1
|
Xu C, Chen Y, Ramkumar N, Zou CJ, Sigmund CD, Yang T. Collecting duct renin regulates potassium homeostasis in mice. Acta Physiol (Oxf) 2023; 237:e13899. [PMID: 36264268 PMCID: PMC10754139 DOI: 10.1111/apha.13899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 01/03/2023]
Abstract
AIM The kaliuretic action of the renin-angiotensin-aldosterone system (RAAS) is well established as highlighted by hyperkalemia side effect of RAAS inhibitors but such action is usually ascribed to systemic RAAS. The present study addresses the involvement of intrarenal RAAS in K+ homeostasis with emphasis on locally generated renin within the collecting duct (CD). METHODS Wild-type (Floxed) and CD-specific deletion of renin (CD renin KO) mice were treated for 7 days with a high K+ (HK) diet to investigate the role of CD renin in kaliuresis regulation and further define the underlying mechanism with emphasis on analysis of intrarenal aldosterone biosynthesis. RESULTS In floxed mice, renin levels were elevated in the renal medulla and urine following a 1-week HK diet, indicating activation of the intrarenal renin. CD renin KO mice had blunted HK-induced intrarenal renin response and developed impaired kaliuresis and elevated plasma K+ level (4.45 ± 0.14 vs. 3.89 ± 0.04 mM, p < 0.01). In parallel, HK-induced intrarenal aldosterone and CYP11B2 expression along with expression of renal outer medullary K+ channel (ROMK), calcium-activated potassium channel subunit alpha-1 (α-BK), α-Na+ -K+ -ATPase, and epithelial sodium channel (β-ENaC and cleaved-γ-ENaC) expression were all significantly blunted in CD renin KO mice in contrast to the unaltered responses of plasma aldosterone and adrenal CYP11B2. CONCLUSION Taken together, these results support a kaliuretic action of CD renin during HK intake.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Yanting Chen
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Nirupama Ramkumar
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
| | - Chang-Jiang Zou
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| |
Collapse
|
2
|
Renin-a in the Subfornical Organ Plays a Critical Role in the Maintenance of Salt-Sensitive Hypertension. Biomolecules 2022; 12:biom12091169. [PMID: 36139008 PMCID: PMC9496084 DOI: 10.3390/biom12091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The brain renin-angiotensin system plays important roles in blood pressure and cardiovascular regulation. There are two isoforms of prorenin in the brain: the classic secreted form (prorenin/sREN) encoded by renin-a, and an intracellular form (icREN) encoded by renin-b. Emerging evidence indicates the importance of renin-b in cardiovascular and metabolic regulation. However, the role of endogenous brain prorenin in the development of salt-sensitive hypertension remains undefined. In this study, we test the hypothesis that renin-a produced locally in the brain contributes to the pathogenesis of hypertension. Using RNAscope, we report for the first time that renin mRNA is expressed in several regions of the brain, including the subfornical organ (SFO), the paraventricular nucleus of the hypothalamus (PVN), and the brainstem, where it is found in glutamatergic, GABAergic, cholinergic, and tyrosine hydroxylase-positive neurons. Notably, we found that renin mRNA was significantly elevated in the SFO and PVN in a mouse model of DOCA-salt–induced hypertension. To examine the functional importance of renin-a in the SFO, we selectively ablated renin-a in the SFO in renin-a–floxed mice using a Cre-lox strategy. Importantly, renin-a ablation in the SFO attenuated the maintenance of DOCA-salt–induced hypertension and improved autonomic function without affecting fluid or sodium intake. Molecularly, ablation of renin-a prevented the DOCA-salt–induced elevation in NADPH oxidase 2 (NOX2) in the SFO without affecting NOX4 or angiotensin II type 1 and 2 receptors. Collectively, our findings demonstrate that endogenous renin-a within the SFO is important for the pathogenesis of salt-sensitive hypertension.
Collapse
|
3
|
Golchert J, Staar D, Bennewitz J, Hartmann M, Hoffmann N, Ameling S, Völker U, Peters J, Wanka H. Overexpression of Renin-B Induces Warburg-like Effects That Are Associated with Increased AKT/mTOR Signaling. Cells 2022; 11:cells11091459. [PMID: 35563765 PMCID: PMC9103744 DOI: 10.3390/cells11091459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The classical secretory renin-a is known to be involved in angiotensin generation, thereby regulating not only blood pressure, but also promoting oxidative stress as well as apoptotic and necrotic cell death. In contrast, another cytosolic renin isoform named renin-b has been described, exerting protective effects under ischemia-related conditions in H9c2 cardiomyoblasts. Using microarray-based transcriptome analyses, we aimed to identify the signaling pathways involved in mediating cardioprotection in H9c2 cells overexpressing renin-b. By transcriptome profiling, we identified increased gene expression of several genes encoding glycolytic enzymes and glucose transporters, while the transcript levels of TCA-cycle enzymes were decreased. Complementing data from metabolic analyses revealed enhanced glucose consumption and lactate accumulation due to renin-b overexpression. Renin-b overexpression further stimulated AKT/mTOR signaling, where numerous genes involved in this pathway showed altered transcript levels. For AKT, we also detected enhanced phosphorylation levels by means of Western blotting, suggesting an activation of this kinase. Moreover, analysis of the ROS levels identified an increase in ROS accumulation in renin-b-overexpressing cells. Altogether, our data demonstrate that renin-b overexpression induces the metabolic remodeling of H9c2 cells similar to that seen under oxygen deprivation. This metabolic phenotype exerting so-called aerobic glycolysis is also known as the Warburg effect.
Collapse
Affiliation(s)
- Janine Golchert
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Doreen Staar
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Jonathan Bennewitz
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Miriam Hartmann
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Nadin Hoffmann
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Sabine Ameling
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (S.A.); (U.V.)
- Partner Site Greifswald, DZHK (German Center for Cardiovascular Research), 17475 Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (S.A.); (U.V.)
- Partner Site Greifswald, DZHK (German Center for Cardiovascular Research), 17475 Greifswald, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
- Correspondence:
| | - Heike Wanka
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| |
Collapse
|
4
|
Quarleri J, Delpino MV. SARS-CoV-2 interacts with renin-angiotensin system: impact on the central nervous system in elderly patients. GeroScience 2022; 44:547-565. [PMID: 35157210 PMCID: PMC8853071 DOI: 10.1007/s11357-022-00528-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 is a recently identified coronavirus that causes the current pandemic disease known as COVID-19. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor, suggesting that the initial steps of SARS-CoV-2 infection may have an impact on the renin-angiotensin system (RAS). Several processes are influenced by RAS in the brain. The neurological symptoms observed in COVID-19 patients, including reduced olfaction, meningitis, ischemic stroke, cerebral thrombosis, and delirium, could be associated with RAS imbalance. In this review, we focus on the potential role of disturbances in the RAS as a cause for central nervous system sequelae of SARS-CoV-2 infection in elderly patients.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Souza LA, Earley YF. (Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Curr Hypertens Rev 2022; 18:101-116. [PMID: 35086455 PMCID: PMC9662243 DOI: 10.2174/1570162x20666220127105655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The renin-angiotensin system (RAS) is classically described as a hormonal system in which angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, and has more recently been implicated in cardiovascular metabolism. The presence of a local or tissue RAS in various tissues, including the central nervous system (CNS), is well established. However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous angiotensin peptides are generated in the CNS-the focus of this review-has been the subject of considerable debate. Notable in this context is the identification of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss recent developments in PRR involvement in cardiovascular and metabolic diseases and present perspectives for future directions.
Collapse
Affiliation(s)
- Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
6
|
Perrone L, Valente M. The Emerging Role of Metabolism in Brain-Heart Axis: New Challenge for the Therapy and Prevention of Alzheimer Disease. May Thioredoxin Interacting Protein (TXNIP) Play a Role? Biomolecules 2021; 11:1652. [PMID: 34827650 PMCID: PMC8616009 DOI: 10.3390/biom11111652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer disease (AD) is the most frequent cause of dementia and up to now there is not an effective therapy to cure AD. In addition, AD onset occurs decades before the diagnosis, affecting the possibility to set up appropriate therapeutic strategies. For this reason, it is necessary to investigate the effects of risk factors, such as cardiovascular diseases, in promoting AD. AD shows not only brain dysfunction, but also alterations in peripheral tissues/organs. Indeed, it exists a reciprocal connection between brain and heart, where cardiovascular alterations participate to AD as well as AD seem to promote cardiovascular dysfunction. In addition, metabolic dysfunction promotes both cardiovascular diseases and AD. In this review, we summarize the pathways involved in the regulation of the brain-heart axis and the effect of metabolism on these pathways. We also present the studies showing the role of the gut microbiota on the brain-heart axis. Herein, we propose recent evidences of the function of Thioredoxin Interacting protein (TXNIP) in mediating the role of metabolism on the brain-heart axis. TXNIP is a key regulator of metabolism at both cellular and body level and it exerts also a pathological function in several cardiovascular diseases as well as in AD.
Collapse
Affiliation(s)
- Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Mariarosaria Valente
- Department of Medicine, University of Udine, 33100 Udine, Italy;
- Clinical Neurology Unit, Department of Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale, University Hospital, 33100 Udine, Italy
| |
Collapse
|
7
|
Hoffmann N, Peters J. Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: pathological implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacol Res 2021; 173:105922. [PMID: 34607004 DOI: 10.1016/j.phrs.2021.105922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The (pro)renin receptor [(P)RR, Atp6ap2] was initially discovered as a membrane-bound binding partner of prorenin and renin. A soluble (P)RR has additional paracrine effects and is involved in metabolic syndrome and kidney damage. Meanwhile it is clear that most of the effects of the (P)RR are independent of prorenin. In the kidney, (P)RR plays an important role in renal dysfunction by activating proinflammatory and profibrotic molecules. In the brain, (P)RR is expressed in cardiovascular regulatory nuclei and is linked to hypertension. (P)RR is known to be an essential component of the v-ATPase as a key accessory protein and plays an important role in kidney, brain and heart via regulating the pH of the extracellular space and intracellular compartments. V-ATPase and (P)RR together act on WNT and mTOR signalling pathways, which are responsible for cellular homeostasis and autophagy. (P)RR through its role in v-ATPase assembly and function is also important for fast recycling endocytosis by megalin. In the kidney, megalin together with v-ATPase and (P)RR is crucial for endocytic uptake of components of the RAS and their intracellular processing. In the brain, (P)RR, v-ATPases and megalin are important regulators both during development and in the adult. All three proteins are associated with diseases such as XLMR, XMRE, X-linked parkinsonism and epilepsy, cognitive disorders with Parkinsonism, spasticity, intellectual disability, and Alzheimer's Disease which are characterized by impaired neuronal function and/or neuronal loss. The present review focusses on the relevant effects of Atp6ap2 without assigning them necessarily to the RAS. Mechanistically, many effects can be well explained by the role of Atp6ap2 for v-ATPase assembly and function. Furthermore, application of a soluble (P)RR analogue as new therapeutic option is discussed.
Collapse
Affiliation(s)
- Nadin Hoffmann
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany.
| |
Collapse
|
8
|
Nakagawa P, Gomez J, Lu KT, Grobe JL, Sigmund CD. Studies of salt and stress sensitivity on arterial pressure in renin-b deficient mice. PLoS One 2021; 16:e0250807. [PMID: 34319999 PMCID: PMC8318244 DOI: 10.1371/journal.pone.0250807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Excessive sodium intake is known to increase the risk for hypertension, heart disease, and stroke. Individuals who are more susceptible to the effects of high salt are at higher risk for cardiovascular diseases even independent of their blood pressure status. Local activation of the renin-angiotensin system (RAS) in the brain, among other mechanisms, has been hypothesized to play a key role in contributing to salt balance. We have previously shown that deletion of the alternative renin isoform termed renin-b disinhibits the classical renin-a encoding preprorenin in the brain resulting in elevated brain RAS activity. Thus, we hypothesized that renin-b deficiency results in higher susceptibility to salt-induced elevation in blood pressure. Telemetry implanted Ren-bNull and wildtype littermate mice were first offered a low salt diet for a week and subsequently a high salt diet for another week. A high salt diet induced a mild blood pressure elevation in both Ren-bNull and wildtype mice, but mice lacking renin-b did not exhibit an exaggerated pressor response. When renin-b deficient mice were exposed to a high salt diet for a longer duration (4 weeks), there was a trend for increased myocardial enlargement in Ren-bNull mice when compared with control mice, but this did not reach statistical significance. Multiple studies have also demonstrated the association of environmental stress with hypertension. Activation of the RAS in the rostral ventrolateral medulla and the hypothalamus is required for stress-induced hypertension. Thus, we next questioned whether the lack of renin-b would result in exacerbated response to an acute restraint-stress. Wildtype and Ren-bNull mice equally exhibited elevated blood pressure in response to restraint-stress, which was similar in mice fed either a low or high salt diet. These studies suggest that mechanisms unrelated to salt and acute stress alter the cardiovascular phenotype in mice lacking renin-b.
Collapse
Affiliation(s)
- Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Javier Gomez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
9
|
Overexpression of Transcripts Coding for Renin-b but Not for Renin-a Reduce Oxidative Stress and Increase Cardiomyoblast Survival under Starvation Conditions. Cells 2021; 10:cells10051204. [PMID: 34069146 PMCID: PMC8156538 DOI: 10.3390/cells10051204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022] Open
Abstract
A stimulated renin-angiotensin system is known to promote oxidative stress, apoptosis, necrosis and fibrosis. Renin transcripts (renin-b; renin-c) encoding a cytosolic renin isoform have been discovered that may in contrast to the commonly known secretory renin (renin-a) exert protective effects Here, we analyzed the effect of renin-a and renin-b overexpression in H9c2 cardiomyoblasts on apoptosis and necrosis as well as on potential mechanisms involved in cell death processes. To mimic ischemic conditions, cells were exposed to glucose starvation, anoxia or combined oxygen–glucose deprivation (OGD) for 24 h. Under OGD, control cells exhibited markedly increased necrotic and apoptotic cell death accompanied by enhanced ROS accumulation, loss of mitochondrial membrane potential and decreased ATP levels. The effects of OGD on necrosis were exaggerated in renin-a cells, but markedly diminished in renin-b cells. However, with respect to apoptosis, the effects of OGD were almost completely abolished in renin-b cells but interestingly also moderately diminished in renin-a cells. Under glucose depletion we found opposing responses between renin-a and renin-b cells; while the rate of necrosis and apoptosis was aggravated in renin-a cells, it was attenuated in renin-b cells. Based on our results, strategies targeting the regulation of cytosolic renin-b as well as the identification of pathways involved in the protective effects of renin-b may be helpful to improve the treatment of ischemia-relevant diseases.
Collapse
|
10
|
Belyea BC, Santiago AE, Vasconez WA, Nagalakshmi VK, Xu F, Mehalic TC, Sequeira-Lopez MLS, Gomez RA. A primitive type of renin-expressing lymphocyte protects the organism against infections. Sci Rep 2021; 11:7251. [PMID: 33790364 PMCID: PMC8012387 DOI: 10.1038/s41598-021-86629-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
The hormone renin plays a crucial role in the regulation of blood pressure and fluid-electrolyte homeostasis. Normally, renin is synthesized by juxtaglomerular (JG) cells, a specialized group of myoepithelial cells located near the entrance to the kidney glomeruli. In response to low blood pressure and/or a decrease in extracellular fluid volume (as it occurs during dehydration, hypotension, or septic shock) JG cells respond by releasing renin to the circulation to reestablish homeostasis. Interestingly, renin-expressing cells also exist outside of the kidney, where their function has remained a mystery. We discovered a unique type of renin-expressing B-1 lymphocyte that may have unrecognized roles in defending the organism against infections. These cells synthesize renin, entrap and phagocyte bacteria and control bacterial growth. The ability of renin-bearing lymphocytes to control infections-which is enhanced by the presence of renin-adds a novel, previously unsuspected dimension to the defense role of renin-expressing cells, linking the endocrine control of circulatory homeostasis with the immune control of infections to ensure survival.
Collapse
Affiliation(s)
- Brian C Belyea
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Araceli E Santiago
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wilson A Vasconez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Vidya K Nagalakshmi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Fang Xu
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Theodore C Mehalic
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Maria Luisa S Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - R Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
11
|
Angiotensin dependent and angiotensin independent protective effects of renin-b in H9c2 cells after anoxia. Sci Rep 2020; 10:19689. [PMID: 33184370 PMCID: PMC7661495 DOI: 10.1038/s41598-020-76712-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
The renin-angiotensin system is known to regulate blood pressure as well as water- and electrolyte balance. An activated RAS is involved in the development of hypertension and hypertension-related organ damage. Thus, inhibitors of the RAS are protective and markedly increasing the life span of patients. In contrast, renin transcripts have been discovered encoding a cytoplasmatic renin isoform, termed renin-b, which is not harmful but may be even protective. Here we demonstrate that depletion of renin-b encoding transcripts by small interference RNA decreased ATP levels and increased basal necrosis as well as apoptosis rates. Furthermore, renin-b depletion potentiated the anoxia-induced increase of necrosis rates. Vice versa, overexpression of renin-b prevented the anoxia-induced increase of caspase-mediated apoptosis rates. Besides, cells overexpressing renin-b exhibited even reduced mitochondrial mediated apoptosis rates under anoxia, when compared with normoxic conditions, as indicated by Annexin V labeling. However, whereas the protective effect of renin-b on caspase-mediated apoptosis was completely blocked by the renin inhibitor CH732, the effect on mitochondrial-mediated apoptosis was not affected by CH732 at all. From these data we conclude that renin-b overexpression mediates cardioprotective effects under anoxia with respect to mitochondrial induced apoptosis angiotensin-independently, but with respect to caspase induced apoptosis likely in an angiotensin-dependent manner.
Collapse
|
12
|
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020; 163:108701. [PMID: 32717198 DOI: 10.1016/j.steroids.2020.108701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a specific hormonal cascade implicated in the blood pressure control and sodium balance regulation. Several components of this pathway have been identified including renin, angiotensinogen, angiotensin-converting enzyme, angiotensins with a wide range of distinct subtypes and receptors, and aldosterone. The RAAS is not only confined to the systemic circulation but also exists locally in specific tissues such as the heart, brain, and blood vessels with a particular paracrine action. Alteration of RAAS function can contribute to the development of hypertension and the emergence of its associated end-organ damage. Genotypic variations of the different genes of RAAS cascade have been linked to the susceptibility to essential hypertension. Accordingly, to understand the pathogenesis of essential hypertension and its related complications, deep insight into the physiological and genetic aspects of RAAS with its different components and pathways is necessary. In this review, we aimed to illustrate the physiological and genetic aspects of RAAS and the underlying mechanisms which link this system to the predisposition to essential hypertension.
Collapse
|
13
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020; 14:586314. [PMID: 33117127 PMCID: PMC7561440 DOI: 10.3389/fnins.2020.586314] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) was initially considered to be part of the endocrine system regulating water and electrolyte balance, systemic vascular resistance, blood pressure, and cardiovascular homeostasis. It was later discovered that intracrine and local forms of RAS exist in the brain apart from the endocrine RAS. This brain-specific RAS plays essential roles in brain homeostasis by acting mainly through four angiotensin receptor subtypes; AT1R, AT2R, MasR, and AT4R. These receptors have opposing effects; AT1R promotes vasoconstriction, proliferation, inflammation, and oxidative stress while AT2R and MasR counteract the effects of AT1R. AT4R is critical for dopamine and acetylcholine release and mediates learning and memory consolidation. Consequently, aging-associated dysregulation of the angiotensin receptor subtypes may lead to adverse clinical outcomes such as Alzheimer’s disease and frailty via excessive oxidative stress, neuroinflammation, endothelial dysfunction, microglial polarization, and alterations in neurotransmitter secretion. In this article, we review the brain RAS from this standpoint. After discussing the functions of individual brain RAS components and their intracellular and intracranial locations, we focus on the relationships among brain RAS, aging, frailty, and specific neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and vascular cognitive impairment, through oxidative stress, neuroinflammation, and vascular dysfunction. Finally, we discuss the effects of RAS-modulating drugs on the brain RAS and their use in novel treatment approaches.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatrics, Department of Internal Medicine, Ankara University School of Medicine, Ankara, Turkey.,Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudene J George
- Division of Geriatrics, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Nakagawa P, Nair AR, Agbor LN, Gomez J, Wu J, Zhang SY, Lu KT, Morgan DA, Rahmouni K, Grobe JL, Sigmund CD. Increased Susceptibility of Mice Lacking Renin-b to Angiotensin II-Induced Organ Damage. HYPERTENSION (DALLAS, TEX. : 1979) 2020; 76:468-477. [PMID: 32507043 DOI: 10.1161/hypertensionaha.120.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several cardiac and renal diseases are attributed to a dysregulation of the renin-angiotensin system. Renin, the rate-limiting enzyme of the renin-angiotensin system, has 2 isoforms. The classical renin isoform (renin-a) encoding preprorenin is mainly confined to the juxtaglomerular cells and released into the circulation upon stimulation. Alternatively, renin-b is predicted to remain intracellular and is expressed in the brain, heart, and adrenal gland. In the brain, ablation of renin-b (Ren-bNull mice) results in increased brain renin-angiotensin system activity. However, the consequences of renin-b ablation in tissues outside the brain remain unknown. Therefore, we hypothesized that renin-b protects from hypertensive cardiac and renal end-organ damage in mice. Ren-bNull mice exhibited normal blood pressure at baseline. Thus, we induced hypertension by using a slow pressor dose of Ang II (angiotensin II). Ang II increased blood pressure in both wild type and Ren-bNull to the same degree. Although the blood pressure between Ren-bNull and wild-type mice was elevated equally, 4-week infusion of Ang II resulted in exacerbated cardiac remodeling in Ren-bNull mice compared with wild type. Ren-bNull mice also exhibited a modest increase in renal glomerular matrix deposition, elevated plasma aldosterone, and a modestly enhanced dipsogenic response to Ang II. Interestingly, ablation of renin-b strongly suppressed plasma renin, but renal cortical renin mRNA was preserved. Altogether, these data indicate that renin-b might play a protective role in the heart, and thus renin-b could be a potential target to treat hypertensive heart disease.
Collapse
Affiliation(s)
- Pablo Nakagawa
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Javier Gomez
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Jing Wu
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Shao Yang Zhang
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Ko-Ting Lu
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Justin L Grobe
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| |
Collapse
|
15
|
Non-secretory renin reduces oxidative stress and increases cardiomyoblast survival during glucose and oxygen deprivation. Sci Rep 2020; 10:2329. [PMID: 32047214 PMCID: PMC7012910 DOI: 10.1038/s41598-020-59216-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Although the renin-angiotensin system usually promotes oxidative stress and cell death, renin transcripts have been discovered, whose transcription product may be cardioprotective. These transcripts encode a non-secretory renin isoform that is localized in the cytosol and within mitochondria. Here we tested the hypotheses that cytosolic renin [ren(2-9)] expression promotes cell survival under hypoxia and glucose depletion by preserving the mitochondrial membrane potential (∆Ψm) and mitigating the accumulation of ROS. To simulate ischemic insults, we exposed H9c2 cells to glucose deprivation, anoxia or to combined oxygen-glucose deprivation (OGD) for 24 hours and determined renin expression. Furthermore, H9c2 cells transfected with the empty pIRES vector (pIRES cells) or ren(2-9) cDNA-containing vector [ren(2-9) cells] were analyzed for cell death, ∆Ψm, ATP levels, accumulation of ROS, and cytosolic Ca2+ content. In pIRES cells, expression of ren(1A-9) was stimulated under all three ischemia-related conditions. After OGD, the cells lost their ∆Ψm and exhibited enhanced ROS accumulation, increased cytosolic Ca2+ levels, decreased ATP levels as well as increased cell death. In contrast, ren(2-9) cells were markedly protected from these effects. Ren(2-9) appears to represent a protective response to OGD by reducing ROS generation and preserving mitochondrial functions. Therefore, it is a promising new target for the prevention of ischemia-induced myocardial damage.
Collapse
|
16
|
Abstract
Purpose of the Review The main goal of this article is to discuss how the development of state-of-the-art technology has made it possible to address fundamental questions related to how the renin-angiotensin system (RAS) operates within the brain from the neurophysiological and molecular perspective. Recent Findings The existence of the brain RAS remains surprisingly controversial. New sensitive in situ hybridization techniques and novel transgenic animals expressing reporter genes have provided pivotal information of the expression of RAS genes within the brain. We discuss studies using genetically engineered animals combined with targeted viral microinjections to study molecular mechanisms implicated in the regulation of the brain RAS. We also discuss novel drugs targeting the brain RAS that have shown promising results in clinical studies and trials. Summary Over the last 50 years, several new physiological roles of the brain RAS have been identified. In the coming years, efforts to incorporate cutting-edge technologies such as optogenetics, chemogenetics, and single-cell RNA sequencing will lead to dramatic advances in our full understanding of how the brain RAS operates at molecular and neurophysiological levels.
Collapse
|
17
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 729] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
18
|
Wanka H, Lutze P, Staar D, Grunow B, Peters BS, Peters J. An alternative renin isoform is cardioprotective by modulating mitochondrial metabolism. J Cell Mol Med 2018; 22:5991-6001. [PMID: 30247805 PMCID: PMC6237583 DOI: 10.1111/jcmm.13872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/16/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023] Open
Abstract
The renin‐angiotensin system promotes oxidative stress, apoptosis, necrosis, fibrosis, and thus heart failure. Secretory renin plays a central role in these processes, initiating the generation of angiotensins. Nevertheless, alternative renin transcripts exist, which code for a cytosolically localized renin isoform (cyto‐renin) that is cardioprotective. We tested the hypothesis that the protective effects are associated with a beneficial switch of metabolic and mitochondrial functions. To assess H9c2 cell mitochondrial parameters, we used the Seahorse XF analyser. Cardiac H9c2 cells overexpressing cyto‐renin exhibited enhanced nonmitochondrial oxygen consumption, lactate accumulation, and LDH activity, reflecting a switch to more aerobic glycolysis known as Warburg effect. Additionally, mitochondrial spare capacity and cell respiratory control ratio were enhanced, indicating an increased potential to tolerate stress conditions. Renin knockdown induced opposite effects on mitochondrial functions without influencing metabolic parameters. Thus, the protective effects of cyto‐renin are associated with an altered bioenergetic profile and an enhanced stress tolerance, which are favourable under ischaemic conditions. Therefore, cyto‐renin is a promising new target for the prevention of ischaemia‐induced myocardial damage.
Collapse
Affiliation(s)
- Heike Wanka
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Philipp Lutze
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Doreen Staar
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Bianka Grunow
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Barbara S Peters
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Jörg Peters
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| |
Collapse
|
19
|
Peng H, Jensen DD, Li W, Sullivan MN, Buller SA, Worker CJ, Cooper SG, Zheng S, Earley S, Sigmund CD, Feng Y. Overexpression of the neuronal human (pro)renin receptor mediates angiotensin II-independent blood pressure regulation in the central nervous system. Am J Physiol Heart Circ Physiol 2018; 314:H580-H592. [PMID: 29350998 PMCID: PMC5899258 DOI: 10.1152/ajpheart.00310.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
Abstract
Despite advances in antihypertensive therapeutics, at least 15-20% of hypertensive patients have resistant hypertension through mechanisms that remain poorly understood. In this study, we provide a new mechanism for the regulation of blood pressure (BP) in the central nervous system (CNS) by the (pro)renin receptor (PRR), a recently identified component of the renin-angiotensin system that mediates ANG II formation in the CNS. Although PRR also mediates ANG II-independent signaling, the importance of these pathways in BP regulation is unknown. Here, we developed a unique transgenic mouse model overexpressing human PRR (hPRR) specifically in neurons (Syn-hPRR). Intracerebroventricular infusion of human prorenin caused increased BP in Syn-hPRR mice. This BP response was attenuated by a NADPH oxidase (NOX) inhibitor but not by antihypertensive agents that target the renin-angiotensin system. Using a brain-targeted genetic knockdown approach, we found that NOX4 was the key isoform responsible for the prorenin-induced elevation of BP in Syn-hPRR mice. Moreover, inhibition of ERK significantly attenuated the increase in NOX activity and BP induced by human prorenin. Collectively, our findings indicate that an ANG II-independent, PRR-mediated signaling pathway regulates BP in the CNS by a PRR-ERK-NOX4 mechanism. NEW & NOTEWORTHY This study characterizes a new transgenic mouse model with overexpression of the human (pro)renin receptor in neurons and demonstrated a novel angiotensin II-independent mechanism mediated by human prorenin and the (pro)renin receptor in the central regulation of blood pressure.
Collapse
Affiliation(s)
- Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huangzhong University of Sciences and Technology , Wuhan, Hubei , China
| | - Dane D Jensen
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Michelle N Sullivan
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Sophie A Buller
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Caleb J Worker
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Silvana G Cooper
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Shiqi Zheng
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Scott Earley
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Yumei Feng
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| |
Collapse
|
20
|
Cooper SG, Trivedi DP, Yamamoto R, Worker CJ, Feng CY, Sorensen JT, Yang W, Xiong Z, Feng Y. Increased (pro)renin receptor expression in the subfornical organ of hypertensive humans. Am J Physiol Heart Circ Physiol 2017; 314:H796-H804. [PMID: 29351470 DOI: 10.1152/ajpheart.00616.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The central nervous system plays an important role in essential hypertension in humans and in animal models of hypertension through modulation of sympathetic activity and Na+ and body fluid homeostasis. Data from animal models of hypertension suggest that the renin-angiotensin system in the subfornical organ (SFO) of the brain is critical for hypertension development. We recently reported that the brain (pro)renin receptor (PRR) is a novel component of the brain renin-angiotensin system and could be a key initiator of the pathogenesis of hypertension. Here, we examined the expression level and cellular distribution of PRR in the SFO of postmortem human brains to assess its association with the pathogenesis of human hypertension. Postmortem SFO tissues were collected from hypertensive and normotensive human subjects. Immunolabeling for the PRR and a retrospective analysis of clinical data were performed. We found that human PRR was prominently expressed in most neurons and microglia, but not in astrocytes, in the SFO. Importantly, PRR levels in the SFO were elevated in hypertensive subjects. Moreover, PRR immunoreactivity was significantly correlated with systolic blood pressure but not body weight, age, or diastolic blood pressure. Interestingly, this correlation was independent of antihypertensive drug therapy. Our data indicate that PRR in the SFO may be a key molecular player in the pathogenesis of human hypertension and, as such, could be an important focus of efforts to understand the neurogenic origin of hypertension. NEW & NOTEWORTHY This study provides evidence that, in the subfornical organ of the human brain, the (pro)renin receptor is expressed in neurons and microglia cells but not in astrocytes. More importantly, (pro)renin receptor immunoreactivity in the subfornical organ is increased in hypertensive humans and is significantly correlated with systolic blood pressure.
Collapse
Affiliation(s)
- Silvana G Cooper
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Darshan P Trivedi
- Department of Pathology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Rieko Yamamoto
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada.,Tokyo Medical and Dental University, Faculty of Medicine , Tokyo , Japan
| | - Caleb J Worker
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Cheng-Yuan Feng
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Jacob T Sorensen
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Wei Yang
- School of Community Health Sciences, University of Nevada , Reno, Nevada
| | - Zhenggang Xiong
- Department of Pathology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Yumei Feng
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| |
Collapse
|
21
|
Shinohara K, Nakagawa P, Gomez J, Morgan DA, Littlejohn NK, Folchert MD, Weidemann BJ, Liu X, Walsh SA, Ponto LL, Rahmouni K, Grobe JL, Sigmund CD. Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism. Hypertension 2017; 70:990-997. [PMID: 28874461 DOI: 10.1161/hypertensionaha.117.09923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
The brain-specific isoform of renin (Ren-b) has been proposed as a negative regulator of the brain renin-angiotensin system (RAS). We analyzed mice with a selective deletion of Ren-b which preserved expression of the classical renin (Ren-a) isoform. We reported that Ren-bNull mice exhibited central RAS activation and hypertension through increased expression of Ren-a, but the dipsogenic and metabolic effects in Ren-bNull mice are unknown. Fluid intake was similar in control and Ren-bNull mice at baseline and both exhibited an equivalent dipsogenic response to deoxycorticosterone acetate-salt. Dehydration promoted increased water intake in Ren-bNull mice, particularly after deoxycorticosterone acetate-salt. Ren-bNull and control mice exhibited similar body weight when fed a chow diet. However, when fed a high-fat diet, male Ren-bNull mice gained significantly less weight than control mice, an effect blunted in females. This difference was not because of changes in food intake, energy absorption, or physical activity. Ren-bNull mice exhibited increased resting metabolic rate concomitant with increased uncoupled protein 1 expression and sympathetic nerve activity to the interscapular brown adipose tissue, suggesting increased thermogenesis. Ren-bNull mice were modestly intolerant to glucose and had normal insulin sensitivity. Another mouse model with markedly enhanced brain RAS activity (sRA mice) exhibited pronounced insulin sensitivity concomitant with increased brown adipose tissue glucose uptake. Altogether, these data support the hypothesis that the brain RAS regulates energy homeostasis by controlling resting metabolic rate, and that Ren-b deficiency increases brain RAS activity. Thus, the relative level of expression of Ren-b and Ren-a may control activity of the brain RAS.
Collapse
Affiliation(s)
- Keisuke Shinohara
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Pablo Nakagawa
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Javier Gomez
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Donald A Morgan
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Nicole K Littlejohn
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Matthew D Folchert
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Benjamin J Weidemann
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Xuebo Liu
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Susan A Walsh
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Laura L Ponto
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Kamal Rahmouni
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Justin L Grobe
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.).
| |
Collapse
|
22
|
Affiliation(s)
- Pablo Nakagawa
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
23
|
Affiliation(s)
- Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (C.D.S.); and Department of Surgery, Hypertension and Vascular Research, Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC (D.I.D., M.C.C.).
| | - Debra I Diz
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (C.D.S.); and Department of Surgery, Hypertension and Vascular Research, Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC (D.I.D., M.C.C.)
| | - Mark C Chappell
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (C.D.S.); and Department of Surgery, Hypertension and Vascular Research, Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC (D.I.D., M.C.C.)
| |
Collapse
|
24
|
Shinohara K, Liu X, Morgan DA, Davis DR, Sequeira-Lopez MLS, Cassell MD, Grobe JL, Rahmouni K, Sigmund CD. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension. Hypertension 2016; 68:1385-1392. [PMID: 27754863 DOI: 10.1161/hypertensionaha.116.08242] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/11/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022]
Abstract
The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension.
Collapse
Affiliation(s)
- Keisuke Shinohara
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Xuebo Liu
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Donald A Morgan
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Deborah R Davis
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Maria Luisa S Sequeira-Lopez
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Martin D Cassell
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Justin L Grobe
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Kamal Rahmouni
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Curt D Sigmund
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville.
| |
Collapse
|
25
|
Wanka H, Staar D, Lutze P, Peters B, Hildebrandt J, Beck T, Bäumgen I, Albers A, Krieg T, Zimmermann K, Sczodrok J, Schäfer S, Hoffmann S, Peters J. Anti-necrotic and cardioprotective effects of a cytosolic renin isoform under ischemia-related conditions. J Mol Med (Berl) 2015; 94:61-9. [DOI: 10.1007/s00109-015-1321-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/25/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
|
26
|
Coble JP, Grobe JL, Johnson AK, Sigmund CD. Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. Am J Physiol Regul Integr Comp Physiol 2014; 308:R238-49. [PMID: 25519738 DOI: 10.1152/ajpregu.00486.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is critical for cells to maintain a homeostatic balance of water and electrolytes because disturbances can disrupt cellular function, which can lead to profound effects on the physiology of an organism. Dehydration can be classified as either intra- or extracellular, and different mechanisms have developed to restore homeostasis in response to each. Whereas the renin-angiotensin system (RAS) is important for restoring homeostasis after dehydration, the pathways mediating the responses to intra- and extracellular dehydration may differ. Thirst responses mediated through the angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptors (AT2R) respond to extracellular dehydration and intracellular dehydration, respectively. Intracellular signaling factors, such as protein kinase C (PKC), reactive oxygen species (ROS), and the mitogen-activated protein (MAP) kinase pathway, mediate the effects of central angiotensin II (ANG II). Experimental evidence also demonstrates the importance of the subfornical organ (SFO) in mediating some of the fluid intake effects of central ANG II. The purpose of this review is to highlight the importance of the SFO in mediating fluid intake responses to dehydration and ANG II.
Collapse
Affiliation(s)
| | - Justin L Grobe
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Curt D Sigmund
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
27
|
Ishigami T, Kino T, Chen L, Minegishi S, Araki N, Umemura M, Abe K, Sasaki R, Yamana H, Umemura S. Identification of bona fide alternative renin transcripts expressed along cortical tubules and potential roles in promoting insulin resistance in vivo without significant plasma renin activity elevation. Hypertension 2014; 64:125-33. [PMID: 24777979 DOI: 10.1161/hypertensionaha.114.03394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Renin belongs to a family of aspartyl proteases and is the rate-limiting enzyme in the synthesis of the potent vasoactive peptide angiotensin II. Processing of renal renin has been extensively investigated in juxtaglomerular granular cells, in which prorenin and active renin are present in secretory condensed granules. Previous studies demonstrated alternative renin transcription in rat adrenal glands. Different studies reported novel intracellular forms of renin deduced from novel 5' variants derived from renin mRNA in both mice and humans. Comprehensive detailed studies in genetically engineered mice showed that both a secreted and an intracellular form of renin plays divergent mechanism regulating fluid intake and metabolism by the brain renin-angiotensin system; however, the presence, regulation, and functions of these renin isoforms in kidney and adrenal gland are not fully understood in mice. To investigate the characteristics of renin isoforms in mice, we performed a systematic inventory of renin transcripts of mice with and without a duplication of the renin gene alternatively from previous studies. We discovered a novel isoform of renin of the Ren2 gene, which conserved functionally important residues of the prosegment and incomplete isoforms of the Ren1C/D gene lacking a pre-pro segment. In situ hybridization assays revealed alternative renin isoforms expressed along cortical tubules. Newly generated transgenic mice with systemic overexpression of alternative renin transcript showed enhanced local angiotensin II generation without elevation of plasma renin activity and systemic insulin resistance in vivo, providing new pathophysiological insights into insulin resistance exaggerated by bona fide renin isoform.
Collapse
Affiliation(s)
- Tomoaki Ishigami
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan.
| | - Tabito Kino
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Lin Chen
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Shintaro Minegishi
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Naomi Araki
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Masanari Umemura
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kaito Abe
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Rie Sasaki
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Hisako Yamana
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Umemura
- From the Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
28
|
|
29
|
Abadir PM, Walston JD, Carey RM. Subcellular characteristics of functional intracellular renin-angiotensin systems. Peptides 2012; 38:437-45. [PMID: 23032352 PMCID: PMC3770295 DOI: 10.1016/j.peptides.2012.09.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/14/2012] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is now regarded as an integral component in not only the development of hypertension, but also in physiologic and pathophysiologic mechanisms in multiple tissues and chronic disease states. While many of the endocrine (circulating), paracrine (cell-to-different cell) and autacrine (cell-to-same cell) effects of the RAS are believed to be mediated through the canonical extracellular RAS, a complete, independent and differentially regulated intracellular RAS (iRAS) has also been proposed. Angiotensinogen, the enzymes renin and angiotensin-converting enzyme (ACE) and the angiotensin peptides can all be synthesized and retained intracellularly. Angiotensin receptors (types I and 2) are also abundant intracellularly mainly at the nuclear and mitochondrial levels. The aim of this review is to focus on the most recent information concerning the subcellular localization, distribution and functions of the iRAS and to discuss the potential consequences of activation of the subcellular RAS on different organ systems.
Collapse
Affiliation(s)
- Peter M. Abadir
- Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging Program, Johns Hopkins University School of Medicine, Baltimore, MD 21224, United States
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging Program, Johns Hopkins University School of Medicine, Baltimore, MD 21224, United States
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Corresponding author at: P.O. Box 801414, University of Virginia Health System, Charlottesville, VA 22908-1414, United States. Tel.: +1 434 924 5510; fax: +1 434 982 3626. (R.M. Carey)
| |
Collapse
|
30
|
Abstract
The RAS (renin-angiotensin system) is one of the earliest and most extensively studied hormonal systems. The RAS is an atypical hormonal system in several ways. The major bioactive peptide of the system, AngII (angiotensin II), is neither synthesized in nor targets one specific organ. New research has identified additional peptides with important physiological and pathological roles. More peptides also mean newer enzymatic cascades that generate these peptides and more receptors that mediate their function. In addition, completely different roles of components that constitute the RAS have been uncovered, such as that for prorenin via the prorenin receptor. Complexity of the RAS is enhanced further by the presence of sub-systems in tissues, which act in an autocrine/paracrine manner independent of the endocrine system. The RAS seems relevant at the cellular level, wherein individual cells have a complete system, termed the intracellular RAS. Thus, from cells to tissues to the entire organism, the RAS exhibits continuity while maintaining independent control at different levels. The intracellular RAS is a relatively new concept for the RAS. The present review provides a synopsis of the literature on this system in different tissues.
Collapse
|
31
|
Grobe JL, Rahmouni K, Liu X, Sigmund CD. Metabolic rate regulation by the renin-angiotensin system: brain vs. body. Pflugers Arch 2012; 465:167-75. [PMID: 22491893 DOI: 10.1007/s00424-012-1096-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/02/2012] [Indexed: 01/28/2023]
Abstract
Substantial evidence supports a role for the renin-angiotensin system (RAS) in the regulation of metabolic function, but an apparent paradox exists where genetic or pharmacological inhibition of the RAS occasionally has similar physiological effects as chronic angiotensin infusion. Similarly, while RAS targeting in animal models has robust metabolic consequences, effects in humans are more subtle. Here, we review the data supporting a role for the RAS in metabolic rate regulation and propose a model where the local brain RAS works in opposition to the peripheral RAS, thus helping to explain the paradoxically similar effects of RAS supplementation and inhibition. Selectively modulating the peripheral RAS or brain RAS may thus provide a more effective treatment paradigm for obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Justin L Grobe
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 3181 MERF, 375 Newton Rd., Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
32
|
Peters J. Local renin-angiotensin systems in the adrenal gland. Peptides 2012; 34:427-32. [PMID: 22391260 DOI: 10.1016/j.peptides.2012.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/28/2012] [Accepted: 01/28/2012] [Indexed: 10/28/2022]
Abstract
In the adrenal gland all components of the renin-angiotensin system (RAS) are expressed in both the adrenal cortex and the adrenal medulla. In this review evidence shall be presented that a local secretory RAS exists in the adrenal cortex that stimulates aldosterone production and serves as an amplification system for circulating angiotensin (ANG) II. The regulation of the secretory adrenal RAS clearly differs from the regulation of the circulatory RAS in terms of renin expression as well as of renin secretion. For example under potassium load the activity of the renal and circulatory RAS is suppressed whereas the activity of the adrenal RAS is stimulated. Thus the activity of the adrenal RAS but not of the circulating RAS correlates well with the regulation of aldosterone production by potassium. The present review also summarizes the knowledge about the expression and functions of an additional renin transcript that has recently been discovered. This transcript encodes for a non-secretory cytosolic renin isoform. The cytosolic renin may be a basis for the existence of an intracellular renin system in the adrenal gland that has long been proposed. The present state of knowledge shall be discussed indicating that such an intracellular system modulates cell survival and cell death such as apoptosis and necrosis or cell functions such as aldosterone production.
Collapse
Affiliation(s)
- Jörg Peters
- Institute of Physiology, University of Greifswald, Germany.
| |
Collapse
|
33
|
Tadevosyan A, Vaniotis G, Allen BG, Hébert TE, Nattel S. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function. J Physiol 2011; 590:1313-30. [PMID: 22183719 DOI: 10.1113/jphysiol.2011.222794] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play key physiological roles in numerous tissues, including the heart, and their dysfunction influences a wide range of cardiovascular diseases. Recently, the notion of nuclear localization and action of GPCRs has become more widely accepted. Nuclear-localized receptors may regulate distinct signalling pathways, suggesting that the biological responses mediated by GPCRs are not solely initiated at the cell surface but may result from the integration of extracellular and intracellular signalling pathways. Many of the observed nuclear effects are not prevented by classical inhibitors that exclusively target cell surface receptors, presumably because of their structures, lipophilic properties, or affinity for nuclear receptors. In this topical review, we discuss specifically how angiotensin-II, endothelin, β-adrenergic and opioid receptors located on the nuclear envelope activate signalling pathways, which convert intracrine stimuli into acute responses such as generation of second messengers and direct genomic effects, and thereby participate in the development of cardiovascular disorders.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
34
|
Sigmund CD. Divergent mechanism regulating fluid intake and metabolism by the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2011; 302:R313-20. [PMID: 22049229 DOI: 10.1152/ajpregu.00575.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this review is two-fold. First, I will highlight recent advances in our understanding of the mechanisms regulating angiotensin II (ANG II) synthesis in the brain, focusing on evidence that renin is expressed in the brain and is expressed in two forms: a secreted form, which may catalyze extracellular ANG I generation from glial or neuronal angiotensinogen (AGT), and an intracellular form, which may generate intracellular ANG in neurons that may act as a neurotransmitter. Second, I will discuss recent studies that advance the concept that the renin-angiotensin system (RAS) in the brain not only is a potent regulator of blood pressure and fluid intake but may also regulate metabolism. The efferent pathways regulating the blood pressure/dipsogenic effects and the metabolic effects of elevated central RAS activity appear different, with the former being dependent upon the hypothalamic-pituitary-adrenal axis, and the latter being dependent upon an interaction between the brain and the systemic (or adipose) RAS.
Collapse
Affiliation(s)
- Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|
35
|
Marc Y, Llorens-Cortes C. The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol 2011; 95:89-103. [PMID: 21763394 DOI: 10.1016/j.pneurobio.2011.06.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 02/07/2023]
Abstract
Hypertension affects 26% of adults and is in constant progress related to increased incidence of obesity and diabetes. One-third of hypertensive patients may be successfully treated with one antihypertensive agent, one-third may require two agents and in the remaining patients will need three agents for effective blood pressure (BP) control. The development of new classes of antihypertensive agents with different mechanisms of action therefore remains an important goal. Brain renin-angiotensin system (RAS) hyperactivity has been implicated in hypertension development and maintenance in several types of experimental and genetic hypertension animal models. Among the main bioactive peptides of the brain RAS, angiotensin (Ang) II and Ang III have similar affinities for type 1 (AT1) and type 2 (AT2) Ang II receptors. Following intracerebroventricular (i.c.v.) injection, Ang II and Ang III similarly increase arginine-vasopressin (AVP) release and BP. Blocking the brain RAS may be advantageous as it simultaneously (1) decreases sympathetic tone and consequently vascular resistance, (2) decreases AVP release, reducing blood volume and vascular resistance and (3) blocks angiotensin-induced baroreflex inhibition, decreasing both vascular resistance and cardiac output. However, as Ang II is converted to Ang III in vivo, the exact nature of the active peptide is not precisely determined. We summarize here the main findings identifying AngIII as one of the major effector peptides of the brain RAS in the control of AVP release and BP. Brain AngIII exerts a tonic stimulatory effect on BP in hypertensive rats, identifying brain aminopeptidase A (APA), the enzyme generating brain Ang III, as a potentially candidate target for hypertension treatment. This has led to the development of potent orally active APA inhibitors, such as RB150--the prototype of a new class of centrally acting antihypertensive agents.
Collapse
|
36
|
Xu D, Borges GR, Davis DR, Agassandian K, Sequeira Lopez MLS, Gomez RA, Cassell MD, Grobe JL, Sigmund CD. Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism. Physiol Genomics 2010; 43:286-94. [PMID: 21189370 DOI: 10.1152/physiolgenomics.00208.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin system (RAS), known for its roles in cardiovascular, metabolic, and developmental regulation, is present in both the circulation and in many individual tissues throughout the body. Substantial evidence supports the existence of a brain RAS, though quantification and localization of brain renin have been hampered by its low expression levels. We and others have previously determined that there are two isoforms of renin expressed in the brain. The classical isoform encoding secreted renin (sREN) and a novel isoform encoding intracellular renin (icREN), the product of an alternative promoter and first exon (exon 1b). The differential role that these two isoforms play in cardiovascular and metabolic regulation remains unclear. Here we examined the physiological consequences of neuron- and glia-specific knockouts of sREN by crossing mice in which the sREN promoter and isoform-specific first exon (exon-1a) is flanked by LoxP sequences (sREN(flox) mice) with mice expressing Cre-recombinase controlled by either the neuron-specific Nestin promoter or the glia-specific GFAP promoter. Resulting offspring exhibited selective knockout of sREN in either neurons or glia, while preserving expression of icREN. Consistent with a hypothesized role of icREN in the brain RAS, neuron- and glia-specific knockout of sREN had no effect on blood pressure or heart rate; food, water, or sodium intake; renal function; or metabolic rate. These data demonstrate that sREN is dispensable within the brain for normal physiological regulation of cardiovascular, hydromineral, and metabolic regulation, and thereby indirectly support the importance of icREN in brain RAS function.
Collapse
Affiliation(s)
- Di Xu
- Interdisciplinary Genetics Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Michaud A, Bur D, Gribouval O, Muller L, Iturrioz X, Clemessy M, Gasc JM, Gubler MC, Corvol P. Loss-of-function point mutations associated with renal tubular dysgenesis provide insights about renin function and cellular trafficking. Hum Mol Genet 2010; 20:301-11. [DOI: 10.1093/hmg/ddq465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Abstract
PURPOSE OF REVIEW Renin cells are fundamental for the control of blood pressure, fluid electrolyte homeostasis and kidney development. This review discusses recent discoveries regarding the mechanisms that control the identity and fate of renin cells and their role in the maintenance of kidney architecture and function. RECENT FINDINGS It is now established that cyclic AMP is a crucial factor for the regulation of the renin phenotype. Furthermore, additional factors such as microRNAs and gap junctions have recently emerged as key regulators for the maintenance and proper functioning of renin cells. SUMMARY Experiments described in this review will hopefully raise new questions regarding the mechanisms that control the identity, plasticity and function of renin cells.
Collapse
Affiliation(s)
- Maria L S Sequeira Lopez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
39
|
Redding KM, Chen BL, Singh A, Re RN, Navar LG, Seth DM, Sigmund CD, Tang WW, Cook JL. Transgenic mice expressing an intracellular fluorescent fusion of angiotensin II demonstrate renal thrombotic microangiopathy and elevated blood pressure. Am J Physiol Heart Circ Physiol 2010; 298:H1807-18. [PMID: 20363893 PMCID: PMC2886647 DOI: 10.1152/ajpheart.00027.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/29/2010] [Indexed: 01/09/2023]
Abstract
We have generated transgenic mice that express angiotensin II (ANG II) fused downstream of enhanced cyan fluorescent protein, expression of which is regulated by the mouse metallothionein promoter. The fusion protein, which lacks a secretory signal, is retained intracellularly. In the present study, RT-PCR, immunoblot analyses, whole-animal fluorescent imaging, and fluorescent microscopy of murine embryonic fibroblasts confirm expression of the fusion protein in vivo and in vitro. The transgene is expressed in all tissues tested (including brain, heart, kidney, liver, lung, and testes), and radioimmunoassay of plasma samples obtained from transgenic mice indicate no increase in circulating ANG II over wild-type levels, consistent with intracellular retention of the transgene product. Kidneys from transgenic and corresponding wild-type littermates were histologically evaluated, and abnormalities in transgenic mice consistent with thrombotic microangiopathy were observed; microthrombosis was frequently observed within the glomerular capillaries and small vessels. In addition, systolic and diastolic blood pressures, measured by telemetry (n = 8 for each group), were significantly higher in transgenic mice compared with wild-type littermates. Blood pressure of line A male transgenic mice was 125 + or - 1.7 over 97 + or - 1.6 compared with 109 + or - 1.7 over 83 + or - 1.4 mmHg in wild-type littermates (systolic over diastolic). In summary, overexpression of an intracellular fluorescent fusion protein of ANG II correlates with elevated blood pressure and kidney pathology. This transgenic model may be useful to further explore the intracellular renin-angiotensin system and its implication in abnormal kidney function and hypertension.
Collapse
Affiliation(s)
| | | | - A. Singh
- Department of Molecular Genetics and
| | - R. N. Re
- Department of Cardiology, Ochsner Clinic Foundation, and
| | - L. G. Navar
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - D. M. Seth
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - C. D. Sigmund
- Department of Physiology, University of Iowa, Carver College of Medicine, Iowa City, Iowa; and
| | - W. W. Tang
- Department of Pathology, Ochsner Clinic Foundation, New Orleans, Louisiana
| | | |
Collapse
|
40
|
Funke-Kaiser H, Zollmann FS, Schefe JH, Unger T. Signal transduction of the (pro)renin receptor as a novel therapeutic target for preventing end-organ damage. Hypertens Res 2009; 33:98-104. [PMID: 20010781 DOI: 10.1038/hr.2009.206] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The (pro)renin receptor ((P)RR) not only represents a novel component of the renin-angiotensin system but is also a promising novel drug target because of its crucial involvement in the pathogenesis of renal and cardiac end-organ damage. This review discusses the signal transduction of the (P)RR with its adapter protein promyelocytic zinc-finger protein, the impact of this receptor, especially on cardiovascular disease, and its putative interaction with renin inhibitors such as aliskiren. Furthermore, the increasing complexity regarding the cellular function of the (P)RR is addressed, which arises by the intimate link with proton pumps and the phosphatase PRL-1, as well as by the presence of different subcellular localizations and of a soluble isoform of the (P)RR. Finally, the rationale and strategy for the development of small-molecule antagonists of the (P)RR, called renin/prorenin receptor blockers, are presented.
Collapse
Affiliation(s)
- Heiko Funke-Kaiser
- Center for Cardiovascular Research/Institute of Pharmacology, Charité-University Medicine Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
41
|
Xu D, Borges GR, Grobe JL, Pelham CJ, Yang B, Sigmund CD. Preservation of intracellular renin expression is insufficient to compensate for genetic loss of secreted renin. Hypertension 2009; 54:1240-7. [PMID: 19822797 DOI: 10.1161/hypertensionaha.109.138677] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The primary product of the renin gene is preprorenin. A signal peptide sorts renin to the secretory pathway in juxtaglomerular cells where it is released into the circulation to initiate the renin-angiotensin system cascade. In the brain, transcription of renin occurs from an alternative promoter encoding an mRNA starting with a new first exon (exon 1b). Exon 1b initiating transcripts skip over the classical first exon (exon 1a) containing the initiation codon for preprorenin. Exon 1b transcripts are predicted to use a highly conserved initiation codon within exon 2, producing renin, which should remain intracellular, because it lacks the signal peptide. To evaluate the roles of secreted and intracellular renin, we took advantage of the organization of the renin locus to generate a secreted renin (sRen)-specific knockout, which preserves intracellular renin expression. Expression of sRen mRNA was ablated in the brain and kidney, whereas intracellular renin mRNA expression was preserved in fetal and adult brains. We noted a developmental shift from the expression of sRen mRNA in the fetal brain to intracellular renin mRNA in the adult brain. Homozygous sRen knockout mice exhibited very poor survival at weaning. The survivors exhibited renal lesions, low hematocrit, an inability to generate a concentrated urine, decreased arterial pressure, and impaired aortic contraction. These results suggest that preservation of intracellular renin expression in the brain is not sufficient to compensate for a loss of sRen, and sRen plays a pivotal role in renal development and function, survival, and the regulation of arterial pressure.
Collapse
Affiliation(s)
- Di Xu
- Interdisciplinary Genetics Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) has undergone continuous advancement since the initial identification of renin as a pressor agent. Traditionally considered a circulatory system, the RAS is now known to exist as a tissue system as well. Recently, the tissue RAS has been further categorized as intracellular and extracellular. Owing to the unique location, the intracellular RAS encompasses new components, such as cathepsin D and chymase, which participate in intracellular angiotensin (Ang) II synthesis. In this review, evidence of the intracellular RAS and the mechanism of Ang II synthesis in various cell types will be discussed. RECENT FINDINGS A physiological role for intracellular Ang II in vascular and cardiac cells has recently been demonstrated. Evidence of intracellular Ang II generation has been shown in several cell types, particularly cardiac, renal, and vascular. Importantly, intracellular synthesis of Ang II is more prominent in hyperglycemic conditions and generally involves angiotensin-converting enzyme-dependent and angiotensin-converting enzyme-independent mechanisms. SUMMARY There is significant diversity in the mechanism of intracellular synthesis of Ang II in various cell types and pathological conditions. These observations suggest that a therapeutic intervention to block the RAS should take into consideration the nature of the disorder and the cell type involved.
Collapse
|
43
|
|
44
|
Peters J, Wanka H, Peters B, Hoffmann S. A renin transcript lacking exon 1 encodes for a non-secretory intracellular renin that increases aldosterone production in transgenic rats. J Cell Mol Med 2008; 12:1229-37. [PMID: 18782187 PMCID: PMC3865667 DOI: 10.1111/j.1582-4934.2008.00132.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Renin transcripts lacking exon 1 and thus the signal sequence for co-translational transport to the endoplasmatic reticulum encode for a protein (exon[2-9]renin), that is confined to the cytoplasm. The function of exon(2-9)renin is currently unknown. Mitochondrial renin increases under conditions which stimulate aldosterone production. We hypothesized that exon(2-9)renin (1) is translated into a functionally active protein in vivo, (2) is not secreted but remains within the cytoplasm and (3) stimulates aldosterone production. To test these hypotheses we generated transgenic rats overexpressing exon(2-9)renin. Four transgenic lines were obtained expressing the transcript in various tissues including the heart and the adrenal gland. Renin was enriched particularly in the cytoplasm of transgenic rats. Renin was not elevated in plasma, indicating that exon(2-9)renin is produced but not secreted. The ratio of aldosterone to renin concentrations in plasma (PAC/PRC) was elevated in all transgenic lines except line 307, which also did not exhibit elevated cytoplasmatic renin levels in the adrenal gland (PAC/PRC in controls: 2.8±2.3; line 307: 1.9±0.8; n. s.; line 284: 5.8±1.9; P<0.02; line 294: 5.0±2.3; P<0.001; line 276: 10.3±5.1; P<0.001). We conclude that the exon(1A-9) renin transcript (1) is translated into a functionally active intracellular protein; (2) is targeted to the cytoplasm rather than being sorted to the secretory pathways and (3) is functionally active, regulating aldosterone production. The CX-(exon2-9)renin transgenic rat appears to be a useful model to study the role and the mechanisms of action of cytoplasmatic renin derived from exon(1A-9) transcripts.
Collapse
Affiliation(s)
- Jörg Peters
- Department of Cardiovascular Medicine, University of Greifswald, Greifswald, Germany.
| | | | | | | |
Collapse
|
45
|
Allen AM, O'Callaghan EL, Hazelwood L, Germain S, Castrop H, Schnermann J, Bassi JK. Distribution of cells expressing human renin-promoter activity in the brain of a transgenic mouse. Brain Res 2008; 1243:78-85. [PMID: 18840419 DOI: 10.1016/j.brainres.2008.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/12/2008] [Accepted: 09/13/2008] [Indexed: 10/21/2022]
Abstract
Renin plays a critical role in fluid and electrolyte homeostasis by cleaving angiotensinogen to produce Ang peptides. Whilst it has been demonstrated that renin mRNA is expressed in the brain, the distribution of cells responsible for this expression remains uncertain. We have used a transgenic mouse approach in an attempt to address this question. A transgenic mouse, in which a 12.2 kb fragment of the human renin promoter was used to drive expression of Cre-recombinase, was crossed with the ROSA26-lac Z reporter mouse strain. Cre-recombinase mediated excision of the floxed stop cassette resulted in expression of the reporter protein, beta-galactosidase. This study describes the distribution of beta-galactosidase in the brain of the crossed transgenic mouse. In all cases where it was examined the reporter protein was co-localized with the neuronal marker NeuN. An extensive distribution was observed with numerous cells labeled in the somatosensory, insular, piriform and retrosplenial cortices. The motor cortex was devoid of labeled cells. Several other regions were labeled including the parts of the amygdala, periaqueductal gray, lateral parabrachial nucleus and deep cerebellar nuclei. Overall the distribution shows little overlap with those regions that are known to express receptors for the renin-angiotensin system in the adult brain. This transgenic approach, which demonstrates the distribution of cells which have activated the human renin promoter at any time throughout development, yields a unique and extensive distribution of putative renin-expressing neurons. Our observations suggest that renin may have broader actions in the brain and may indicate a potential for interaction with the (pro)renin receptor or production of a ligand for non-AT(1)/AT(2) receptors.
Collapse
Affiliation(s)
- A M Allen
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda) 2008; 23:187-93. [PMID: 18697992 PMCID: PMC2538674 DOI: 10.1152/physiol.00002.2008] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The renin-angiotensin system in the brain acts to regulate a number of physiological processes. Evidence suggests that angiotensin peptides may act as neurotransmitters, although their biosynthetic pathways are poorly understood. We review evidence for neuronal production of angiotensin peptides and hypothesize that angiotensin may be synthesized intracellularly in neurons.
Collapse
Affiliation(s)
- Justin L. Grobe
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Di Xu
- Genetics Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Curt D. Sigmund
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center on Functional Genomics of Hypertension, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Wanka H, Kessler N, Ellmer J, Endlich N, Peters BS, Clausmeyer S, Peters J. Cytosolic renin is targeted to mitochondria and induces apoptosis in H9c2 rat cardiomyoblasts. J Cell Mol Med 2008; 13:2926-37. [PMID: 18671756 PMCID: PMC4498947 DOI: 10.1111/j.1582-4934.2008.00448.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
One important goal in cardiology is to prevent necrotic cell death in the heart. Necrotic cell death attracts neutrophils and monocytes into the injured myocardium. The consequences are fibrosis, remodelling and cardiac failure. The renin-angiotensin system promotes the development of cardiac failure. Recently, alternative renin transcripts have been identified lacking the signal sequence for a cotranslational transport to the endoplasmatic reticulum. These transcripts encode for a cytosolic renin with unknown functions. The expression of this alternative transcript increases after myocardial infarction. We hypothesized that cytosolic renin plays a role in survival and death of cardiomyocytes. To test this hypothesis, we overexpressed secretory or cytosolic renin in H9c2 cardiomyblasts and determined the rate of proliferation, necrosis and apoptosis. Proliferation rate, as indicated by BrdU incorporation into DNA, was reduced by secretory and cytosolic renin (cells transfected with control vector: 0.33 +/- 0.06; secretory renin: 0.12 +/- 0.02; P < 0.05; cytosolic renin: 0.15 +/- 0.03; P < 0.05). Necrosis was increased by secretory renin but decreased by cytosolic renin (LDH release after 10 days from cells transfected with control vector: 68.5 +/- 14.9; secretory renin: 100.0 +/- 0; cytosolic renin: 25.5 +/- 5.3% of content, each P < 0.05). Mitochondrial apoptosis, as indicated by phosphatidylserin translocation to the outer membrane, was unaffected by secretory renin but increased by cytosolic renin (controls: 23.8 +/- 3.9%; secretory renin: 22.1 +/- 4.7%; cytoplasmatic renin: 41.2 +/- 3.8%; P < 0.05). The data demonstrate that a cytosolic renin exists in cardiomyocytes, which in contradiction to secretory renin protects from necrosis but increases apoptosis. Non-secretory cytosolic renin can be considered as a new target for cardiac failure.
Collapse
Affiliation(s)
- Heike Wanka
- Institute of Physiology, University of Greifswald, Karlsburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhou X, Weatherford ET, Liu X, Born E, Keen HL, Sigmund CD. Dysregulated human renin expression in transgenic mice carrying truncated genomic constructs: evidence supporting the presence of insulators at the renin locus. Am J Physiol Renal Physiol 2008; 295:F642-53. [PMID: 18632798 DOI: 10.1152/ajprenal.00384.2007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously generated transgenic mice carrying a large P1 artificial chromosome (PAC160) encompassing a 160-kb segment containing the human renin gene, two upstream genes, and one downstream gene. We also previously generated mutant PAC160 constructs lacking the distal enhancer and concluded it is required to maintain baseline expression of human renin, but is not required for tissue-specific, cell-specific, and regulated expression of renin in vivo. We now report two additional transgenic lines carrying random truncations of PAC160 upstream of the renin gene. Southern and PCR mapping studies indicate that the truncation break points in the two lines are located approximately 10.4 and 2.5 kb upstream of the renin gene causing a deletion of all DNA upstream of the break. We tested the hypothesis that large-scale deletion of DNA upstream of the human renin gene including the enhancer would cause dysregulation of human renin expression. Phenotypically, these truncations cause a severe dysregulation of human renin expression, but remarkably, a preservation of the normal tissue-specific expression of the human ethanolamine kinase 2 (ETNK2) gene which lies immediately downstream of renin. Several functional binding sites for CTCF, a mammalian insulator protein, were identified in and around the renin and ETNK2 loci by gel shift and chromatin immunoprecipitation. We conclude that there are sequences in and around the renin and ETNK2 loci which act as boundaries between neighboring genes which insulate them from each other. The study illustrates the value of taking a much wider genomic perspective when studying mechanisms regulating gene expression.
Collapse
Affiliation(s)
- Xiyou Zhou
- Molecular and Cellular Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
49
|
Peters J. Secretory and cytosolic (pro)renin in kidney, heart, and adrenal gland. J Mol Med (Berl) 2008; 86:711-4. [PMID: 18368380 DOI: 10.1007/s00109-008-0328-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Renin is commonly known as a secretory glycoprotein, which is expressed, stored, and secreted in a regulated manner by the kidney. The rat kidney exclusively expresses secretory renin. In this organ, renin regulates glomerular filtration rate, vascular resistance, and sodium reabsorbtion. In the adult rat heart, secretory preprorenin is not expressed. Instead, an alternative renin transcript is expressed that encodes for a previously unrecognized cytosolic renin. The expression of cytosolic but not of secretory renin increases markedly after myocardial infarction, indicating a role specifically for cytosolic renin in postischemic repair processes. In the adrenal gland, secretory renin is expressed and provides the basis for an intra-adrenal angiotensin (ANG) II amplification system. This amplification system reduces the demand for circulating ANGII to stimulate aldosterone production and thus minimizes any detrimental effects of circulating ANGII in other tissues. The adrenal gland additionally expresses cytosolic renin, which is targeted to mitochondria. Adrenal cytosolic renin increases aldosterone production plasma renin independently.
Collapse
Affiliation(s)
- Jörg Peters
- Institute of Physiology, University of Greifswald, Greifswalder Strasse 11C, Karlsburg, Germany.
| |
Collapse
|
50
|
Carey RM. Pathophysiology of Primary Hypertension. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|