1
|
Alallam B, Abdulameed HT, Lim V. Unbiased Metabolomic and Chemometric profiles of three Sargassum polycystum extracts using GCMS and LCMS/MS: content analysis, correlation analysis and molecular docking. Food Chem 2025; 470:142666. [PMID: 39755036 DOI: 10.1016/j.foodchem.2024.142666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Sargassum polycystum (S. polycystum) is a brown macroalga with a high phytochemical content, making it a nutritious and bioactive food source. However, information on factors contributing to health benefits, like antioxidants and cytotoxicity, is less explored for Malaysian S. polycystum. In this study, three extracts of S. polycystum were characterized using a combination of analytical techniques. Despite similar carbohydrate content across all extracts, water extract exhibited the highest protein [21.90 ± 1.01 albumin equivalent (μg/mg)] and phenolic [7.73 ± 1.95 gallic acid equivalent (μg/mg)] contents. However, it displayed the lowest antioxidant and anticancer activities [half-maximal inhibitory concentration (IC50) of > 2000 μg/mL]. Interestingly, ethanolic extract demonstrated the strongest scavenging activity (IC50 of 397.90 ± 20.43 μg/mL) and selective anticancer activity against MCF7 breast cancer cells (IC50 of 338.63 ± 48.98 μg/mL). Untargeted metabolomic profiling confirmed the differences in the chemical composition of the extracts. Subsequently, correlation and docking analyses were used to identify the potential bioactive compounds within the extracts. The ethanolic extract is a rich source of these bioactive compounds with superior antioxidant and anticancer properties, highlighting the need for further research on its potential utility in the food industry.
Collapse
Affiliation(s)
- Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| | - Hassan Taiye Abdulameed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia; Department of Biochemistry, Kwara State University, Malete, Nigeria.
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Sun J, Zhou Z, Zhou Y, Liu T, Li Y, Gong Z, Jin Y, Zheng L, Huang Y. Anti-Rheumatoid Arthritis Pharmacodynamic Substances Screening of Periploca forrestii Schltr.: Component Analyses In Vitro and In Vivo Combined with Multi-Technical Metabolomics. Int J Mol Sci 2023; 24:13695. [PMID: 37761998 PMCID: PMC10530683 DOI: 10.3390/ijms241813695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of this study was to elucidate the metabolic action patterns of P. forrestii against rheumatoid arthritis (RA) using metabolomics, and to obtain its potential effective substances for treating RA. First, the therapeutic effects of P. forrestii against RA were confirmed; second, the chemical composition of P. forrestii was analyzed, and 17 prototypes were absorbed into blood; subsequently, plasma metabolomics studies using UPLC-Triple-TOF-MS/MS and GC-MS were performed to disclose the metabolomics alterations in groups, which revealed 38 altered metabolites after drug intervention. These metabolites were all associated with the arthritis pathophysiology process (-log(p) > 1.6). Among them, sorted by variable important in projection (VIP), the metabolites affected (VIP ≥ 1.72) belonged to lipid metabolites. Finally, Pearson's analysis between endogenous metabolites and exogenous compounds was conducted to obtain potential pharmacological substances for the P. forrestii treatment of RA, which showed a high correlation between five blood-absorbed components and P. forrestii-regulated metabolites. This information provides a basis for the selection of metabolic action modes for P. forrestii clinical application dosage, and potential pharmacological substances that exerted anti-RA effects of P. forrestii were discovered. The study provided an experimental basis for further research on pharmacoequivalence, molecular mechanism validation, and even the development of new dosage forms in the future.
Collapse
Affiliation(s)
- Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
- National Engineering Research Center of Miao′s Medicines, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
- National Engineering Research Center of Miao′s Medicines, Guiyang 550004, China
| |
Collapse
|
3
|
Metabolomic Analyses to Identify Candidate Biomarkers of Cystinosis. Int J Mol Sci 2023; 24:ijms24032603. [PMID: 36768921 PMCID: PMC9916752 DOI: 10.3390/ijms24032603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Cystinosis is a rare, devastating hereditary disease secondary to recessive CTNS gene mutations. The most commonly used diagnostic method is confirmation of an elevated leukocyte cystine level; however, this method is expensive and difficult to perform. This study aimed to identify candidate biomarkers for the diagnosis and follow-up of cystinosis based on multiomics studies. The study included three groups: newly-diagnosed cystinosis patients (patient group, n = 14); cystinosis patients under treatment (treatment group, n = 19); and healthy controls (control group, n = 30). Plasma metabolomics analysis identified 10 metabolites as candidate biomarkers that differed between the patient and control groups [L-serine, taurine, lyxose, 4-trimethylammoniobutanoic acid, orotic acid, glutathione, PE(O-18:1(9Z)/0:0), 2-hydroxyphenyl acetic acid, acetyl-N-formil-5-metoxikinuramine, 3-indoxyl sulphate]. As compared to the healthy control group, in the treatment group, hypotaurine, phosphatidylethanolamine, N-acetyl-d-mannosamine, 3-indolacetic acid, p-cresol, phenylethylamine, 5-aminovaleric acid, glycine, creatinine, and saccharic acid levels were significantly higher, and the metabolites quinic acid, capric acid, lenticin, xanthotoxin, glucose-6-phosphate, taurine, uric acid, glyceric acid, alpha-D-glucosamine phosphate, and serine levels were significantly lower. Urinary metabolomic analysis clearly differentiated the patient group from the control group by means of higher allo-inositol, talose, glucose, 2-hydroxybutiric acid, cystine, pyruvic acid, valine, and phenylalanine levels, and lower metabolite (N-acetyl-L-glutamic acid, 3-aminopropionitrile, ribitol, hydroquinone, glucuronic acid, 3-phosphoglycerate, xanthine, creatinine, and 5-aminovaleric acid) levels in the patient group. Urine metabolites were also found to be significantly different in the treatment group than in the control group. Thus, this study identified candidate biomarkers that could be used for the diagnosis and follow-up of cystinosis.
Collapse
|
4
|
Tian Y, Li G, Du X, Zeng T, Chen L, Xu W, Gu T, Tao Z, Lu L. Integration of LC-MS-Based and GC-MS-Based Metabolic Profiling to Reveal the Effects of Domestication and Boiling on the Composition of Duck Egg Yolks. Metabolites 2023; 13:metabo13010135. [PMID: 36677059 PMCID: PMC9866831 DOI: 10.3390/metabo13010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Egg yolks contain abundant lipids, proteins, and minerals that provide not only essential nutrients for embryonic development but also cheap sources of nutrients for consumers worldwide. Previous composition analyses of egg yolks primarily focused on nutrients such as lipids and minerals. However, few studies have reported the effects of domestication and heating on yolk composition and characteristics. The objective of this study was to investigate the impact of domestication and boiling on the metabolite contents of egg yolks via untargeted metabolomics using GC-MS and LC-MS. In this study, eggs were collected from Fenghua teals, captive mallards, and Shaoxing ducks. Twelve duck eggs (half raw and half cooked) were randomly selected from each variety, and the egg yolks were separated for metabolic profiling. The analysis identified 1205 compounds in the egg yolks. Domestication generated more differential metabolites than boiling, which indicated that the changes in the metabolome of duck egg yolk caused by domestication were greater than those caused by boiling. In a comparative analysis of domestic and mallard ducks, 48 overlapping differential metabolites were discovered. Among them, nine metabolites were upregulated in domesticated ducks, including monoolein, emodin, daidzein, genistein, and glycitein, which may be involved in lipid metabolism; some of them may also act as phytoestrogens (flavonoids). Another 39 metabolites, including imethylethanolamine, harmalan, mannitol, nornicotine, linoleic acid, diphenylamine, proline betaine, alloxanthin, and resolvin d1, were downregulated by domestication and were linked to immunity, anti-inflammatory, antibacterial, and antioxidant properties. Furthermore, four overlapping differential metabolites that included amino acids and dipeptides were discovered in paired comparisons of the raw and boiled samples. Our findings provided new insights into the molecular response of duck domestication and supported the use of metabolomics to examine the impact of boiling on the composition of egg yolks.
Collapse
Affiliation(s)
- Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Zhengrong Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Correspondence: ; Tel.: +86-571-8640-6682
| |
Collapse
|
5
|
Klepinin A, Miller S, Reile I, Puurand M, Rebane-Klemm E, Klepinina L, Vija H, Zhang S, Terzic A, Dzeja P, Kaambre T. Stable Isotope Tracing Uncovers Reduced γ/β-ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer Circuits in Aggressive Breast Cancer Cells. Front Oncol 2022; 12:892195. [PMID: 35712500 PMCID: PMC9194814 DOI: 10.3389/fonc.2022.892195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Changes in dynamics of ATP γ- and β-phosphoryl turnover and metabolic flux through phosphotransfer pathways in cancer cells are still unknown. Using 18O phosphometabolite tagging technology, we have discovered phosphotransfer dynamics in three breast cancer cell lines: MCF7 (non-aggressive), MDA-MB-231 (aggressive), and MCF10A (control). Contrary to high intracellular ATP levels, the 18O labeling method revealed a decreased γ- and β-ATP turnover in both breast cancer cells, compared to control. Lower β-ATP[18O] turnover indicates decreased adenylate kinase (AK) flux. Aggressive cancer cells had also reduced fluxes through hexokinase (HK) G-6-P[18O], creatine kinase (CK) [CrP[18O], and mitochondrial G-3-P[18O] substrate shuttle. Decreased CK metabolic flux was linked to the downregulation of mitochondrial MTCK1A in breast cancer cells. Despite the decreased overall phosphoryl flux, overexpression of HK2, AK2, and AK6 isoforms within cell compartments could promote aggressive breast cancer growth.
Collapse
Affiliation(s)
- Aleksandr Klepinin
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Aleksandr Klepinin, ; Tuuli Kaambre,
| | - Sten Miller
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Indrek Reile
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Ljudmila Klepinina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Song Zhang
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Andre Terzic
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Petras Dzeja
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- *Correspondence: Aleksandr Klepinin, ; Tuuli Kaambre,
| |
Collapse
|
6
|
Possible Effect of Chelation Treatment on Metabolomic and Lipidomic Analysis in Lead Exposure. J Occup Environ Med 2022; 64:e284-e290. [DOI: 10.1097/jom.0000000000002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Eylem CC, Reçber T, Waris M, Kır S, Nemutlu E. State-of-the-art GC-MS approaches for probing central carbon metabolism. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Kaup KK, Toom L, Truu L, Miller S, Puurand M, Tepp K, Käämbre T, Reile I. A line-broadening free real-time 31P pure shift NMR method for phosphometabolomic analysis. Analyst 2021; 146:5502-5507. [PMID: 34515713 DOI: 10.1039/d1an01198g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphometabolomics by 31P NMR can be challenging, since overlapping multiplets of homonuclear coupled phosphorus nuclei complicate spectral analysis. Pure shift NMR allows to simplify such spectra by collapsing multiplets into singlets, but most pure shift methods require substantially elongated measurement times or cause disturbing spectral line broadening. Herein, we combine established pure shift NMR and artefact suppression techniques to record 31P pure shift NMR spectra without penalties in measurement time or line width. Examples are demonstrated in resolution of a mixture of nucleotide triphosphates and a biological sample of 18O labelled ATP isotopomers.
Collapse
Affiliation(s)
- Karl Kristjan Kaup
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia. .,Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Lauri Toom
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Laura Truu
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | - Sten Miller
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | - Indrek Reile
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| |
Collapse
|
9
|
Aksu-Menges E, Eylem CC, Nemutlu E, Gizer M, Korkusuz P, Topaloglu H, Talim B, Balci-Hayta B. Reduced mitochondrial fission and impaired energy metabolism in human primary skeletal muscle cells of Megaconial Congenital Muscular Dystrophy. Sci Rep 2021; 11:18161. [PMID: 34518586 PMCID: PMC8438035 DOI: 10.1038/s41598-021-97294-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
Megaconial Congenital Muscular Dystrophy (CMD) is a rare autosomal recessive disorder characterized by enlarged mitochondria located mainly at the periphery of muscle fibers and caused by mutations in the Choline Kinase Beta (CHKB) gene. Although the pathogenesis of this disease is not well understood, there is accumulating evidence for the presence of mitochondrial dysfunction. In this study, we aimed to investigate whether imbalanced mitochondrial dynamics affects mitochondrial function and bioenergetic efficiency in skeletal muscle cells of Megaconial CMD. Immunofluorescence, confocal and transmission electron microscopy studies revealed impaired mitochondrial network, morphology, and localization in primary skeletal muscle cells of Megaconial CMD. The organelle disruption was specific only to skeletal muscle cells grown in culture. The expression levels of mitochondrial fission proteins (DRP1, MFF, FIS1) were found to be decreased significantly in both primary skeletal muscle cells and tissue sections of Megaconial CMD by Western blotting and/or immunofluorescence analysis. The metabolomic and fluxomic analysis, which were performed in Megaconial CMD for the first time, revealed decreased levels of phosphonucleotides, Krebs cycle intermediates, ATP, and altered energy metabolism pathways. Our results indicate that reduced mitochondrial fission and altered mitochondrial energy metabolism contribute to mitochondrial dysmorphology and dysfunction in the pathogenesis of Megaconial CMD.
Collapse
Affiliation(s)
- Evrim Aksu-Menges
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Cemil Can Eylem
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Merve Gizer
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Haluk Topaloglu
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Department of Pediatrics, Yeditepe University, Istanbul, Turkey
| | - Beril Talim
- Department of Pediatrics, Pathology Unit, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
10
|
Chen X, Hu L, Su J, Liu X, Luo X, Pei Y, Gao Y, Wei F. Amniotic fluid and urine metabolomic alterations associated with pregnant women with Down syndrome fetuses. J Matern Fetal Neonatal Med 2021; 35:7882-7889. [PMID: 34130603 DOI: 10.1080/14767058.2021.1937990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Down syndrome (DS) is a chromosomal disorder caused by a third copy of all or part of chromosome 21. Clinical observations and preclinical studies both suggest that DS may be associated with significant metabolic and bioenergetic alterations. But the metabolic alterations in pregnant women carrying DS fetuses still remains unclear. In this study, we investigated the characteristic metabolomics and lipidomics changes during fetal development of DS. METHODS The AF and random urine specimens were selected from 20 pregnant women carrying DS fetuses and 20 pregnant women carrying healthy fetuses. The diagnosis of DS was screened according to chromosome karyotype analysis, and untargeted metabolomic and lipidomic analyses were performed. RESULTS Through the analyses of AF, 308 differential metabolites were selected between DS and controls. The metabolites with significant changes mainly involved lipid molecules, organic acids, nucleotides and carbon. Further analysis of lipidomics showed 64 differential metabolites, mainly involving glycerides, sphingolipids and glycerolipids. As for urine metabolomic and lipidomic analyses, there existed consistent metabolites with AF, but the number was much less. CONCLUSIONS Compared with the controls, carbon metabolism, amino acid metabolism, glyceride metabolism, sphingolipid metabolism and glycerophospholipid metabolism were significantly changed in DS cases. In addition, characterized biomarkers in AF and urine were screened for DS diagnosis, and these metabolites were mainly involved in energy metabolism and liver dysfunction. This finding may help improve the efficiency of prenatal screening for DS.
Collapse
Affiliation(s)
- Xiaohang Chen
- The Genetics Laboratory, Longgang Maternity and Child Hospital of Shenzhen City, Shenzhen, China
| | - Liang Hu
- The Genetics Laboratory, Longgang Maternity and Child Hospital of Shenzhen City, Shenzhen, China
| | - Jinjiang Su
- Department of Cell Biology, Jiamusi University, Jiamusi, China
| | - Xiaoyi Liu
- The Genetics Laboratory, Longgang Maternity and Child Hospital of Shenzhen City, Shenzhen, China
| | - Xiaojin Luo
- The Genetics Laboratory, Longgang Maternity and Child Hospital of Shenzhen City, Shenzhen, China
| | - Yuanyuan Pei
- The Genetics Laboratory, Longgang Maternity and Child Hospital of Shenzhen City, Shenzhen, China
| | - Yushan Gao
- The Prenatal Diagnosis Center, Longgang Maternity and Child Hospital of Shenzhen City, Shenzhen, China
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang Maternity and Child Hospital of Shenzhen City, Shenzhen, China.,Department of Cell Biology, Jiamusi University, Jiamusi, China.,Department of Pathogenic Microbiology, Zunyi Medical University, Zhuhai, China.,School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
12
|
Eylem CC, Baysal İ, Erikci A, Yabanoglu-Ciftci S, Zhang S, Kır S, Terzic A, Dzeja P, Nemutlu E. Gas chromatography-mass spectrometry based 18O stable isotope labeling of Krebs cycle intermediates. Anal Chim Acta 2021; 1154:338325. [PMID: 33736808 DOI: 10.1016/j.aca.2021.338325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
New technologies permit determining metabolomic profiles of human diseases by fingerprinting metabolites levels. However, to fully understand metabolomic phenotypes, metabolite levels and turnover rates are necessary to know. Krebs cycle is the major hub of energy metabolism and cell signaling. Traditionally, 13C stable isotope labeled substrates were used to track the carbon turnover rates in Krebs cycle metabolites. In this study, for the first time we introduce H2[18O] based stable isotope marker that permit tracking oxygen exchange rates in separate segments of Krebs cycle. The chromatographic and non-chromatographic parameters were systematically tested on the effect of labeling ratio of Krebs cycle mediators to increase selectivity and sensitivity of the method. We have developed a rapid, precise, and robust GC-MS method for determining the percentage of 18O incorporation to Krebs cycle metabolites. The developed method was applied to track the cancer-induced shift in the Krebs cycle dynamics of Caco-2 cells as compared to the control FHC cells revealing Warburg effects in Caco-2 cells. We demonstrate that unique information could be obtained using this newly developed 18O-labeling analytical technology by following the oxygen exchange rates of Krebs cycle metabolites. Thus, 18O-labeling of Krebs cycle metabolites expands the arsenal of techniques for monitoring the dynamics of cellular metabolism. Moreover, the developed method will allow to apply the 18O-labeling technique to numerous other metabolic pathways where oxygen exchange with water takes place.
Collapse
Affiliation(s)
- Cemil Can Eylem
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey.
| | - İpek Baysal
- Hacettepe University, Hacettepe University, Vocational School of Health Services, Ankara, Turkey.
| | - Acelya Erikci
- Lokman Hekim University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey.
| | | | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Sedef Kır
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey.
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey.
| |
Collapse
|
13
|
Reçber T, Nemutlu E, Beksaç K, Aksoy S, Kır S. Optimization and validation of a HILIC-LC-ESI-MS/MS method for the simultaneous analysis of targeted metabolites: Cross validation of untargeted metabolomic studies for early diagnosis of breast cancer. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Zeki ÖC, Eylem CC, Reçber T, Kır S, Nemutlu E. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. J Pharm Biomed Anal 2020; 190:113509. [DOI: 10.1016/j.jpba.2020.113509] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
|
15
|
Özkan E, Nemutlu E, Beksac MS, Kır S. GC-MS analysis of seven metabolites for the screening of pregnant women with Down Syndrome fetuses. J Pharm Biomed Anal 2020; 188:113427. [PMID: 32683283 DOI: 10.1016/j.jpba.2020.113427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 01/14/2023]
Abstract
Down Syndrome is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. Metabolomics is identification and quantification of small-molecule metabolites (molecular weight <1000 Da) in tissues, cells and physiological fluids within a certain period time. Metabolites are intermediate products of various types of biochemical reactions that participate in bonding metabolic pathways. In this study, metabolites such as 2-Hydroxybutyric acid, 3-Hydroxybutyric acid, β-Hydroxyisovaleric acid, Uracil, Glutamic acid, Maltose and Melezitose were chosen as the possible determinants/markers for the prenatal screening of Down Syndrome. Quantitative analysis of the metabolites conducted by GCMS method using 5 % phenyl / 95 % dimethylpolysiloxane (30 m ×0.25 mm, 0.25 μm film thickness) capillary column. The oven temperature was held constant at 60 °C for 1 min and ramped at 10 °C /min to 200 °C then ramped at 30 °C/min to 320 °C and hold for 6 min before cool-down, as helium mobile phase and flow rate of 2.8 mL/min and adding Myristic acid-d27 as an internal standard. Our method was validated by parameters of system suitability, stability, linearity, sensitivity, accuracy, precision, selectivity, robustness and ruggedness. The developed and validated method was applied to plasma samples taken from pregnant women with Down Syndrome (study group) and euploid fetuses (healthy group). The levels of these seven metabolites are statistically different (p < 0.05 for all) between the groups. It can be concluded that these relevant metabolites might be used for the prenatal screening of Down Syndrome.
Collapse
Affiliation(s)
- Ece Özkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey.
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Division of Perinatology, Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey
| |
Collapse
|
16
|
Intracellular Energy-Transfer Networks and High-Resolution Respirometry: A Convenient Approach for Studying Their Function. Int J Mol Sci 2018; 19:ijms19102933. [PMID: 30261663 PMCID: PMC6213097 DOI: 10.3390/ijms19102933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Compartmentalization of high-energy phosphate carriers between intracellular micro-compartments is a phenomenon that ensures efficient energy use. To connect these sites, creatine kinase (CK) and adenylate kinase (AK) energy-transfer networks, which are functionally coupled to oxidative phosphorylation (OXPHOS), could serve as important regulators of cellular energy fluxes. Here, we introduce how selective permeabilization of cellular outer membrane and high-resolution respirometry can be used to study functional coupling between CK or AK pathways and OXPHOS in different cells and tissues. Using the protocols presented here the ability of creatine or adenosine monophosphate to stimulate OXPHOS through CK and AK reactions, respectively, is easily observable and quantifiable. Additionally, functional coupling between hexokinase and mitochondria can be investigated by monitoring the effect of glucose on respiration. Taken together, high-resolution respirometry in combination with permeabilization is a convenient approach for investigating energy-transfer networks in small quantities of cells and tissues in health and in pathology.
Collapse
|
17
|
Tepp K, Puurand M, Timohhina N, Adamson J, Klepinin A, Truu L, Shevchuk I, Chekulayev V, Kaambre T. Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Mol Cell Biochem 2017; 432:141-158. [PMID: 28293876 DOI: 10.1007/s11010-017-3005-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Abstract
The role of mitochondria in alterations that take place in the muscle cell during healthy aging is a matter of debate during recent years. Most of the studies in bioenergetics have a focus on the model of isolated mitochondria, while changes in the crosstalk between working myofibrils and mitochondria in senescent cardiomyocytes have been less studied. The aim of our research was to investigate the modifications in the highly regulated ATP production and energy transfer systems in heart cells in old rat cardiomyocytes. The results of our work demonstrated alterations in the diffusion restrictions of energy metabolites, manifested by changes in the apparent Michaelis-Menten constant of mitochondria to exogenous ADP. The creatine kinase (CK) phosphotransfer pathway efficiency declines significantly in senescence. The ability of creatine to stimulate OXPHOS as well as to increase the affinity of mitochondria for ADP is falling and the most critical decline is already in the 1-year group (middle-age model in rats). Also, a moderate decrease in the adenylate kinase phosphotransfer system was detected. The importance of glycolysis increases in senescence, while the hexokinase activity does not change during healthy aging. The main result of our study is that the decline in the heart muscle performance is not caused by the changes in the respiratory chain complexes activity but mainly by the decrease in the energy transfer efficiency, especially by the CK pathway.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Jasper Adamson
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.,School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| |
Collapse
|
18
|
Tepp K, Timohhina N, Puurand M, Klepinin A, Chekulayev V, Shevchuk I, Kaambre T. Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies. Ageing Res Rev 2016; 28:1-14. [PMID: 27063513 DOI: 10.1016/j.arr.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/03/2023]
Abstract
Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Faculty of Science, Tallinn University, Narva mnt. 25, 10120, Estonia
| |
Collapse
|
19
|
Ping P, Gustafsson ÅB, Bers DM, Blatter LA, Cai H, Jahangir A, Kelly D, Muoio D, O'Rourke B, Rabinovitch P, Trayanova N, Van Eyk J, Weiss JN, Wong R, Schwartz Longacre L. Harnessing the Power of Integrated Mitochondrial Biology and Physiology: A Special Report on the NHLBI Mitochondria in Heart Diseases Initiative. Circ Res 2015; 117:234-8. [PMID: 26185209 DOI: 10.1161/circresaha.117.306693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial biology is the sum of diverse phenomena from molecular profiles to physiological functions. A mechanistic understanding of mitochondria in disease development, and hence the future prospect of clinical translations, relies on a systems-level integration of expertise from multiple fields of investigation. Upon the successful conclusion of a recent National Institutes of Health, National Heart, Lung, and Blood Institute initiative on integrative mitochondrial biology in cardiovascular diseases, we reflect on the accomplishments made possible by this unique interdisciplinary collaboration effort and exciting new fronts on the study of these remarkable organelles.
Collapse
Affiliation(s)
- Peipei Ping
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Åsa B Gustafsson
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Don M Bers
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Lothar A Blatter
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Hua Cai
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Arshad Jahangir
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Daniel Kelly
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Deborah Muoio
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Brian O'Rourke
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Peter Rabinovitch
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Natalia Trayanova
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Jennifer Van Eyk
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - James N Weiss
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Renee Wong
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Lisa Schwartz Longacre
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.).
| |
Collapse
|
20
|
Nemutlu E, Gupta A, Zhang S, Viqar M, Holmuhamedov E, Terzic A, Jahangir A, Dzeja P. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium. PLoS One 2015; 10:e0136556. [PMID: 26378442 PMCID: PMC4574965 DOI: 10.1371/journal.pone.0136556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022] Open
Abstract
Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third (18O3), and fourth (18O4) positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic vulnerability of aging atrial myocardium.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anu Gupta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Song Zhang
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maria Viqar
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ekhson Holmuhamedov
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, Wisconsin, United States of America
| | - Andre Terzic
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, Wisconsin, United States of America
- * E-mail: (PD); (AJ)
| | - Petras Dzeja
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (PD); (AJ)
| |
Collapse
|
21
|
Nemutlu E, Zhang S, Xu YZ, Terzic A, Zhong L, Dzeja PD, Cha YM. Cardiac resynchronization therapy induces adaptive metabolic transitions in the metabolomic profile of heart failure. J Card Fail 2015; 21:460-9. [PMID: 25911126 DOI: 10.1016/j.cardfail.2015.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/20/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with ventricular dyssynchrony and energetic inefficiency, which can be alleviated by cardiac resynchronization therapy (CRT). The aim of this study was to determine the metabolomic signature in HF and its prognostic value regarding the response to CRT. METHODS AND RESULTS This prospective study consisted of 24 patients undergoing CRT for advanced HF and 10 control patients who underwent catheter ablation for supraventricular arrhythmia but not CRT. Blood samples were collected before and 3 months after CRT. Metabolomic profiling of plasma samples was performed with the use of gas chromatography-mass spectrometry and nuclear magnetic resonance. The plasma metabolomic profile was altered in the HF patients, with a distinct panel of metabolites, including Krebs cycle and lipid, amino acid, and nucleotide metabolism. CRT improved the metabolomic profile. The succinate-glutamate ratio, an index of Krebs cycle activity, improved from 0.58 ± 0.13 to 2.84 ± 0.60 (P < .05). The glucose-palmitate ratio, an indicator of the balance between glycolytic and fatty acid metabolism, increased from 0.96 ± 0.05 to 1.54 ± 0.09 (P < .01). Compared with nonresponders to CRT, responders had a distinct baseline plasma metabolomic profile, including higher isoleucine, phenylalanine, leucine, glucose, and valine levels and lower glutamate levels at baseline (P < .05). CONCLUSIONS CRT improves the plasma metabolomic profile of HF patients, indicating harmonization of myocardial energy substrate metabolism. CRT responders may have a favorable metabolomic profile as a potential biomarker for predicting CRT outcome.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; Department of Analytical Chemistry, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey
| | - Song Zhang
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yi-Zhou Xu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Terzic
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Li Zhong
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Petras D Dzeja
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yong-Mei Cha
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
22
|
Negmadjanov U, Godic Z, Rizvi F, Emelyanova L, Ross G, Richards J, Holmuhamedov EL, Jahangir A. TGF-β1-mediated differentiation of fibroblasts is associated with increased mitochondrial content and cellular respiration. PLoS One 2015; 10:e0123046. [PMID: 25849590 PMCID: PMC4388650 DOI: 10.1371/journal.pone.0123046] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/18/2015] [Indexed: 12/22/2022] Open
Abstract
Objectivs Cytokine-dependent activation of fibroblasts to myofibroblasts, a key event in fibrosis, is accompanied by phenotypic changes with increased secretory and contractile properties dependent on increased energy utilization, yet changes in the energetic profile of these cells are not fully described. We hypothesize that the TGF-β1-mediated transformation of myofibroblasts is associated with an increase in mitochondrial content and function when compared to naive fibroblasts. Methods Cultured NIH/3T3 mouse fibroblasts treated with TGF-β1, a profibrotic cytokine, or vehicle were assessed for transformation to myofibroblasts (appearance of α-smooth muscle actin [α-SMA] stress fibers) and associated changes in mitochondrial content and functions using laser confocal microscopy, Seahorse respirometry, multi-well plate reader and biochemical protocols. Expression of mitochondrial-specific proteins was determined using western blotting, and the mitochondrial DNA quantified using Mitochondrial DNA isolation kit. Results Treatment with TGF-β1 (5 ng/mL) induced transformation of naive fibroblasts into myofibroblasts with a threefold increase in the expression of α-SMA (6.85 ± 0.27 RU) compared to cells not treated with TGF-β1 (2.52 ± 0.11 RU). TGF-β1 exposure increased the number of mitochondria in the cells, as monitored by membrane potential sensitive dye tetramethylrhodamine, and expression of mitochondria-specific proteins; voltage-dependent anion channels (0.54 ± 0.05 vs. 0.23 ± 0.05 RU) and adenine nucleotide transporter (0.61 ± 0.11 vs. 0.22 ± 0.05 RU), as well as mitochondrial DNA content (530 ± 12 μg DNA/106 cells vs. 307 ± 9 μg DNA/106 cells in control). TGF-β1 treatment was associated with an increase in mitochondrial function with a twofold increase in baseline oxygen consumption rate (2.25 ± 0.03 vs. 1.13 ± 0.1 nmol O2/min/106 cells) and FCCP-induced mitochondrial respiration (2.87 ± 0.03 vs. 1.46 ± 0.15 nmol O2/min/106 cells). Conclusions TGF-β1 induced differentiation of fibroblasts is accompanied by energetic remodeling of myofibroblasts with an increase in mitochondrial respiration and mitochondrial content.
Collapse
Affiliation(s)
- Ulugbek Negmadjanov
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin, 53215, United States of America
| | - Zarko Godic
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin, 53215, United States of America
| | - Farhan Rizvi
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin, 53215, United States of America
| | - Larisa Emelyanova
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin, 53215, United States of America
| | - Gracious Ross
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin, 53215, United States of America
| | - John Richards
- Laboratory of Immunology, Aurora Health Care, Milwaukee, Wisconsin, 53215, United States of America
| | - Ekhson L. Holmuhamedov
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin, 53215, United States of America
| | - Arshad Jahangir
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin, 53215, United States of America
- Aurora Cardiovascular Services, Aurora Health Care, Milwaukee, Wisconsin, 53215, United States of America
- * E-mail:
| |
Collapse
|
23
|
Guzun R, Kaambre T, Bagur R, Grichine A, Usson Y, Varikmaa M, Anmann T, Tepp K, Timohhina N, Shevchuk I, Chekulayev V, Boucher F, Dos Santos P, Schlattner U, Wallimann T, Kuznetsov AV, Dzeja P, Aliev M, Saks V. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol (Oxf) 2015; 213:84-106. [PMID: 24666671 DOI: 10.1111/apha.12287] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/23/2013] [Accepted: 03/16/2014] [Indexed: 12/19/2022]
Abstract
To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure-function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis.
Collapse
Affiliation(s)
- R. Guzun
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
- Department of Rehabilitation and Physiology; University Hospital; Grenoble France
| | - T. Kaambre
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - R. Bagur
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - A. Grichine
- Life Science Imaging - In Vitro Platform; IAB CRI INSERM U823; Joseph Fourier University; Grenoble France
| | - Y. Usson
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - M. Varikmaa
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - T. Anmann
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - K. Tepp
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - N. Timohhina
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - I. Shevchuk
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - V. Chekulayev
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - F. Boucher
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - P. Dos Santos
- University of Bordeaux Segalen; INSERM U1045; Bordeaux France
| | - U. Schlattner
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
| | - T. Wallimann
- Emeritus; Biology Department; ETH; Zurich Switzerland
| | - A. V. Kuznetsov
- Cardiac Surgery Research Laboratory; Department of Heart Surgery; Innsbruck Medical University; Innsbruck Austria
| | - P. Dzeja
- Division of Cardiovascular Diseases; Department of Medicine; Mayo Clinic; Rochester MN USA
| | - M. Aliev
- Institute of Experimental Cardiology; Cardiology Research Center; Moscow Russia
| | - V. Saks
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
| |
Collapse
|
24
|
Saks V, Schlattner U, Tokarska-Schlattner M, Wallimann T, Bagur R, Zorman S, Pelosse M, Santos PD, Boucher F, Kaambre T, Guzun R. Systems Level Regulation of Cardiac Energy Fluxes Via Metabolic Cycles: Role of Creatine, Phosphotransfer Pathways, and AMPK Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and Metabolic Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Yaniv Y, Juhaszova M, Sollott SJ. Age-related changes of myocardial ATP supply and demand mechanisms. Trends Endocrinol Metab 2013; 24:495-505. [PMID: 23845538 PMCID: PMC3783621 DOI: 10.1016/j.tem.2013.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/03/2023]
Abstract
In advanced age, the resting myocardial oxygen consumption rate (MVO2) and cardiac work (CW) in the rat remain intact. However, MVO2, CW and cardiac efficiency achieved at high demand are decreased with age, compared to maximal values in the young. Whether this deterioration is due to decrease in myocardial ATP demand, ATP supply, or the control mechanisms that match them remains controversial. Here we discuss evolving perspectives of age-related changes of myocardial ATP supply and demand mechanisms, and critique experimental models used to investigate aging. Specifically, we evaluate experimental data collected at the level of isolated mitochondria, tissue, or organism, and discuss how mitochondrial energetic mechanisms change in advanced age, both at basal and high energy-demand levels.
Collapse
Affiliation(s)
- Yael Yaniv
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | | |
Collapse
|
27
|
Nemutlu E, Zhang S, Juranic NO, Terzic A, Macura S, Dzeja P. 18O-assisted dynamic metabolomics for individualized diagnostics and treatment of human diseases. Croat Med J 2013; 53:529-34. [PMID: 23275318 PMCID: PMC3541579 DOI: 10.3325/cmj.2012.53.529] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Technological innovations and translation of basic discoveries to clinical practice drive advances in medicine. Today's innovative technologies enable comprehensive screening of the genome, transcriptome, proteome, and metabolome. The detailed knowledge, converged in the integrated "omics" (genomics, transcriptomics, proteomics, and metabolomics), holds an immense potential for understanding mechanism of diseases, facilitating their early diagnostics, selecting personalized therapeutic strategies, and assessing their effectiveness. Metabolomics is the newest "omics" approach aimed to analyze large metabolite pools. The next generation of metabolomic screening requires technologies for high throughput and robust monitoring of metabolite levels and their fluxes. In this regard, stable isotope 18O-based metabolite tagging technology expands quantitative measurements of metabolite levels and turnover rates to all metabolites that include water as a reactant, most notably phosphometabolites. The obtained profiles and turnover rates are sensitive indicators of energy and metabolic imbalances like the ones created by genetic deficiencies, myocardial ischemia, heart failure, neurodegenerative disorders, etc. Here we describe and discuss briefly the potential use of dynamic phosphometabolomic platform for disease diagnostics currently under development at Mayo Clinic.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Schryer DW, Peterson P, Illaste A, Vendelin M. Sensitivity analysis of flux determination in heart by H₂ ¹⁸O -provided labeling using a dynamic Isotopologue model of energy transfer pathways. PLoS Comput Biol 2012; 8:e1002795. [PMID: 23236266 PMCID: PMC3516558 DOI: 10.1371/journal.pcbi.1002795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/09/2012] [Indexed: 11/21/2022] Open
Abstract
To characterize intracellular energy transfer in the heart, two organ-level methods have frequently been employed: inversion and saturation transfer, and dynamic labeling. Creatine kinase (CK) fluxes obtained by following oxygen labeling have been considerably smaller than the fluxes determined by saturation transfer. It has been proposed that dynamic labeling determines net flux through CK shuttle, whereas saturation transfer measures total unidirectional flux. However, to our knowledge, no sensitivity analysis of flux determination by oxygen labeling has been performed, limiting our ability to compare flux distributions predicted by different methods. Here we analyze oxygen labeling in a physiological heart phosphotransfer network with active CK and adenylate kinase (AdK) shuttles and establish which fluxes determine the labeling state. A mathematical model consisting of a system of ordinary differential equations was composed describing enrichment in each phosphoryl group and inorganic phosphate. By varying flux distributions in the model and calculating the labeling, we analyzed labeling sensitivity to different fluxes in the heart. We observed that the labeling state is predominantly sensitive to total unidirectional CK and AdK fluxes and not to net fluxes. We conclude that measuring dynamic incorporation of into the high-energy phosphotransfer network in heart does not permit unambiguous determination of energetic fluxes with a higher magnitude than the ATP synthase rate when the bidirectionality of fluxes is taken into account. Our analysis suggests that the flux distributions obtained using dynamic labeling, after removing the net flux assumption, are comparable with those from inversion and saturation transfer. In heart, the movement of energy metabolites between force-producing myosin, other ATPases, and mitochondria is vital for its function and closely related to heart pathologies. In addition to diffusion, transport of ATP, ADP, Pi, and phosphocreatine occurs along parallel pathways such as the adenylate kinase and creatine kinase shuttles. Two organ-level methods have been developed to study the relative flux through these pathways. However, their results differ. It was recently demonstrated that studies often suffer from the exclusion of compartmentation from their metabolic models. One study overcame this limitation by using compartmental models and statistical methods on multiple experiments. Here, we analyzed the sensitivity of the other method - dynamic labeling of phosphoryl groups and inorganic phosphate. For that, we composed a mathematical model tracking enrichment of the metabolites and evaluated sensitivity of labeling to different flux distribution scenarios. Our study shows that the dynamic method provides a measure of total flux, and not net flux as presumed previously, making the fluxes predicted from both methods consistent. Importantly, conclusions derived on the basis of labeling analysis, particularly those regarding the net flux through the shuttles in control and pathological cases, need to be reevaluated.
Collapse
Affiliation(s)
| | | | | | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
29
|
Advances in techniques for phosphorus analysis in biological sources. Curr Opin Biotechnol 2012; 23:852-9. [DOI: 10.1016/j.copbio.2012.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/08/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
|
30
|
Preclinical (1)H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis 2012; 4:1787-804. [PMID: 22877223 DOI: 10.4155/bio.12.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing development of animal models of neurological and psychiatric disorders in combination with the development of advanced nuclear magnetic resonance (NMR) techniques and instrumentation has led to increased use of in vivo proton NMR spectroscopy ((1)H-MRS) for neurochemical analyses. (1)H-MRS is one of only a few analytical methods that can assay in vivo and longitudinal neurochemical changes associated with neurological and psychiatric diseases, with the added advantage of being a technique that can be utilized in both preclinical and clinical studies. In this review, recent progress in the use of (1)H-MRS to investigate animal models of neurological and psychiatric disorders is summarized with examples from the literature and our own work.
Collapse
|
31
|
|