1
|
Karbasion N, Xu Y, Snider JC, Bersi MR. Primary Mouse Aortic Smooth Muscle Cells Exhibit Region- and Sex-Dependent Biological Responses In Vitro. J Biomech Eng 2024; 146:060904. [PMID: 38421345 PMCID: PMC11005860 DOI: 10.1115/1.4064965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Despite advancements in elucidating biological mechanisms of cardiovascular remodeling, cardiovascular disease (CVD) remains the leading cause of death worldwide. When stratified by sex, clear differences in CVD prevalence and mortality between males and females emerge. Regional differences in phenotype and biological response of cardiovascular cells are important for localizing the initiation and progression of CVD. Thus, to better understand region and sex differences in CVD presentation, we have focused on characterizing in vitro behaviors of primary vascular smooth muscle cells (VSMCs) from the thoracic and abdominal aorta of male and female mice. VSMC contractility was assessed by traction force microscopy (TFM; single cell) and collagen gel contraction (collective) with and without stimulation by transforming growth factor-beta 1 (TGF-β1) and cell proliferation was assessed by a colorimetric metabolic assay (MTT). Gene expression and TFM analysis revealed region- and sex-dependent behaviors, whereas collagen gel contraction was consistent across sex and aortic region under baseline conditions. Thoracic VSMCs showed a sex-dependent sensitivity to TGF-β1-induced collagen gel contraction (female > male; p = 0.025) and a sex-dependent proliferative response (female > male; p < 0.001) that was not apparent in abdominal VSMCs. Although primary VSMCs exhibit intrinsic region and sex differences in biological responses that may be relevant for CVD presentation, several factors-such as inflammation and sex hormones-were not included in this study. Such factors should be included in future studies of in vitro mechanobiological responses relevant to CVD differences in males and females.
Collapse
Affiliation(s)
- Niyousha Karbasion
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| | - Yujun Xu
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - J. Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - Matthew R. Bersi
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| |
Collapse
|
2
|
Zheng X, Diktonaite K, Qiu H. Epigenetic Reader Bromodomain-Containing Protein 4 in Aging-Related Vascular Pathologies and Diseases: Molecular Basis, Functional Relevance, and Clinical Potential. Biomolecules 2023; 13:1135. [PMID: 37509171 PMCID: PMC10376956 DOI: 10.3390/biom13071135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is a key independent risk factor of various vascular diseases, for which the regulatory mechanisms remain largely unknown. Bromodomain-containing protein 4 (BRD4) is a member of the Bromodomain and Extra-Terminal domain (BET) family and is an epigenetic reader playing diverse roles in regulating transcriptional elongation, chromatin remodeling, DNA damage response, and alternative splicing in various cells and tissues. While BRD4 was initially recognized for its involvement in cancer progression, recent studies have revealed that the aberrant expression and impaired function of BRD4 were highly associated with aging-related vascular pathology, affecting multiple key biological processes in the vascular cells and tissues, providing new insights into the understanding of vascular pathophysiology and pathogenesis of vascular diseases. This review summarizes the recent advances in BRD4 biological function, and the progression of the studies related to BRD4 in aging-associated vascular pathologies and diseases, including atherosclerosis, aortic aneurism vascular neointima formation, pulmonary hypertension, and essential hypertension, providing updated information to advance our understanding of the epigenetic mechanisms in vascular diseases during aging and paving the way for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.Z.); (K.D.)
| | - Kotryna Diktonaite
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.Z.); (K.D.)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.Z.); (K.D.)
- Department of Internal Medicine, Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| |
Collapse
|
3
|
Ma B, Melton E, Wiener R, Zhou N, Wu W, Lai L, Wang C, Costa KD, Qiu H. Age and Blood Pressure Contribute to Aortic Cell and Tissue Stiffness Through Distinct Mechanisms. Hypertension 2022; 79:1777-1788. [PMID: 35766034 PMCID: PMC9308762 DOI: 10.1161/hypertensionaha.121.18950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aortic stiffening is strongly associated with both aging and hypertension, but the underlying mechanisms remain unclear. We hypothesized that aging-induced aortic stiffness is mediated by a mechanism differing from hypertension. METHODS We conducted comprehensive in vivo and in vitro experiments using multiple rat models to dissect the different mechanisms of aortic stiffening mediated by aging and hypertension. RESULTS A time-course study in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) normotensive rats showed more pronounced aging-associated aortic stiffening in SHR versus WKY. Angiotensin II-induced hypertension was associated with more significant aortic stiffening in older versus young WKY rats. Hypertension aggravated aging effects on aortic wall thickness and extracellular matrix content, indicating combinational effects of aging and hypertension on aortic stiffening. Intrinsic stiffness of isolated aortic vascular smooth muscle cells (VSMCs) increased with age in WKY rats, although no significant difference between older SHR and older WKY VSMCs was observed in 2-dimensional culture, reconstituted 3-dimensional tissues were stiffer for older SHR versus older WKY. A selective inhibitor that reduced hypertension-mediated aortic stiffening did not decrease age-related stiffening in aortic VSMCs and aortic wall. Integrin β1 and SM22 (smooth muscle-specific SM22 protein) expression were negligibly changed in WKY VSMCs during aging but were markedly increased by hypertension in older versus young WKY VSMCs. A notable shift of filamin isoforms from B to A was detected in older WKY VSMCs. CONCLUSIONS Our results indicate distinct mechanisms mediating aging-associated aortic VSMC and vessel stiffness, providing new insights into aortic stiffening and the pathogenesis of hypertension in the elderly.
Collapse
Affiliation(s)
- Ben Ma
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA (B.M., E.M., W.W., L.L., H.Q.).,Division of Physiology, Department of Basic Sciences (B.M., N.Z., H.Q.), School of Medicine, Loma Linda University, CA
| | - Elaina Melton
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA (B.M., E.M., W.W., L.L., H.Q.)
| | - Robert Wiener
- Department of Medicine (Cardiology), Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.W., K.D.C.)
| | - Ning Zhou
- Division of Physiology, Department of Basic Sciences (B.M., N.Z., H.Q.), School of Medicine, Loma Linda University, CA
| | - Wenqian Wu
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA (B.M., E.M., W.W., L.L., H.Q.)
| | - Lo Lai
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA (B.M., E.M., W.W., L.L., H.Q.)
| | - Charles Wang
- Department of Basic Sciences & Center for Genomics (C.W.), School of Medicine, Loma Linda University, CA
| | - Kevin D Costa
- Department of Medicine (Cardiology), Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.W., K.D.C.)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA (B.M., E.M., W.W., L.L., H.Q.).,Division of Physiology, Department of Basic Sciences (B.M., N.Z., H.Q.), School of Medicine, Loma Linda University, CA
| |
Collapse
|
4
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
5
|
Vatner SF, Zhang J, Vyzas C, Mishra K, Graham RM, Vatner DE. Vascular Stiffness in Aging and Disease. Front Physiol 2021; 12:762437. [PMID: 34950048 PMCID: PMC8688960 DOI: 10.3389/fphys.2021.762437] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
The goal of this review is to provide further understanding of increased vascular stiffness with aging, and how it contributes to the adverse effects of major human diseases. Differences in stiffness down the aortic tree are discussed, a topic requiring further research, because most prior work only examined one location in the aorta. It is also important to understand the divergent effects of increased aortic stiffness between males and females, principally due to the protective role of female sex hormones prior to menopause. Another goal is to review human and non-human primate data and contrast them with data in rodents. This is particularly important for understanding sex differences in vascular stiffness with aging as well as the changes in vascular stiffness before and after menopause in females, as this is controversial. This area of research necessitates studies in humans and non-human primates, since rodents do not go through menopause. The most important mechanism studied as a cause of age-related increases in vascular stiffness is an alteration in the vascular extracellular matrix resulting from an increase in collagen and decrease in elastin. However, there are other mechanisms mediating increased vascular stiffness, such as collagen and elastin disarray, calcium deposition, endothelial dysfunction, and the number of vascular smooth muscle cells (VSMCs). Populations with increased longevity, who live in areas called “Blue Zones,” are also discussed as they provide additional insights into mechanisms that protect against age-related increases in vascular stiffness. Such increases in vascular stiffness are important in mediating the adverse effects of major cardiovascular diseases, including atherosclerosis, hypertension and diabetes, but require further research into their mechanisms and treatment.
Collapse
Affiliation(s)
- Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Christina Vyzas
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Kalee Mishra
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, University of New South Wales, Darlinghurst, NSW, Australia
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
6
|
The Progress of Advanced Ultrasonography in Assessing Aortic Stiffness and the Application Discrepancy between Humans and Rodents. Diagnostics (Basel) 2021; 11:diagnostics11030454. [PMID: 33800855 PMCID: PMC8001300 DOI: 10.3390/diagnostics11030454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Aortic stiffening is a fundamental pathological alteration of atherosclerosis and other various aging-associated vascular diseases, and it is also an independent risk factor of cardiovascular morbidity and mortality. Ultrasonography is a critical non-invasive method widely used in assessing aortic structure, function, and hemodynamics in humans, playing a crucial role in predicting the pathogenesis and adverse outcomes of vascular diseases. However, its applications in rodent models remain relatively limited, hindering the progress of the research. Here, we summarized the progress of the advanced ultrasonographic techniques applied in evaluating aortic stiffness. With multiple illustrative images, we mainly characterized various ultrasound techniques in assessing aortic stiffness based on the alterations of aortic structure, hemodynamics, and tissue motion. We also discussed the discrepancy of their applications in humans and rodents and explored the potential optimized strategies in the experimental research with animal models. This updated information would help to better understand the nature of ultrasound techniques and provide a valuable prospect for their applications in assessing aortic stiffness in basic science research, particularly with small animals.
Collapse
|
7
|
Gao P, Gao P, Choi M, Chegireddy K, Slivano OJ, Zhao J, Zhang W, Long X. Transcriptome analysis of mouse aortae reveals multiple novel pathways regulated by aging. Aging (Albany NY) 2020; 12:15603-15623. [PMID: 32805724 PMCID: PMC7467355 DOI: 10.18632/aging.103652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Abstract
Vascular aging has been documented as a vital process leading to arterial dysfunction and age-related cardiovascular and cerebrovascular diseases. However, our understanding of the molecular underpinnings of age-related phenotypes in the vascular system is incomplete. Here we performed bulk RNA sequencing in young and old mouse aortae to elucidate age-associated changes in the transcriptome. Results showed that the majority of upregulated pathways in aged aortae relate to immune response, including inflammation activation, apoptotic clearance, and phagocytosis. The top downregulated pathway in aged aortae was extracellular matrix organization. Additionally, protein folding control and stress response pathways were downregulated in the aged vessels, with an array of downregulated genes encoding heat shock proteins (HSPs). We also found that circadian core clock genes were differentially expressed in young versus old aortae. Finally, transcriptome analysis combined with protein expression examination and smooth muscle cell (SMC) lineage tracing revealed that SMCs in aged aortae retained the differentiated phenotype, with an insignificant decrease in SMC marker gene expression. Our results therefore unveiled critical pathways regulated by arterial aging in mice, which will provide important insight into strategies to defy vascular aging and age-associated vascular diseases.
Collapse
Affiliation(s)
- Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Pan Gao
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Mihyun Choi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Kavya Chegireddy
- School of Public Health, University at Albany, Albany, NY 12222, USA
| | - Orazio J Slivano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jinjing Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Wei Zhang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.,Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Vatner DE, Oydanich M, Zhang J, Babici D, Vatner SF. Secreted frizzled-related protein 2, a novel mechanism to induce myocardial ischemic protection through angiogenesis. Basic Res Cardiol 2020; 115:48. [DOI: 10.1007/s00395-020-0808-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022]
|
9
|
Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ 2020; 11:31. [PMID: 32487164 PMCID: PMC7268741 DOI: 10.1186/s13293-020-00306-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress, endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification of targets with therapeutic potential would contribute to the development of more efficient treatments according to individual needs.
Collapse
Affiliation(s)
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Turan ZG, Parvizi P, Dönertaş HM, Tung J, Khaitovich P, Somel M. Molecular footprint of Medawar's mutation accumulation process in mammalian aging. Aging Cell 2019; 18:e12965. [PMID: 31062469 PMCID: PMC6612638 DOI: 10.1111/acel.12965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/14/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Medawar's mutation accumulation hypothesis explains aging by the declining force of natural selection with age: Slightly deleterious germline mutations expressed in old age can drift to fixation and thereby lead to aging‐related phenotypes. Although widely cited, empirical evidence for this hypothesis has remained limited. Here, we test one of its predictions that genes relatively highly expressed in old adults should be under weaker purifying selection than genes relatively highly expressed in young adults. Combining 66 transcriptome datasets (including 16 tissues from five mammalian species) with sequence conservation estimates across mammals, here we report that the overall conservation level of expressed genes is lower at old age compared to young adulthood. This age‐related decrease in transcriptome conservation (ADICT) is systematically observed in diverse mammalian tissues, including the brain, liver, lung, and artery, but not in others, most notably in the muscle and heart. Where observed, ADICT is driven partly by poorly conserved genes being up‐regulated during aging. In general, the more often a gene is found up‐regulated with age among tissues and species, the lower its evolutionary conservation. Poorly conserved and up‐regulated genes have overlapping functional properties that include responses to age‐associated tissue damage, such as apoptosis and inflammation. Meanwhile, these genes do not appear to be under positive selection. Hence, genes contributing to old age phenotypes are found to harbor an excess of slightly deleterious alleles, at least in certain tissues. This supports the notion that genetic drift shapes aging in multicellular organisms, consistent with Medawar's mutation accumulation hypothesis.
Collapse
Affiliation(s)
- Zeliha Gözde Turan
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Poorya Parvizi
- Department of Biological Sciences Middle East Technical University Ankara Turkey
- Usher Institute of Population Health Sciences and Informatics University of Edinburgh Edinburgh UK
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL‐EBI Wellcome Trust Genome Campus Cambridge UK
| | - Jenny Tung
- Department of Evolutionary Anthropology Duke University Durham North Carolina
- Department of Biology Duke University Durham North Carolina
- Duke Population Research Institute Duke University Durham North Carolina
| | - Philipp Khaitovich
- Center for Neurobiology and Brain Restoration Skolkovo Institute of Science and Technology Moscow Russia
- CAS Key Laboratory of Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
| | - Mehmet Somel
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| |
Collapse
|
11
|
Abstract
Arterial aging engages a plethora of key signalling pathways that act in concert to induce vascular smooth muscle cell (VSMC) phenotypic changes leading to vascular degeneration and extracellular matrix degradation responsible for alterations of the mechanical properties of the vascular wall. This review highlights proof-of-concept examples of components of the extracellular matrix, VSMC receptors which connect extracellular and intracellular structures, and signalling pathways regulating changes in mechanotransduction and vascular homeostasis in aging. Furthermore, it provides a new framework for understanding how VSMC stiffness and adhesion to extracellular matrix contribute to arterial stiffness and how interactions with endothelial cells, platelets, and immune cells can regulate vascular aging. The identification of the key players of VSMC changes operating in large and small-sized arteries in response to increased mechanical load may be useful to better elucidate the causes and consequences of vascular aging and associated progression of hypertension, arteriosclerosis, and atherosclerosis.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Faculte de Medecine, 9 Avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Veronique Regnault
- INSERM, U1116, Faculte de Medecine, 9 Avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Alberto P Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
12
|
Role of miRNA in the Regulatory Mechanisms of Estrogens in Cardiovascular Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6082387. [PMID: 30671171 PMCID: PMC6317101 DOI: 10.1155/2018/6082387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
Cardiovascular diseases are a worldwide health problem and are the leading cause of mortality in developed countries. Together with experimental data, the lower incidence of cardiovascular diseases in women than in men of reproductive age points to the influence of sex hormones at the cardiovascular level and suggests that estrogens play a protective role against cardiovascular disease and that this role is also modified by ageing. Estrogens affect cardiovascular function via their specific estrogen receptors to trigger gene expression changes at the transcriptional level. In addition, emerging studies have proposed a role for microRNAs in the vascular effects mediated by estrogens. miRNAs regulate gene expression by repressing translational processes and have been estimated to be involved in the regulation of approximately 30% of all protein-coding genes in mammals. In this review, we highlight the current knowledge of the role of estrogen-sensitive miRNAs, and their influence in regulating vascular ageing.
Collapse
|
13
|
Ogola BO, Zimmerman MA, Clark GL, Abshire CM, Gentry KM, Miller KS, Lindsey SH. New insights into arterial stiffening: does sex matter? Am J Physiol Heart Circ Physiol 2018; 315:H1073-H1087. [PMID: 30028199 DOI: 10.1152/ajpheart.00132.2018] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review discusses sexual dimorphism in arterial stiffening, disease pathology interactions, and the influence of sex on mechanisms and pathways. Arterial stiffness predicts cardiovascular mortality independent of blood pressure. Patients with increased arterial stiffness have a 48% higher risk for developing cardiovascular disease. Like other cardiovascular pathologies, arterial stiffness is sexually dimorphic. Young women have lower stiffness than aged-matched men, but this sex difference reverses during normal aging. Estrogen therapy does not attenuate progressive stiffening in postmenopausal women, indicating that currently prescribed drugs do not confer protection. Although remodeling of large arteries is a protective adaptation to higher wall stress, arterial stiffening increases afterload to the left ventricle and transmits higher pulsatile pressure to smaller arteries and target organs. Moreover, an increase in aortic stiffness may precede or exacerbate hypertension, particularly during aging. Additional studies are needed to elucidate the mechanisms by which females are protected from arterial stiffness to provide insight into its mechanisms and, ultimately, therapeutic targets for treating this pathology.
Collapse
Affiliation(s)
- Benard O Ogola
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | | | - Gabrielle L Clark
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Caleb M Abshire
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kaylee M Gentry
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| |
Collapse
|
14
|
Yu Y, Xiong Y, Montani JP, Yang Z, Ming XF. Arginase-II activates mTORC1 through myosin-1b in vascular cell senescence and apoptosis. Cell Death Dis 2018; 9:313. [PMID: 29472548 PMCID: PMC5833809 DOI: 10.1038/s41419-018-0356-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/21/2022]
Abstract
Type-II L-arginine:ureahydrolase, arginase-II (Arg-II), is shown to activate mechanistic target of rapamycin complex 1 (mTORC1) pathway and contributes to cell senescence and apoptosis. In an attempt to elucidate the underlying mechanism, we identified myosin-1b (Myo1b) as a mediator. Overexpression of Arg-II induces re-distribution of lysosome and mTOR but not of tuberous sclerosis complex (TSC) from perinuclear area to cell periphery, dissociation of TSC from lysosome and activation of mTORC1-ribosomal protein S6 kinase 1 (S6K1) pathway. Silencing Myo1b prevents all these alterations induced by Arg-II. By overexpressing Myo1b or its mutant with point mutation in its pleckstrin homology (PH) domain we further demonstrate that this effect of Myo1b is dependent on its PH domain that is required for Myo1b-lysosome association. Notably, Arg-II promotes association of Myo1b with lysosomes. In addition, we show that in senescent vascular smooth muscle cells with elevated endogenous Arg-II, silencing Myo1b prevents Arg-II-mediated lysosomal positioning, dissociation of TSC from lysosome, mTORC1 activation and cell apoptosis. Taken together, our study demonstrates that Myo1b mediates the effect of Arg-II in activating mTORC1-S6K1 through promoting peripheral lysosomal positioning, that results in spatial separation and thus dissociation of TSC from lysosome, leading to hyperactive mTORC1-S6K1 signaling linking to cellular senescence/apoptosis.
Collapse
Affiliation(s)
- Yi Yu
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Yuyan Xiong
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland. .,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland.
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland. .,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland.
| |
Collapse
|
15
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 458] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
16
|
Zhou N, Lee JJ, Stoll S, Ma B, Wiener R, Wang C, Costa KD, Qiu H. Inhibition of SRF/myocardin reduces aortic stiffness by targeting vascular smooth muscle cell stiffening in hypertension. Cardiovasc Res 2016; 113:171-182. [PMID: 28003268 PMCID: PMC5340142 DOI: 10.1093/cvr/cvw222] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 11/14/2022] Open
Abstract
AIMS Increased aortic stiffness is a fundamental manifestation of hypertension. However, the molecular mechanisms involved remain largely unknown. We tested the hypothesis that abnormal intrinsic vascular smooth muscle cell (VSMC) mechanical properties in large arteries, but not in distal arteries, contribute to the pathogenesis of aortic stiffening in hypertension, mediated by the serum response factor (SRF)/myocardin signalling pathway. METHODS AND RESULTS Four month old male spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were studied. Using atomic force microscopy, significant VSMC stiffening was observed in the large conducting aorta compared with the distal arteries in SHR (P < 0.001), however, this regional variation was not observed in WKY rats (P > 0.4). The increase of VSMC stiffness was accompanied by a parallel increase in the expression of SRF by 9.8-fold and of myocardin by 10.5-fold in thoracic aortic VSMCs from SHR vs. WKY rats, resulting in a significant increase of downstream stiffness-associated genes (all, P < 0.01 vs. WKY). Inhibition of SRF/myocardin expression selectively attenuated aortic VSMC stiffening, and normalized downstream targets in VSMCs isolated from SHR but not from WKY rats. In vivo, 2 weeks of treatment with SRF/myocardin inhibitor delivered by subcutaneous osmotic minipump significantly reduced aortic stiffness and then blood pressure in SHR but not in WKY rats, although concomitant changes in aortic wall remodelling were not detected during this time frame. CONCLUSIONS SRF/myocardin pathway acts as a pivotal mediator of aortic VSMC mechanical properties and plays a central role in the pathological aortic stiffening in hypertension. Attenuation of aortic VSMC stiffening by pharmacological inhibition of SRF/myocardin signalling presents a novel therapeutic strategy for the treatment of hypertension by targeting the cellular contributors to aortic stiffness.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.,Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA
| | - Jia-Jye Lee
- Department of Medicine (Cardiology), Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029 NY, USA; and
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA
| | - Robert Wiener
- Department of Medicine (Cardiology), Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029 NY, USA; and
| | - Charles Wang
- Department of Basic Sciences/School of Medicine, Center for Genomics, Loma Linda University, 11021 Campus St., Loma Linda, 92350 CA, USA
| | - Kevin D Costa
- Department of Medicine (Cardiology), Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029 NY, USA; and
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA;
| |
Collapse
|
17
|
Didier ES, MacLean AG, Mohan M, Didier PJ, Lackner AA, Kuroda MJ. Contributions of Nonhuman Primates to Research on Aging. Vet Pathol 2016; 53:277-90. [PMID: 26869153 PMCID: PMC5027759 DOI: 10.1177/0300985815622974] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans.
Collapse
Affiliation(s)
- E S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - A G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - P J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - A A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
18
|
Dietary nitrate is a modifier of vascular gene expression in old male mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:658264. [PMID: 25838870 PMCID: PMC4369962 DOI: 10.1155/2015/658264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
Aging leads to a number of disadvantageous changes in the cardiovascular system. Deterioration of vascular homoeostasis with increase in oxidative stress, chronic low-grade inflammation, and impaired nitric oxide bioavailability results in endothelial dysfunction, increased vascular stiffness, and compromised arterial-ventricular interactions. A chronic dietary supplementation with the micronutrient nitrate has been demonstrated to improve vascular function. Healthy dietary patterns may regulate gene expression profiles. However, the mechanisms are incompletely understood. The changes that occur at the gene expression level and transcriptional profile following a nutritional modification with nitrate have not been elucidated. To determine the changes of the vascular transcriptome, we conducted gene expression microarray experiments on aortas of old mice, which were treated with dietary nitrate. Our results highlight differentially expressed genes overrepresented in gene ontology categories. Molecular interaction and reaction pathways involved in the calcium-signaling pathway and the detoxification system were identified. Our results provide novel insight to an altered gene-expression profile in old mice following nitrate supplementation. This supports the general notion of nutritional approaches to modulate age-related changes of vascular functions and its detrimental consequences.
Collapse
|
19
|
Efficacy of female rat models in translational cardiovascular aging research. J Aging Res 2014; 2014:153127. [PMID: 25610649 PMCID: PMC4294461 DOI: 10.1155/2014/153127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging.
Collapse
|
20
|
Monk BA, George SJ. The Effect of Ageing on Vascular Smooth Muscle Cell Behaviour--A Mini-Review. Gerontology 2014; 61:416-26. [PMID: 25471382 DOI: 10.1159/000368576] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Ageing is a prominent risk factor for atherosclerosis and cardiovascular disease. Vascular smooth muscle cells (VSMCs) are an integral part of atherosclerotic plaque formation, progression and subsequent rupture. Emerging evidence suggests that VSMC behaviour is modified by age, which in turn may affect disease outcome in the elderly. In this review, we discuss the effect of age on VSMC behaviour, proliferation, migration, apoptosis, inflammation, extracellular matrix synthesis and calcification. In addition, we discuss the multiple signalling factors underlying these behavioural changes including angiotensin-II, matrix metalloproteinases, monocyte chemotactic protein-1, and transforming growth factor-β1. Understanding the molecular processes underpinning altered VSMC behaviour with age, may lead to the identification of novel therapeutic targets for suppressing atherosclerosis in the elderly population.
Collapse
|
21
|
Rammos C, Hendgen-Cotta UB, Deenen R, Pohl J, Stock P, Hinzmann C, Kelm M, Rassaf T. Age-related vascular gene expression profiling in mice. Mech Ageing Dev 2014; 135:15-23. [PMID: 24447783 DOI: 10.1016/j.mad.2014.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 12/19/2013] [Accepted: 01/04/2014] [Indexed: 02/06/2023]
Abstract
Increasing age involves a number of detrimental changes in the cardiovascular system and particularly on the large arteries. It deteriorates vascular integrity and leads to increased vascular stiffness entailing hypertension with increased cardiovascular morbidity and mortality. The consequences of continuous oxidative stress and damages to biomolecules include altered gene expression, genomic instability, mutations, loss of cell division and cellular responses to increased stress. Many studies have been performed in aged C57BL/6 mice; however, analyses of the age-related changes that occur at a gene expression level and transcriptional profile in vascular tissue have not been elucidated in depth. To determine the changes of the vascular transcriptome, we conducted gene expression microarray experiments on aortas of adult and old mice, in which age-related vascular dysfunction was confirmed by increased stiffness and associated systolic hypertension. Our results highlight differentially expressed genes overrepresented in Gene Ontology categories. Molecular interaction and reaction pathways involved in vascular functions and disease, within the transforming growth factor-beta (TGF-β) pathway, the renin-angiotensin system and the detoxification systems are displayed. Our results provide insight to an altered gene expression profile related to age, thus offering useful clues to counteract or prevent vascular aging and its detrimental consequences.
Collapse
Affiliation(s)
- Christos Rammos
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Ulrike B Hendgen-Cotta
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Rene Deenen
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Julia Pohl
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Pia Stock
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Christian Hinzmann
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Malte Kelm
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Tienush Rassaf
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Ashoor R, Yafawi R, Jessen B, Lu S. The contribution of lysosomotropism to autophagy perturbation. PLoS One 2013; 8:e82481. [PMID: 24278483 PMCID: PMC3838419 DOI: 10.1371/journal.pone.0082481] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/02/2013] [Indexed: 11/18/2022] Open
Abstract
Autophagy refers to the catabolic process in eukaryotic cells that delivers cytoplasmic material to lysosomes for degradation. This highly conserved process is involved in the clearance of long-lived proteins and damaged organelles. Consequently, autophagy is important in providing nutrients to maintain cellular function under starvation, maintaining cellular homeostasis, and promoting cell survival under certain conditions. Several pathways, including mTOR, have been shown to regulate autophagy. However, the impact of lysosomal function impairment on the autophagy process has not been fully explored. Basic lipophilic compounds can accumulate in lysosomes via pH partitioning leading to perturbation of lysosomal function. Our hypothesis is that these types of compounds can disturb the autophagy process. Eleven drugs previously shown to accumulate in lysosomes were selected and evaluated for their effects on cytotoxicity and autophagy using ATP depletion and LC3 assessment, respectively. All eleven drugs induced increased staining of endogenous LC3 and exogenous GFP-LC3, even at non toxic dose levels. In addition, an increase in the abundance of SQSTM1/p62 by all tested compounds denotes that the increase in LC3 is due to autophagy perturbation rather than enhancement. Furthermore, the gene expression profile resulting from in vitro treatment with these drugs revealed the suppression of plentiful long-lived proteins, including structural cytoskeletal and associated proteins, and extracellular matrix proteins. This finding indicates a retardation of protein turnover which further supports the notion of autophagy inhibition. Interestingly, upregulation of genes containing antioxidant response elements, e.g. glutathione S transferase and NAD(P)H dehydrogenase quinone 1 was observed, suggesting activation of Nrf2 transcription factor. These gene expression changes could be related to an increase in SQSTM1/p62 resulting from autophagy deficiency. In summary, our data indicate that lysosomal accumulation due to the basic lipophilic nature of xenobiotics could be a general mechanism contributing to the perturbation of the autophagy process.
Collapse
Affiliation(s)
- Roshan Ashoor
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Rolla Yafawi
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Bart Jessen
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Shuyan Lu
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Fu Z, Wang M, Everett A, Lakatta E, Van Eyk J. Can proteomics yield insight into aging aorta? Proteomics Clin Appl 2013; 7:477-89. [PMID: 23788441 DOI: 10.1002/prca.201200138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/16/2022]
Abstract
The aging aorta exhibits structural and physiological changes that are reflected in the proteome of its component cells types. The advance in proteomic technologies has made it possible to analyze the quantity of proteins associated with the natural history of aortic aging. These alterations reflect the molecular and cellular mechanisms of aging and could provide an opportunity to predict vascular health. This paper focuses on whether discoveries stemming from the application of proteomic approaches of the intact aging aorta or vascular smooth muscle cells can provide useful insights. Although there have been limited studies to date, a number of interesting proteins have been identified that are closely associated with aging in the rat aorta. Such proteins, including milk fat globule-EGF factor 8, matrix metalloproteinase type-2, and vitronectin, could be used as indicators of vascular health, or even explored as therapeutic targets for aging-related vascular diseases.
Collapse
Affiliation(s)
- Zongming Fu
- Department of Pediatrics, The Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
24
|
Liu D, Sartor MA, Nader GA, Pistilli EE, Tanton L, Lilly C, Gutmann L, IglayReger HB, Visich PS, Hoffman EP, Gordon PM. Microarray analysis reveals novel features of the muscle aging process in men and women. J Gerontol A Biol Sci Med Sci 2013; 68:1035-44. [PMID: 23418191 DOI: 10.1093/gerona/glt015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To develop a global view of muscle transcriptional differences between older men and women and sex-specific aging, we obtained muscle biopsies from the biceps brachii of young and older men and women and profiled the whole-genome gene expression using microarray. A logistic regression-based method in combination with an intensity-based Bayesian moderated t test was used to identify significant sex- and aging-related gene functional groups. Our analysis revealed extensive sex differences in the muscle transcriptome of older individuals and different patterns of transcriptional changes with aging in men and women. In older women, we observed a coordinated transcriptional upregulation of immune activation, extracellular matrix remodeling, and lipids storage; and a downregulation of mitochondrial biogenesis and function and muscle regeneration. The effect of aging results in sexual dimorphic alterations in the skeletal muscle transcriptome, which may modify the risk for developing musculoskeletal and metabolic diseases in men and women.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Goel SA, Guo LW, Shi XD, Kundi R, Sovinski G, Seedial S, Liu B, Kent KC. Preferential secretion of collagen type 3 versus type 1 from adventitial fibroblasts stimulated by TGF-β/Smad3-treated medial smooth muscle cells. Cell Signal 2012; 25:955-60. [PMID: 23280188 DOI: 10.1016/j.cellsig.2012.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/12/2012] [Accepted: 12/24/2012] [Indexed: 01/08/2023]
Abstract
Restenosis, or arterial lumen re-narrowing, occurs in 30-50% of the patients undergoing angioplasty. Adaptive remodeling is the compensatory enlargement of the vessel size, and has been reported to prevent the deleterious effects of restenosis. Our previous studies have shown that elevated transforming growth factor (TGF-β) and its signaling protein Smad3 in the media layer induce adaptive remodeling of angioplastied rat carotid artery accompanying an increase of total collagen in the adventitia. In order to gain insights into a possible role of collagen in Smad3-induced adaptive remodeling, here we have investigated a mechanism of cell-cell communication between medial smooth muscle cells (SMCs) and adventitial fibroblasts in regulating the secretion of two major collagen subtypes. We have identified a preferential collagen-3 versus collagen-1 secretion by adventitial fibroblasts following stimulation by the conditioned medium from the TGF-β1-treated/Smad3-expressing medial smooth muscle cells (SMCs), which contained higher levels of CTGF and IGF2 as compared to control medium. Treating the TGF-β/Smad3-stimulated SMCs with an siRNA to either CTGF or IGF2 reversed the effect of conditioned media on preferential collagen-3 secretion from fibroblasts. Moreover, recombinant CTGF and IGF2 together stimulated adventitial fibroblasts to preferentially secrete collagen-3 versus collagen-1. This is the first study to identify a preferential secretion of collagen-3 versus collagen-1 from adventitial fibroblasts as a result of TGF-β/Smad3 stimulation of medial SMCs, and that CTGF and IGF2 function together to mediate this signaling communication between the two cell types.
Collapse
Affiliation(s)
- Shakti A Goel
- Department of Surgery, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Qiu H, Lizano P, Laure L, Sui X, Rashed E, Park JY, Hong C, Gao S, Holle E, Morin D, Dhar SK, Wagner T, Berdeaux A, Tian B, Vatner SF, Depre C. H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation 2011; 124:406-15. [PMID: 21747053 DOI: 10.1161/circulationaha.110.013847] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cardiac overload, a major cause of heart failure, induces the expression of the heat shock protein H11 kinase/Hsp22 (Hsp22). METHODS AND RESULTS To determine the specific function of Hsp22 in that context, a knockout mouse model of Hsp22 deletion was generated. Although comparable to wild-type mice in basal conditions, knockout mice exposed to pressure overload developed less hypertrophy and showed ventricular dilation, impaired contractile function, increased myocyte length and accumulation of interstitial collagen, faster transition into heart failure, and increased mortality. Microarrays revealed that hearts from knockout mice failed to transactivate genes regulated by the transcription factor STAT3. Accordingly, nuclear STAT3 tyrosine phosphorylation was decreased in knockout mice. Silencing and overexpression experiments in isolated neonatal rat cardiomyocytes showed that Hsp22 activates STAT3 via production of interleukin-6 by the transcription factor nuclear factor-κB. In addition to its transcriptional function, STAT3 translocates to the mitochondria where it increases oxidative phosphorylation. Both mitochondrial STAT3 translocation and respiration were also significantly decreased in knockout mice. CONCLUSIONS This study found that Hsp22 represents a previously undescribed activator of both nuclear and mitochondrial functions of STAT3, and its deletion in the context of pressure overload in vivo accelerates the transition into heart failure and increases mortality.
Collapse
Affiliation(s)
- Hongyu Qiu
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 S Orange Street, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fleenor BS, Marshall KD, Durrant JR, Lesniewski LA, Seals DR. Arterial stiffening with ageing is associated with transforming growth factor-β1-related changes in adventitial collagen: reversal by aerobic exercise. J Physiol 2011; 588:3971-82. [PMID: 20807791 DOI: 10.1113/jphysiol.2010.194753] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We tested the hypothesis that carotid artery stiffening with ageing is associated with transforming growth factor-β1 (TGF-β1)-related increases in adventitial collagen and reductions in medial elastin, which would be reversed by voluntary aerobic exercise. Ex vivo carotid artery incremental stiffness was greater in old (29–32 months, n = 11) vs. young (4–7 months, n = 8) cage control B6D2F1 mice (8.84 ± 1.80 vs. 4.54 ± 1.18 AU, P < 0.05), and was associated with selective increases in collagen I and III and TGF-β1 protein expression in the adventitia (P < 0.05), related to an increase in smooth muscle α-actin (SMαA) (myofibroblast phenotype) (P < 0.05). In cultured adventitial fibroblasts, TGF-β1 induced increases in superoxide and collagen I protein (P < 0.05), which were inhibited by Tempol, a superoxide dismutase. Medial elastin was reduced with ageing, accompanied by decreases in the pro-synthetic elastin enzyme, lysyl oxidase, and increases in the elastin-degrading enzyme, matrix metalloproteinase 2. Fibronectin was unchanged with ageing, but there was a small increase in calcification (P < 0.05). Increased incremental stiffness in old mice was completely reversed (3.98 ± 0.34 AU, n = 5) by 10–14 weeks of modest voluntary wheel running (1.13 ± 0.29 km day−1), whereas greater voluntary wheel running (10.62 ± 0.49 km day−1) had no effect on young mice. The amelioration of carotid artery stiffness by wheel running in old mice was associated with reductions in collagen I and III and TGF-β1, partial reversal of the myofibroblast phenotype (reduced SMαA) and reduced calcification (all P < 0.05 vs. old controls), whereas elastin and its modulating enzymes were unaffected. Adventitial TGF-β1-related oxidative stress may play a key role in collagen deposition and large elastic artery stiffening with ageing and the efficacious effects of voluntary aerobic exercise.
Collapse
Affiliation(s)
- Bradley S Fleenor
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
28
|
Qiu H, Zhu Y, Sun Z, Trzeciakowski JP, Gansner M, Depre C, Resuello RRG, Natividad FF, Hunter WC, Genin GM, Elson EL, Vatner DE, Meininger GA, Vatner SF. Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ Res 2010; 107:615-9. [PMID: 20634486 DOI: 10.1161/circresaha.110.221846] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Increased aortic stiffness, an important feature of many vascular diseases, eg, aging, hypertension, atherosclerosis, and aortic aneurysms, is assumed because of changes in extracellular matrix (ECM). OBJECTIVE We tested the hypothesis that the mechanisms also involve intrinsic stiffening of vascular smooth muscle cells (VSMCs). METHODS AND RESULTS Stiffness was measured in vitro both by atomic force microscopy (AFM) and in a reconstituted tissue model, using VSMCs from aorta of young versus old male monkeys (Macaca fascicularis) (n=7/group), where aortic stiffness increases by 200% in vivo. The apparent elastic modulus was increased (P<0.05) in old (41.7+/-0.5 kPa) versus young (12.8+/-0.3 kPa) VSMCs but not after disassembly of the actin cytoskeleton with cytochalasin D. Stiffness of the VSMCs in the reconstituted tissue model was also higher (P<0.05) in old (23.3+/-3.0 kPa) than in young (13.7+/-2.4 kPa). CONCLUSIONS These data support the novel concept, not appreciated previously, that increased vascular stiffness with aging is attributable not only to changes in ECM but also to intrinsic changes in VSMCs.
Collapse
Affiliation(s)
- Hongyu Qiu
- Department of Cell Biology, UMDNJ-New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Freedman JE, Larson MG, Tanriverdi K, O'Donnell CJ, Morin K, Hakanson AS, Vasan RS, Johnson AD, Iafrati MD, Benjamin EJ. Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation 2010; 122:119-29. [PMID: 20606121 DOI: 10.1161/circulationaha.109.928192] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Although many genetic epidemiology and biomarker studies have been conducted to examine associations of genetic variants and circulating proteins with cardiovascular disease and risk factors, there has been little study of gene expression or transcriptomics. Quantitative differences in the abundance of transcripts has been demonstrated in malignancies, but gene expression from a large community-based cohort examining risk of cardiovascular disease has never been reported. METHODS AND RESULTS On the basis of preliminary microarray data and previously suggested genes from the literature, we measured expression of 48 genes by high-throughput quantitative reverse-transcriptase polymerase chain reaction in 1846 participants of the Framingham Offspring cohort from RNA derived from isolated platelets and leukocytes. A multivariable stepwise regression model was used to assess clinical correlates of quantitative RNA expression. For specific inflammatory platelet-derived transcripts, including ICAM1, IFNG, IL1R1, IL6, MPO, COX2, TNF, TLR2, and TLR4, there were significant associations with higher body mass index (BMI). Compared with platelets, fewer leukocyte-derived transcripts were associated with BMI or other cardiovascular risk factors. Select transcripts were found to be highly heritable, including GPIBA and COX1. Almost uniformly, heritable transcripts were not those associated with BMI. CONCLUSIONS Inflammatory transcripts derived from platelets, particularly those part of the nuclear factor kappa B pathway, are associated with BMI, whereas others are heritable. This is the first study, using a large community-based cohort, to demonstrate clinical correlates of gene expression and is consistent with the hypothesis that specific peripheral-blood transcripts play a role in the pathogenesis of coronary heart disease and its risk factors.
Collapse
Affiliation(s)
- Jane E Freedman
- Department of Medicine, Boston University School of Medicine, Whitaker Cardiovascular Institute, 700 Albany St, W-507, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Depre C, Park JY, Shen YT, Zhao X, Qiu H, Yan L, Tian B, Vatner SF, Vatner DE. Molecular mechanisms mediating preconditioning following chronic ischemia differ from those in classical second window. Am J Physiol Heart Circ Physiol 2010; 299:H752-62. [PMID: 20581088 DOI: 10.1152/ajpheart.00147.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major difference between experimental ischemic preconditioning (IPC), induced by brief ischemic episodes, and the clinical situation is that patients generally have repetitive episodes of ischemia. We used a swine model to examine differences in genes regulated by classical second-window IPC (SWOP) [two 10-min episodes of coronary artery occlusion (CAO) followed by 24 h reperfusion] compared with repetitive CAO/reperfusion (RCO), i.e., two 10-min CAO 12 h apart, and to repetitive coronary stenosis (RCS), six episodes of 90 min coronary stenosis 12 h apart (n = 5/group). All three models reduced infarct size by 60-85%, which was mediated by nitric oxide in SWOP but not in the other two models. We employed microarray analyses to discover additional molecular pathways intrinsic to models of repetitive ischemia and different from classical SWOP. There was an 85% homology in gene response between the RCO and RCS models, whereas SWOP was qualitatively different. Both RCO and RCS, but not SWOP, showed downregulation of genes encoding proteins involved in oxidative metabolism and upregulation of genes involved in protein synthesis, unfolded protein response, autophagy, heat shock response, protein secretion, and an activation of the NF-kappaB signaling pathway. Therefore, the regulated genes mediating IPC with repetitive ischemia differ radically from SWOP both quantitatively and qualitatively, showing that a repetitive pattern of ischemia, rather than the difference between no-flow vs. low-flow ischemia, dictates the genomic response of the heart. These findings illustrate new cardioprotective mechanisms developed by repetitive IPC, which are potentially more relevant to patients with chronic ischemic heart disease, who are subjected to repetitive episodes of ischemia.
Collapse
Affiliation(s)
- Christophe Depre
- Dept. of Cell Biology and Molecular Medicine, Univ. of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shen YT, Depre C, Yan L, Park JY, Tian B, Jain K, Chen L, Zhang Y, Kudej RK, Zhao X, Sadoshima J, Vatner DE, Vatner SF. Repetitive ischemia by coronary stenosis induces a novel window of ischemic preconditioning. Circulation 2008; 118:1961-9. [PMID: 18936329 DOI: 10.1161/circulationaha.108.788240] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The hypothesis of the present study was that molecular mechanisms differ markedly when mediating ischemic preconditioning induced by repetitive episodes of ischemia versus classic first- or second-window preconditioning. METHODS AND RESULTS To test this, chronically instrumented conscious pigs were subjected to either repetitive coronary stenosis (RCS) or a traditional protocol of second-window ischemic preconditioning (SWIPC). Lethal ischemia, induced by 60 minutes of coronary artery occlusion followed by reperfusion, resulted in an infarct size/area at risk of 6+/-3% after RCS and 16+/-3% after SWIPC (both groups P<0.05, less than shams 42+/-4%). Two molecular signatures of SWIPC, the increased expression of the inducible isoform of nitric oxide synthase and the translocation of protein kinase Cepsilon to the plasma membrane, were observed with SWIPC but not with RCS. Confirming this, pretreatment with a nitric oxide synthase inhibitor prevented the protection conferred by SWIPC but not by RCS. Microarray analysis revealed a qualitatively different genomic profile of cardioprotection between ischemic preconditioning induced by RCS and that induced by SWIPC. The number of genes significantly regulated was greater in RCS (5739) than in SWIPC (2394) animals. Of the 5739 genes regulated in RCS, only 31% were also regulated in SWIPC. Broad categories of genes induced by RCS but not SWIPC included those involved in autophagy, endoplasmic reticulum stress, and mitochondrial oxidative metabolism. The upregulation of these pathways was confirmed by Western blotting. CONCLUSIONS RCS induces cardioprotection against lethal myocardial ischemia that is at least as powerful as traditional ischemic preconditioning but is mediated through radically different mechanisms.
Collapse
Affiliation(s)
- You-Tang Shen
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hedhli N, Lizano P, Hong C, Fritzky LF, Dhar SK, Liu H, Tian Y, Gao S, Madura K, Vatner SF, Depre C. Proteasome inhibition decreases cardiac remodeling after initiation of pressure overload. Am J Physiol Heart Circ Physiol 2008; 295:H1385-93. [PMID: 18676687 DOI: 10.1152/ajpheart.00532.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the possibility that proteasome inhibition may reverse preexisting cardiac hypertrophy and improve remodeling upon pressure overload. Mice were submitted to aortic banding and followed up for 3 wk. The proteasome inhibitor epoxomicin (0.5 mg/kg) or the vehicle was injected daily, starting 2 wk after banding. At the end of the third week, vehicle-treated banded animals showed significant (P<0.05) increase in proteasome activity (PA), left ventricle-to-tibial length ratio (LV/TL), myocyte cross-sectional area (MCA), and myocyte apoptosis compared with sham-operated animals and developed signs of heart failure, including increased lung weight-to-TL ratio and decreased ejection fraction. When compared with that group, banded mice treated with epoxomicin showed no increase in PA, a lower LV/TL and MCA, reduced apoptosis, stabilized ejection fraction, and no signs of heart failure. Because overload-mediated cardiac remodeling largely depends on the activation of the proteasome-regulated transcription factor NF-kappaB, we tested whether epoxomicin would prevent this activation. NF-kappaB activity increased significantly upon overload, which was suppressed by epoxomicin. The expression of NF-kappaB-dependent transcripts, encoding collagen types I and III and the matrix metalloprotease-2, increased (P<0.05) after banding, which was abolished by epoxomicin. The accumulation of collagen after overload, as measured by histology, was 75% lower (P<0.05) with epoxomicin compared with vehicle. Myocyte apoptosis increased by fourfold in hearts submitted to aortic banding compared with sham-operated hearts, which was reduced by half upon epoxomicin treatment. Therefore, we propose that proteasome inhibition after the onset of pressure overload rescues ventricular remodeling by stabilizing cardiac function, suppressing further progression of hypertrophy, repressing collagen accumulation, and reducing myocyte apoptosis.
Collapse
Affiliation(s)
- Nadia Hedhli
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Qiu H, Dai H, Jain K, Shah R, Hong C, Pain J, Tian B, Vatner DE, Vatner SF, Depre C. Characterization of a novel cardiac isoform of the cell cycle-related kinase that is regulated during heart failure. J Biol Chem 2008; 283:22157-65. [PMID: 18508765 DOI: 10.1074/jbc.m710459200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myocardial infarction (MI) is often followed by heart failure (HF), but the mechanisms precipitating the transition to HF remain largely unknown. A genomic profile was performed in a monkey model of MI, from the myocardium adjacent to chronic (2-month) MI followed by 3 weeks of pacing to develop HF. The transcript of the gene encoding the cell cycle-related kinase (CCRK) was down-regulated by 50% in HF heart compared with control (p<0.05), which was confirmed by quantitative PCR. The CCRK sequence cloned from a heart library showed a conservation of the N-terminal kinase domain when compared with the "generic" isoform cloned previously but a different C-terminal half due to alternative splicing with frameshift. The homology of the cardiac sequence was 100% between mice and humans. Expression of the corresponding protein, measured upon generation of a monoclonal antibody, was limited to heart, liver, and kidney. Upon overexpression in cardiac myocytes, both isoforms promote cell growth and reduce apoptosis by chelerythrine (p<0.05 versus control). Using a yeast two-hybrid screening, we found an interaction of the generic but not the cardiac CCRK with cyclin H and casein kinase 2. In addition, only the generic CCRK phosphorylates the cyclin-dependent kinase 2, which was accompanied by a doubling of myocytes in the S and G(2) phases of the cell cycle (p < 0.05 versus control). Therefore, the heart expresses a splice variant of CCRK, which promotes cardiac cell growth and survival; differs from the generic isoform in terms of protein-protein interactions, substrate specificity and regulation of the cell cycle; and is down-regulated significantly in HF.
Collapse
Affiliation(s)
- Hongyu Qiu
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Haddad GE, Saunders LJ, Crosby SD, Carles M, del Monte F, King K, Bristow MR, Spinale FG, Macgillivray TE, Semigran MJ, Dec GW, Williams SA, Hajjar RJ, Gwathmey JK. Human cardiac-specific cDNA array for idiopathic dilated cardiomyopathy: sex-related differences. Physiol Genomics 2008; 33:267-77. [DOI: 10.1152/physiolgenomics.00265.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Idiopathic dilated cardiomyopathy (IDCM) constitutes a large portion of patients with heart failure of unknown etiology. Up to 50% of all transplant recipients carry this clinical diagnosis. Female-specific gene expression in IDCM has not been explored. We report sex-related differences in the gene expression profile of ventricular myocardium from patients undergoing cardiac transplantation. We produced and sequenced subtractive cDNA libraries, using human left ventricular myocardium obtained from male transplant recipients with IDCM and nonfailing human heart donors. With the resulting sequence data, we generated a custom human heart failure microarray for IDCM containing 1,145 cardiac-specific oligonucleotide probes. This array was used to characterize RNA samples from female IDCM transplant recipients. We identified a female gene expression pattern that consists of 37 upregulated genes and 18 downregulated genes associated with IDCM. Upon functional analysis of the gene expression pattern, deregulated genes unique to female IDCM were those that are involved in energy metabolism and regulation of transcription and translation. For male patients we found deregulation of genes related to muscular contraction. These data suggest that 1) the gene expression pattern we have detected for IDCM may be specific for this disease and 2) there is a sex-specific profile to IDCM. Our observations further suggest for the first time ever novel targets for treatment of IDCM in women and men.
Collapse
Affiliation(s)
- Georges E. Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia
| | | | - Seth D. Crosby
- Microarray Core Facility, Washington University Medical School, St. Louis, Missouri
| | - Maria Carles
- Gwathmey, Incorporated, Cambridge, Massachusetts
| | - Federica del Monte
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Kindra King
- Gwathmey, Incorporated, Cambridge, Massachusetts
| | - Michael R. Bristow
- Division of Cardiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado
| | - Francis G. Spinale
- Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - Marc J. Semigran
- Cardiology Division, Gray/Bigelow, Massachusetts General Hospital, Boston
| | - G. William Dec
- Cardiology Division, Gray/Bigelow, Massachusetts General Hospital, Boston
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Roger J. Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York
| | - Judith K. Gwathmey
- Gwathmey, Incorporated, Cambridge, Massachusetts
- Boston University School of Medicine, Cambridge, Massachusetts
| |
Collapse
|
35
|
Passtoors WM, Beekman M, Gunn D, Boer JM, Heijmans BT, Westendorp RGJ, Zwaan BJ, Slagboom PE. Genomic studies in ageing research: the need to integrate genetic and gene expression approaches. J Intern Med 2008; 263:153-66. [PMID: 18226093 DOI: 10.1111/j.1365-2796.2007.01904.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome-wide and hypothesis-based approaches to the study of ageing and longevity have been dominated by genetic investigations. To identify essential mechanisms of a complex trait such as ageing in higher species, a holistic understanding of interacting pathways is required. More information on such interactions is expected to be obtained from global gene expression analysis if combined with genetic studies. Genetic sequence variation often provides a functional gene marker for the trait, whereas a gene expression profile may provide a quantitative biomarker representing complex cellular pathway interactions contributing to the trait. Thus far, gene expression studies have associated multiple pathways to ageing including mitochondrial electron transport and the oxidative stress response. However, most of the studies are underpowered to detect small age-changes. A systematic survey of gene expression changes as a function of age in human individuals and animal models is lacking. Well designed gene expression studies, especially at the level of biological processes, will provide hypotheses on gene-environmental interactions determining biological ageing rate. Cross-sectional studies monitoring the profile as a chronological marker of ageing must be integrated with prospective studies indicating which profiles represent biomarkers preceding and predicting physiological decline and mortality. New study designs such as the Leiden Longevity Study, including two generations of subjects from longevity families, aim to achieve these combined approaches.
Collapse
Affiliation(s)
- W M Passtoors
- Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Qiu H, Depre C, Ghosh K, Resuello RG, Natividad FF, Rossi F, Peppas A, Shen YT, Vatner DE, Vatner SF. Mechanism of gender-specific differences in aortic stiffness with aging in nonhuman primates. Circulation 2007; 116:669-76. [PMID: 17664374 DOI: 10.1161/circulationaha.107.689208] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Our hypothesis was that the changes in vascular properties responsible for aortic stiffness with aging would be greater in old male monkeys than old female monkeys. METHODS AND RESULTS We analyzed the effects of gender differences in aging on in vivo measurements of aortic pressure and diameter and on extracellular matrix of the thoracic aorta in young adult (age, 6.6+/-0.5 years) versus old adult (age, 21.2+/-0.2 years) monkeys (Macaca fascicularis). Aortic stiffness, as represented by the pressure strain elastic modulus (Ep), increased more in old male monkeys (5.08+/-0.81; P<0.01) than in old females (3.06+/-0.52). In both genders, collagen density was maintained, collagen-bound glycation end products increased, and collagen type 1 decreased. However, elastin density decreased significantly (from 22+/-1.5% to 15+/-1.2%) with aging (P<0.05) only in males. Furthermore, only old males were characterized by a decrease (P<0.05) in collagen type 3 (an isoform that promotes elasticity) and an increase in collagen type 8 (an isoform that promotes the neointimal migration of vascular smooth muscle cells). In contrast to the data in monkeys, collagen types 1 and 3 both increased significantly in aging rats. CONCLUSIONS There are major species differences in the effects of aging on aortic collagen types 1 and 3. Furthermore, because alterations in collagen density, collagen content, hydroxyproline, and collagen advanced glycation end products were similar in both old male and female monkeys, these factors cannot be responsible for the greater increase in stiffness in old males. However, changes in collagen isoforms and the decrease in elastin observed only in old males likely account for the greater increase in aortic stiffness.
Collapse
Affiliation(s)
- Hongyu Qiu
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|