract
Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets.
Collapse
Affiliation(s)
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, VA San Diego Healthcare System, San Diego, CA, USA
- *Correspondence: Sushil K. Mahata,
| |
Collapse
|
17
|
Analysis and validation of traits associated with a single nucleotide polymorphism Gly364Ser in catestatin using humanized chromogranin A mouse models. J Hypertens 2016; 34:68-78. [PMID: 26556564 DOI: 10.1097/hjh.0000000000000760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The human prohormone chromogranin A (CHGA), an index member of the granin family is processed to generate catestatin, a peptide that is hypotensive in action and modulates catecholamine release within the sympathoadrenal system. Hypertensive patients with excess sympathetic activity have diminished catestatin. Often the study of physiological consequences of human genetic variation is confounded by elements such as other variations in obligatory linkage disequilibrium with the variant being studied. Also the phenotype of the variant may be influenced by genetic background that varies amongst individuals. This study addresses the effects of a human catestatin polymorphism (rs9658667) using humanized CHGA mouse models. METHODS We created pertinent humanized mouse models wherein the mouse Chga gene locus was replaced by the human ortholog wild-type and the variant versions. This allowed for probing of the effects of catestatin variation in vivo with controls for other variations and global genetic background. RESULTS Both the wild-type and variant human catestatin expressing mouse models were normotensive. The variant catestatin mouse model recapitulated physiological influence of the polymorphism on autonomic traits. These mice had diminished catecholamine, attenuated stress response and increased baroreceptor slopes that would suggest reduced risk of developing hypertension. Elevated plasma glucose, a trait observed in humans was not observed in mice expressing the variant catestatin. CONCLUSION This functional genomics approach of creating humanized mouse models to study rs9658667 polymorphism recapitulated and validated many of the human trait associations. This approach can also be applied in the study of other human gene polymorphisms.
Collapse
|
18
|
Modlin IM, Bodei L, Kidd M. Neuroendocrine tumor biomarkers: From monoanalytes to transcripts and algorithms. Best Pract Res Clin Endocrinol Metab 2016; 30:59-77. [PMID: 26971844 DOI: 10.1016/j.beem.2016.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The management of neuroendocrine neoplasia remains a perplexing problem because of the lack of knowledge of the biology of the disease, its late presentation, the relative insensitivity of imaging modalities and a paucity of predictably effective treatment options. A critical limitation is posed by the lack of accurate biomarkers to guide management, monitor the efficacy of therapy and provide a prognostic assessment of disease progress. Currently utilized monoanalyte biomarkers (e.g. chromogranin, serotonin, pancreastatin etc.) exhibit variable metrics, poor sensitivity, specificity, and predictive ability and are rarely used to guide clinical decision making. A National Cancer Institute Neuroendocrine Tumor summit conference held in 2007 noted biomarker limitations to be a crucial unmet need in the management of neuroendocrine tumors. Nevertheless little progress has been made in this field until recently with the consideration of blood transcript analysis, circulating tumor cells and miRNA measurement. Given the complexity and multidimensionality of the neoplastic process itself, the heterogeneity of neuroendocrine tumors (NET) as well as the interaction of the tumor microenvironment, it is not unexpected that no single (monoanalyte) biomarker has proven to be effective. This deduction reflects the growing recognition that use of a monoanalyte to define a multidimensional disease process has inherent flaws. Logic dictates that no single measured parameter can capture the pathobiological diversity of neoplasia and monoanalytes cannot define the multiple variables (proliferation, metabolic activity, invasive potential and metastatic propensity) that constitute tumor growth. Thus far, most biomarkers whether in tissue or blood/urine have been single analytes with varying degrees of sensitivity and specificity and in general have failed to exhibit robust metrics or lacked methodological rigor. Neuroendocrine (NE) disease represents an area of biomarker paucity since the individual biomarkers (gastrin, insulin etc) are not widely applicable to the diverse types of NE neoplasia (NEN). Broad spectrum markers such as CgA have limitations in sensitivity, specificity and reproducibility. This review serves to provide a general background of the evolution of NET biomarkers. It provides an assessment of their current and past usage and limitations in assessing their diagnostic, pathologic and prognostic aspects in respect of NET. It provides a view of the changing methodology of biomarker development and the application of biomathematical analyses to redefining detection and treatment. Finally, it presents a description and consensus on current advances in transcript analysis, miRNA measurement and circulating tumor cell identification.
Collapse
Affiliation(s)
- Irvin M Modlin
- Emeritus Professor Gastroenterological Surgery, Yale University, School of Medicine, USA.
| | - Lisa Bodei
- Division of Nuclear Medicine, European Institute of Oncology, Milan, Italy
| | - Mark Kidd
- Wren Laboratories, 35 NE Industrial Road, Branford, CT 06405, USA
| |
Collapse
|
19
|
Herold Z, Nagy P, Patócs A, Somogyi A. [The role of chromogranin-A and its derived peptide, WE-14 in the development of type 1 diabetes mellitus]. Orv Hetil 2015; 156:163-170. [PMID: 25618857 DOI: 10.1556/oh.2015.30087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromogranin-A is a member of the granine protein family. It is produced in neuroendocrine cells via secretory granules. Many cleavage proteins are formed from chromogranin-A, from which some have well known biological activity, while the function of others is not yet fully known. Serum chromogranin-A levels are used in neuroendocrine tumour diagnostics. Recent studies showed that one of its cleavage protein, WE-14 may also play a role in the development of type 1 diabetes. WE-14 may function as an autoantigen for T-cells involved in the destruction of β-cells. This mechanism was previously observed only in non-obese diabetic mice. Novel results show that WE-14 also serves as a target for autoreactive cells in newly diagnosed type 1 diabetic patients as well, which reaction can be increased with transglutaminase. In this paper the authors summarize the recent knowledge about chromogranin-A and its potential role in the pathomechanism of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Zoltán Herold
- Szent István Egyetem Állatorvos-tudományi Kar Budapest Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi utca 46. 1088
| | - Péter Nagy
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Patológiai és Kísérleti Rákkutató Intézet Budapest
| | - Attila Patócs
- Semmelweis Egyetem, Általános Orvostudományi Kar Laboratóriumi Medicina Intézet Budapest MTA-SE "Lendület" Örökletes Endokrin Daganatok Kutatócsoport Budapest
| | - Anikó Somogyi
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi utca 46. 1088
| |
Collapse
|
20
|
Modlin IM, Drozdov I, Alaimo D, Callahan S, Teixiera N, Bodei L, Kidd M. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection. Endocr Relat Cancer 2014; 21:615-28. [PMID: 25015994 DOI: 10.1530/erc-14-0190] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A critical requirement in neuroendocrine tumor (NET) management is a sensitive, specific and reproducible blood biomarker test. We evaluated a PCR-based 51 transcript signature (NETest) and compared it to chromogranin A (CgA), pancreastatin (PST) and neurokinin A (NKA). The multigene signature was evaluated in two groups: i) a validation set of 40 NETs and controls and ii) a prospectively collected group of NETs (n=41, 61% small intestinal, 50% metastatic, 44% currently treated and 41 age-sex matched controls). Samples were analyzed by a two-step PCR (51 marker genes) protocol and ELISAs for CgA, PST and NKA. Sensitivity comparisons included χ(2), non-parametric measurements, ROC curves and predictive feature importance (PFAI) analyses. NETest identified 38 of 41 NETs. Performance metrics were: sensitivity 92.8%, specificity 92.8%, positive predictive value 92.8% and negative predictive value 92.8%. Single analyte ELISA metrics were: CgA 76, 59, 65, and 71%; PST 63, 56, 59, and 61% and NKA 39, 93, 84, and 60%. The AUCs (ROC analysis) were: NETest: 0.96±0.025, CgA: 0.67±0.06, PST 0.56±0.06, NKA: 0.66±0.06. NETest significantly outperformed single analyte tests (area differences: 0.284-0.403, Z-statistic 4.85-5.9, P<0.0001). PFAI analysis determined NETest had most value (69%) in diagnosis (CgA (13%), PST (9%), and NKA (9%)). Test data were consistent with the validation set (NETest >95% sensitivity and specificity, AUC =0.98 vs single analytes: 59-67% sensitivity, AUCs: 0.58-0.63). The NETest is significantly more sensitive and efficient (>93%) than single analyte assays (CgA, PST or NKA) in NET diagnosis. Blood-based multigene analytic measurement will facilitate early detection of disease recurrence and can predict therapeutic efficacy.
Collapse
Affiliation(s)
- Irvin M Modlin
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| | - Ignat Drozdov
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| | - Daniele Alaimo
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| | - Stephen Callahan
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| | - Nancy Teixiera
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| | - Lisa Bodei
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| | - Mark Kidd
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| |
Collapse
|
21
|
Modlin IM, Oberg K, Taylor A, Drozdov I, Bodei L, Kidd M. Neuroendocrine tumor biomarkers: current status and perspectives. Neuroendocrinology 2014; 100:265-77. [PMID: 25300695 DOI: 10.1159/000368363] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
Abstract
The identification of accurate harbingers of disease status and therapeutic efficacy are critical requirements in precise diagnosis and effective management. Initially, tissue analysis was regarded as ideal but invasive strategies represent risk compared with peripheral blood sampling. Thus far, most biomarkers, whether in tissue or blood/urine, have been single analytes with varying degrees of sensitivity and specificity. Some analytes have not exhibited robust metrics or have lacked methodological rigor. Neuroendocrine disease represents an area of dire biomarker paucity since the individual biomarkers (gastrin, insulin, etc.) are not widely applicable to the diverse types of neuroendocrine neoplasia. Broad-spectrum markers such as chromogranin A have limitations in sensitivity, specificity and reproducibility. Monoanalytes cannot define the multiple variables (proliferation, metabolic activity, invasive potential, metastatic propensity) that constitute tumor growth. The restricted status of the neuroendocrine neoplasia field has resulted in a lack of comprehensive knowledge of the molecular and cellular biology of the disease, with tardy application of innovative technology. This overview examines limitations in current practice and describes contemporary viable strategies under evaluation, including the identification of novel analytes (gene transcripts, microRNA), circulating tumor cells and metabolic imaging agents that identify disease. Novel requirements are necessary to develop biomathematical algorithms for synchronous calibration of multiple molecular markers and predictive nomograms that interface biological variables to delineate disease progress or treatment efficacy. Optimally, the application of novel techniques and amalgamations of multianalyte assessment will provide a personalized molecular disease signature extrapolative of neuroendocrine neoplasia status and likelihood of progression and predictive of therapeutic opportunity.
Collapse
|