1
|
Jiang Y, Jiang J. The Bor1 elevator transport cycle is subject to autoinhibition and activation. Nat Commun 2024; 15:9090. [PMID: 39433547 PMCID: PMC11494103 DOI: 10.1038/s41467-024-53411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Boron, essential for plant growth, necessitates precise regulation due to its potential toxicity. This regulation is achieved by borate transporters (BORs), which are homologous to the SLC4 family. The Arabidopsis thaliana Bor1 (AtBor1) transporter from clade I undergoes slow regulation through degradation and translational suppression, but its potential for fast regulation via direct activity modulation was unclear. Here, we combine cryo-electron microscopy, mutagenesis, and functional characterization to study AtBor1, revealing high-resolution structures of the dimer in one inactive and three active states. Our findings show that AtBor1 is regulated by two distinct mechanisms: an autoinhibitory domain at the carboxyl terminus obstructs the substrate pathway via conserved salt bridges, and phosphorylation of Thr410 allows interaction with a positively charged pocket at the cytosolic face, essential for borate transport. These results elucidate the molecular basis of AtBor1's activity regulation and highlight its role in fast boron level regulation in plants.
Collapse
Affiliation(s)
- Yan Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Holmberg SR, Sakamoto Y, Kato A, Romero MF. The role of Na +-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch 2024; 476:479-503. [PMID: 38536494 PMCID: PMC11338471 DOI: 10.1007/s00424-024-02937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.
Collapse
Affiliation(s)
- Shannon R Holmberg
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA
| | - Yohei Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.
- Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
3
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
4
|
Lee SK, Occhipinti R, Moss FJ, Parker MD, Grichtchenko II, Boron WF. Distinguishing among HCO 3- , CO 3= , and H + as Substrates of Proteins That Appear To Be "Bicarbonate" Transporters. J Am Soc Nephrol 2023; 34:40-54. [PMID: 36288904 PMCID: PMC10103014 DOI: 10.1681/asn.2022030289] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/23/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Differentiating among HCO 3- , CO 3= , and H + movements across membranes has long seemed impossible. We now seek to discriminate unambiguously among three alternate mechanisms: the inward flux of 2 HCO 3- (mechanism 1), the inward flux of 1 CO 3= (mechanism 2), and the CO 2 /HCO 3- -stimulated outward flux of 2 H + (mechanism 3). METHODS As a test case, we use electrophysiology and heterologous expression in Xenopus oocytes to examine SLC4 family members that appear to transport "bicarbonate" ("HCO 3- "). RESULTS First, we note that cell-surface carbonic anhydrase should catalyze the forward reaction CO 2 +OH - →HCO 3- if HCO 3- is the substrate; if it is not, the reverse reaction should occur. Monitoring changes in cell-surface pH ( Δ pH S ) with or without cell-surface carbonic anhydrase, we find that the presumed Cl-"HCO 3 " exchanger AE1 (SLC4A1) does indeed transport HCO 3- (mechanism 1) as long supposed, whereas the electrogenic Na/"HCO 3 " cotransporter NBCe1 (SLC4A4) and the electroneutral Na + -driven Cl-"HCO 3 " exchanger NDCBE (SLC4A8) do not. Second, we use mathematical simulations to show that each of the three mechanisms generates unique quantities of H + at the cell surface (measured as Δ pH S ) per charge transported (measured as change in membrane current, ΔIm ). Calibrating ΔpH S /Δ Im in oocytes expressing the H + channel H V 1, we find that our NBCe1 data align closely with predictions of CO 3= transport (mechanism 2), while ruling out HCO 3- (mechanism 1) and CO 2 /HCO 3- -stimulated H + transport (mechanism 3). CONCLUSIONS Our surface chemistry approach makes it possible for the first time to distinguish among HCO 3- , CO 3= , and H + fluxes, thereby providing insight into molecular actions of clinically relevant acid-base transporters and carbonic-anhydrase inhibitors.
Collapse
Affiliation(s)
- Seong-Ki Lee
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Fraser J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mark D. Parker
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Physiology and Biophysics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | | | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
5
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
6
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger. Sci Rep 2017; 7:12131. [PMID: 28935959 PMCID: PMC5608694 DOI: 10.1038/s41598-017-12409-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn2+-binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.
Collapse
|
8
|
Abstract
Frequently observed phenotypes of tumours include high metabolic activity, hypoxia and poor perfusion; these act to produce an acidic microenvironment. Cellular function depends on pH homoeostasis, and thus, tumours become dependent on pH regulatory mechanisms. Many of the proteins involved in pH regulation are highly expressed in tumours, and their expression is often of prognostic significance. The more acidic tumour microenvironment also has important implications with regard to chemotherapeutic and radiotherapeutic interventions. In addition, we review pH-sensing mechanisms, the role of pH regulation in tumour phenotype and the use of pH regulatory mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Alan McIntyre
- Molecular Oncology Laboratories, Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Myers EJ, Marshall A, Jennings ML, Parker MD. Mouse Slc4a11 expressed in Xenopus oocytes is an ideally selective H+/OH- conductance pathway that is stimulated by rises in intracellular and extracellular pH. Am J Physiol Cell Physiol 2016; 311:C945-C959. [PMID: 27681179 PMCID: PMC5206308 DOI: 10.1152/ajpcell.00259.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 11/22/2022]
Abstract
The SLC4A11 gene encodes the bicarbonate-transporter-related protein BTR1, which is mutated in syndromes characterized by vision and hearing loss. Signs of these diseases [congenital hereditary endothelial dystrophy (CHED) and Harboyan syndrome] are evident in mouse models of Slc4a11 disruption. However, the intrinsic activity of Slc4a11 remains controversial, complicating assignment of its (patho)physiological role. Most studies concur that Slc4a11 transports H+ (or the thermodynamically equivalent species OH-) rather than HCO3-, but disparities have arisen as to whether the transport is coupled to another species such as Na+ or NH3/NH4+ Here for the first time, we examine the action of mouse Slc4a11 in Xenopus oocytes. We simultaneously monitor changes in intracellular pH, membrane potential, and conductance as we alter extracellular pH, revealing the electrical and chemical driving forces that underlie the observed ion fluxes. We find that mSlc4a11 is an ideally selective H+/OH- conductive pathway, the action of which is uncoupled from the cotransport of any other ion. We also find that the activity of mSlc4a11 is independently enhanced by both extracellular and intracellular alkalinization, suggesting OH- as the most likely substrate and providing a novel explanation for the apparent NH3-dependence of Slc4a11-mediated currents reported by others. We suggest that the unique properties of Slc4a11 action underlie its value as a pH regulator in corneal endothelial cells.
Collapse
Affiliation(s)
- Evan J Myers
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, New York
| | - Aniko Marshall
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, New York
| | - Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, New York;
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York, Buffalo, New York; and
- State University of New York Eye Institutes, University at Buffalo: The State University of New York, Buffalo, New York
| |
Collapse
|
10
|
Liu Y, Yang J, Chen LM. Structure and Function of SLC4 Family [Formula: see text] Transporters. Front Physiol 2015; 6:355. [PMID: 26648873 PMCID: PMC4664831 DOI: 10.3389/fphys.2015.00355] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
11
|
Abstract
Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Department of Biomedicine, and the Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Department of Physiology, Emory University School of Medicine, Atlanta, USA
| | | | | | | |
Collapse
|
12
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
13
|
Hübner CA, Holthoff K. Anion transport and GABA signaling. Front Cell Neurosci 2013; 7:177. [PMID: 24187533 PMCID: PMC3807543 DOI: 10.3389/fncel.2013.00177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/21/2013] [Indexed: 12/02/2022] Open
Abstract
Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function.
Collapse
Affiliation(s)
- Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University Jena Jena, Germany
| | | |
Collapse
|
14
|
Romero MF, Chen AP, Parker MD, Boron WF. The SLC4 family of bicarbonate (HCO₃⁻) transporters. Mol Aspects Med 2013; 34:159-82. [PMID: 23506864 DOI: 10.1016/j.mam.2012.10.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023]
Abstract
The SLC4 family consists of 10 genes (SLC4A1-5; SLC4A7-11). All encode integral membrane proteins with very similar hydropathy plots-consistent with 10-14 transmembrane segments. Nine SLC4 members encode proteins that transport HCO3(-) (or a related species, such as CO3(2-)) across the plasma membrane. Functionally, eight of these proteins fall into two major groups: three Cl-HCO3 exchangers (AE1-3) and five Na(+)-coupled HCO3(-) transporters (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE). Two of the Na(+)-coupled transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO3(-) transporters and all three AEs are electroneutral. In addition, two other SLC4 members (AE4, SLC4A9 and BTR1, SLC4A11) do not yet have a firmly established function. Most, though not all, SLC4 members are functionally inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 proteins play important roles many modes of acid-base homeostasis: the carriage of CO2 by erythrocytes, the transport of H(+) or HCO3(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
15
|
Liu Y, Qin X, Wang DK, Guo YM, Gill HS, Morris N, Parker MD, Chen LM, Boron WF. Effects of optional structural elements, including two alternative amino termini and a new splicing cassette IV, on the function of the sodium-bicarbonate cotransporter NBCn1 (SLC4A7). J Physiol 2013; 591:4983-5004. [PMID: 23959679 DOI: 10.1113/jphysiol.2013.258673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The SLC4A7 gene encodes the electroneutral sodium/HCO3 cotransporter NBCn1, which plays important physiological and pathophysiological roles in many cell types. Previous work identified six NBCn1 variants differing in the sequence of the extreme N terminus--MEAD in rat only, MERF in human only--as well as in the optional inclusion of cassettes I, II, and III. Earlier work also left open the question of whether optional structural elements (OSEs) affect surface abundance or intrinsic (per-molecule) transport activity. Here, we demonstrate for the first time that SLC4A7 from one species can express both MEAD- and MERF-NBCn1. We also identify a novel cassette IV of 20 aa, and extend by 10 the number of full-length NBCn1 variants. The alternative N termini and four cassettes could theoretically produce 32 major variants. Moreover, we identify a group of cDNAs predicted to encode just the cytosolic N-terminal domain (Nt) of NBCn1. A combination of electrophysiology and biotinylation shows that the OSEs can affect surface abundance and intrinsic HCO3(-) transport activity of NBCn1, as expressed in Xenopus oocytes. Specifically, MEAD tends to increase whereas novel cassette IV reduces surface abundance. Cassettes II, III and novel cassette IV all appear to increase the intrinsic activity of NBCn1.
Collapse
Affiliation(s)
- Ying Liu
- L.-M. Chen: Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science and Technology, 1037 Luoyu Rd, Wuhan, Hubei, China 430074.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sinning A, Hübner CA. Minireview: pH and synaptic transmission. FEBS Lett 2013; 587:1923-8. [PMID: 23669358 DOI: 10.1016/j.febslet.2013.04.045] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/26/2013] [Accepted: 04/26/2013] [Indexed: 11/30/2022]
Abstract
As a general rule a rise in pH increases neuronal activity, whereas it is dampened by a fall of pH. Neuronal activity per se also challenges pH homeostasis by the increase of metabolic acid equivalents. Moreover, the negative membrane potential of neurons promotes the intracellular accumulation of protons. Synaptic key players such as glutamate receptors or voltage-gated calcium channels show strong pH dependence and effects of pH gradients on synaptic processes are well known. However, the processes and mechanisms that allow controlling the pH in synaptic structures and how these mechanisms contribute to normal synaptic function are only beginning to be resolved.
Collapse
Affiliation(s)
- Anne Sinning
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, Kollegiengasse 10, D-07743 Jena, Germany
| | | |
Collapse
|
17
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
18
|
Liu Y, Wang DK, Jiang DZ, Qin X, Xie ZD, Wang QK, Liu M, Chen LM. Cloning and functional characterization of novel variants and tissue-specific expression of alternative amino and carboxyl termini of products of slc4a10. PLoS One 2013; 8:e55974. [PMID: 23409100 PMCID: PMC3567025 DOI: 10.1371/journal.pone.0055974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the electroneutral Na+/HCO3− cotransporter NBCn2 (SLC4A10) is predominantly expressed in the central nervous system (CNS). The physiological and pathological significances of NBCn2 have been well recognized. However, little is known about the tissue specificity of expression of different NBCn2 variants. Moreover, little is known about the expression of NBCn2 proteins in systems other than CNS. Here, we identified a set of novel Slc4a10 variants differing from the originally described ones by containing a distinct 5′ untranslated region encoding a new extreme amino-terminus (Nt). Electrophysiology measurements showed that both NBCn2 variants with alternative Nt contain typical electroneutral Na+-coupled HCO3− transport activity in Xenopus oocytes. Luciferase reporter assay showed that Slc4a10 contains two alternative promoters responsible for expression of the two types of NBCn2 with distinct extreme Nt. Western blotting showed that NBCn2 proteins with the original Nt are primarily expressed in CNS, whereas those with the novel Nt are predominantly expressed in the kidney and to a lesser extent in the small intestine. Due to alternative splicing, the known NBCn2 variants contain two types of carboxyl-termini (CT) differing in the optional inclusion of a PDZ-binding motif. cDNA cloning showed that virtually all NBCn2 variants expressed in epithelial tissues contain, but the vast majority of those from the neural tissues lack the PDZ-binding motif. We conclude that alternative transcription and splicing of Slc4a10 products are regulated in a tissue-specific manner. Our findings provide critical insights that will greatly influence the study of the physiology of NBCn2.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Deng-Ke Wang
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - De-Zhi Jiang
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Zhang-Dong Xie
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Qing K. Wang
- Department of Genetics and Developmental Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Mugen Liu
- Department of Genetics and Developmental Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Li-Ming Chen
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
19
|
Burette AC, Weinberg RJ, Sassani P, Abuladze N, Kao L, Kurtz I. The sodium-driven chloride/bicarbonate exchanger in presynaptic terminals. J Comp Neurol 2012; 520:1481-92. [PMID: 22102085 DOI: 10.1002/cne.22806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The sodium-driven chloride/bicarbonate exchanger (NDCBE), a member of the SLC4 family of bicarbonate transporters, was recently found to modulate excitatory neurotransmission in hippocampus. By using light and electron microscopic immunohistochemistry, we demonstrate here that NDCBE is expressed throughout the adult rat brain, and selectively concentrates in presynaptic terminals, where it is closely associated with synaptic vesicles. NDCBE is in most glutamatergic axon terminals, and is also present in the terminals of parvalbumin-positive γ-aminobutyric acid (GABA)ergic cells. These findings suggest that NDCBE can regulate glutamatergic transmission throughout the brain, and point to a role for NDCBE as a possible regulator of GABAergic neurotransmission.
Collapse
Affiliation(s)
- Alain C Burette
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
SLC4A gene family proteins include bicarbonate transporters that move HCO(3)(-) across the plasma membrane and regulate intracellular pH and transepithelial movement of acid-base equivalents. These transporters are Cl/HCO(3) exchangers, electrogenic Na/HCO(3) cotransporters, electroneutral Na/HCO(3) cotransporters, and Na(+)-driven Cl/HCO(3) exchanger. Studies of the bicarbonate transporters in vitro and in vivo have demonstrated their physiological importance for acid-base homeostasis at the cellular and systemic levels. Recent advances in structure/function analysis have also provided valuable information on domains or motifs critical for regulation, ion translocation, and protein topology. This chapter focuses on the molecular mechanisms of ion transport along with associated structural aspects from mutagenesis of particular residues and from chimeric constructs. Structure/function studies have helped to understand the mechanism by which ion substrates are moved via the transporters. This chapter also describes some insights into the structure of SLC4A1 (AE1) and SLC4A4 (NBCe1) transporters. Finally, as some SLC4A transporters exist in concert with other proteins in the cells, the structural features associated with protein-protein interactions are briefly discussed.
Collapse
Affiliation(s)
- Inyeong Choi
- Department of Physiology, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW There is consensus that the abnormal retention of sodium by the kidney is the most important pathophysiological event in hypertension. The present review summarizes our current understanding of sodium reabsorption in the distal nephron. RECENT FINDINGS The antihypertensive effect of thiazides is thought to be mediated by inhibiting Na+ uptake via the NaCl cotransporter NCC in the distal convoluted tubule. Although it was known that thiazide-sensitive Na⁺ reabsorption in isolated cortical collecting ducts can occur independently of the epithelial Na⁺ channel ENaC, its molecular correlate was unresolved. It was absent in isolated cortical collecting ducts of mice with a targeted disruption of the Na⁺-driven chloride/bicarbonate exchanger NDCBE suggesting that this pathway involves apical Na⁺ uptake into intercalated cells via the Na⁺-driven anion-exchanger NDCBE (SLC4A8). SUMMARY The finding that SLC4A8-dependent thiazide-sensitive Na⁺ reabsorption occurs in the cortical collecting duct challenges our current model of how thiazides mediate their antihypertensive action and identifies a potentially new target for antihypertensive strategies.
Collapse
|
22
|
Liu Y, Xu JY, Wang DK, Wang L, Chen LM. Cloning and identification of two novel NBCe1 splice variants from mouse reproductive tract tissues: a comparative study of NCBT genes. Genomics 2011; 98:112-9. [PMID: 21600280 DOI: 10.1016/j.ygeno.2011.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 04/27/2011] [Indexed: 12/26/2022]
Abstract
Na(+)-coupled HCO(3)(-) transporters (NCBTs) of the SLC4 family play critical roles in pH regulation as well as transepithelial HCO(3)(-) transport. We systematically examined, in the mouse reproductive tract tissues, the mRNA expression of five NCBTs as well as the five NBCe1 (Slc4a4) variants NBCe1-A through -E, of which NBCe1-D and NBCe1-E are novel. Cloning of NBCe1-D and NBCe1-E, both lacking a 27-nucleotide cassette I, reveals a novel alternative splicing unit in the mouse Slc4a4 gene. Transcripts of Slc4a4 lacking cassette I are expressed in diverse murine tissues as shown by RT-PCR analysis and in diverse tissues of other vertebrate species as shown by blast against GenBank database. Genomic sequence analysis indicates that cassette I of SLC4A4 is conserved in all NCBT genes except for SLC4A5, which presumably lost cassette I during its evolution. Our present study represents an important step towards understanding the molecular physiology of NBCe1, and presumably other NCBTs.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biological Sciences, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology,Wuhan, Hubei Province 430074, China
| | | | | | | | | |
Collapse
|
23
|
Expression and distribution of NBCn2 (Slc4a10) splice variants in mouse brain: cloning of novel variant NBCn2-D. Brain Res 2011; 1390:33-40. [PMID: 21439947 DOI: 10.1016/j.brainres.2011.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/10/2011] [Accepted: 03/17/2011] [Indexed: 11/22/2022]
Abstract
The SLC4A10 gene, which is highly expressed in the mammalian brain, contains two known alternative splicing units, inserts A and B, and is theoretically capable of producing four NBCn2 splice variants: NBCn2-A, -B, -C, and -D. By immunoprecipitation and western blotting, a previous study showed the putative NBCn2-D to be expressed predominantly in the subcortex (SCX) and medulla (MD) of mouse brain. However, no evidence has been provided, in any species, for the existence of a full-length transcript encoding NBCn2-D. In the present study, we report for the first time the cloning of the full-length cDNAs encoding NBCn2-D from mouse SCX and MD. Based on the frequency of bacterial colonies obtained after PCR, we conclude that in SCX, the NBCn2-A transcript is dominant, whereas in MD, NBCn2-B is dominant. NBCn2-D is the least abundant transcript in each of these two brain regions. An analysis based upon the present PCR data as well as the previous immunoprecipitation/western-blot data suggests the following prevalence of NBCn2 variants in total mouse brain: NBCn2-A (~83%), NBCn2-B (~10%), NBCn2-C (~5%), and NBCn2-D (~2%). We also estimate the prevalence of each variant in each of the five brain regions (i.e., cerebral cortex, SCX, cerebellum, hippocampus, and MD). We hypothesize that the expression of different NBCn2 splice variants is characteristic of specific tissue/cells.
Collapse
|
24
|
Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 2010; 7:338-53. [PMID: 20880499 PMCID: PMC2982258 DOI: 10.1016/j.nurt.2010.07.006] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 12/28/2022] Open
Abstract
Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise-that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review focuses on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases, and critically re-evaluates our concepts of the functional properties of astrocytes and relates these functions and properties to the intricate morphology of these cells.
Collapse
Affiliation(s)
| | - Maiken Nedergaard
- grid.16416.340000000419369174Center for Translational Neuromedicine, Department of Neurosurgery, University of Prochester Medical School, 601 Elmwood Avenue, 114642 Rochester, New York
| |
Collapse
|
25
|
Majumdar D, Bevensee MO. Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience 2010; 171:951-72. [PMID: 20884330 DOI: 10.1016/j.neuroscience.2010.09.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/03/2010] [Accepted: 09/14/2010] [Indexed: 12/26/2022]
Abstract
Many cellular processes including neuronal activity are sensitive to changes in intracellular and/or extracellular pH-both of which are regulated by acid-base transporter activity. HCO(3)(-)-dependent transporters are particularly potent regulators of intracellular pH in neurons and astrocytes, and also contribute to the composition of the cerebrospinal fluid (CSF). The molecular physiology of HCO(3)(-) transporters has advanced considerably over the past ∼14 years as investigators have cloned and characterized the function and localization of many Na-Coupled Bicarbonate Transporters of the solute carrier 4 (Slc4) family (NCBTs). In this review, we provide an updated overview of the function and localization of NCBTs in the nervous system. Multiple NCBTs are expressed in neurons and astrocytes in various brain regions, as well as in epithelial cells of the choroid plexus. Characteristics of human patients with SLC4 gene mutations/deletions and results from recent studies on mice with Slc4 gene disruptions highlight the functional importance of NCBTs in neuronal activity, somatosensory function, and CSF production. Furthermore, energy-deficient states (e.g., hypoxia and ischemia) lead to altered expression and activity of NCBTs. Thus, recent studies expand our understanding of the role of NCBTs in regulating the pH and ionic composition of the nervous system that can modulate neuronal activity.
Collapse
Affiliation(s)
- D Majumdar
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
26
|
Rato L, Socorro S, Cavaco JEB, Oliveira PF. Tubular Fluid Secretion in the Seminiferous Epithelium: Ion Transporters and Aquaporins in Sertoli Cells. J Membr Biol 2010; 236:215-24. [DOI: 10.1007/s00232-010-9294-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 07/20/2010] [Indexed: 01/01/2023]
|
27
|
Abstract
Before the roles of normal, mature astrocytes in the mammalian CNS can be discussed, we first need to define these cells. A definition proposed here is that such a class is best defined as consisting of the protoplasmic and fibrous astrocytes of the gray and white matter, respectively, the Bergmann glia of the molecular layer of the cerebellum, and the Muller cells of the retina. It is concluded that the established properties and functions of these mature astrocytes are essential support for neuronal activity, in the sense of Claude Bernard's principle of maintaining "la fixité du milieu intérieur." This milieu would be the extracellular space common to astrocytes and neurons. More specialized roles, such as the recently described "light guides" for retinal Muller cells can also be viewed as support and facilitation. The ECS is also, of course, common to all other neural cells, but here, I limit the discussion to perturbations of the ECS caused only by neuronal activities and the resolution of these perturbations by astrocytes, such as control of increases in extracellular K(+), uptake of excitatory amino acids, and alterations in blood vessel diameter and therefore blood flow. It is also proposed how this fits into the current morphological picture for the protoplasmic astrocytes as having small cell bodies with up to 100,000 process endings that occupy separate territories on which the processes of neighboring astrocytes scarcely intrude.
Collapse
|
28
|
Liu Y, Xu K, Chen LM, Sun X, Parker MD, Kelly ML, LaManna JC, Boron WF. Distribution of NBCn2 (SLC4A10) splice variants in mouse brain. Neuroscience 2010; 169:951-64. [PMID: 20541593 DOI: 10.1016/j.neuroscience.2010.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
The five known Na-coupled HCO(3)(-) transporters (NCBTs) of the solute carrier 4 (SLC4) family play important roles in pH regulation and transepithelial HCO(3)(-) transport. Nearly all of the NCBTs have multiple splice variants. One particular NCBT, the electroneutral Na/HCO(3)(-) cotransporter NBCn2 (SLC4A10), which is predominantly expressed in brain, has three known splice variants-NBCn2-A, -B, and -C-as well as a potential variant-D. It is important to know the tissue-specific expression of the splice variants for understanding the physiological roles of NBCn2 in central nervous system. In the present study, we developed three novel rabbit polyclonal antibodies against NBCn2: (1) anti-ABCD, which recognizes all four variants; (2) anti-BD, which recognizes NBCn2-B and -D; (3) anti-CD, which recognizes NBCn2-C and -D. By western blotting, we examined the expression and distribution of NBCn2 splice variants in five brain regions: cerebral cortex, subcortex, cerebellum, hippocampus, and medulla. The expression pattern revealed with anti-ABCD is distinct from those revealed with anti-BD and anti-CD. Moreover, by using immunoprecipitation in combination with western blotting, we demonstrate that NBCn2-D does indeed exist and that it is predominantly expressed in subcortex, to a lesser extent in medulla, but at very low levels in cortex, cerebellum, and hippocampus. NBCn2-A may be the dominant variant in mouse brain as a whole, and may also dominate in cerebral cortex, cerebellum, and hippocampus. Immunohistochemistry with anti-ABCD shows that NBCn2 is highly expressed in choroid plexus, cortex, molecular layer of cerebellum, hippocampus, and some specific regions of the brainstem.
Collapse
Affiliation(s)
- Y Liu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Musa-Aziz R, Boron WF, Parker MD. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes. Methods 2010; 51:134-45. [PMID: 20051266 PMCID: PMC2905798 DOI: 10.1016/j.ymeth.2009.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 12/17/2022] Open
Abstract
The Xenopus laevis oocyte is a model system for the electrophysiological study of exogenous ion transporters. Three main reasons make the oocyte suitable for this purpose: (a) it has a large cell size (approximately 1mm diameter), (b) it has an established capacity to produce-from microinjected mRNAs or cRNAs-exogenous ion transporters with close-to-physiological post-translational modifications and actions, and (c) its membranes contain endogenous ion-transport activities which are usually smaller in magnitude than the activities of exogenously-expressed ion transporters. The expression of ion transporters as green fluorescent protein fusions allows the fluorometric assay of transporter yield in living oocytes. Monitoring of transporter-mediated movement of ions such as Cl(-), H(+) (and hence base equivalents like OH(-) and HCO(3)(-)), K(+), and Na(+) is achieved by positioning the tips of ion-sensitive microelectrodes inside the oocyte and/or at the surface of the oocyte plasma membrane. The use of ion-sensitive electrodes is critical for studying net ion-movements mediated by electroneutral transporters. The combined use of fluorometry and electrophysiology expedites transporter study by allowing measurement of transporter yield prior to electrophysiological study and correlation of relative transporter yield with transport rates.
Collapse
Affiliation(s)
- Raif Musa-Aziz
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
30
|
Piermarini PM, Grogan LF, Lau K, Wang L, Beyenbach KW. A SLC4-like anion exchanger from renal tubules of the mosquito (Aedes aegypti): evidence for a novel role of stellate cells in diuretic fluid secretion. Am J Physiol Regul Integr Comp Physiol 2009; 298:R642-60. [PMID: 20042685 DOI: 10.1152/ajpregu.00729.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transepithelial fluid secretion across the renal (Malpighian) tubule epithelium of the mosquito (Aedes aegypti) is energized by the vacuolar-type (V-type) H(+)-ATPase and not the Na(+)-K(+)-ATPase. Located at the apical membrane of principal cells, the V-type H(+)-ATPase translocates protons from the cytoplasm to the tubule lumen. Secreted protons are likely to derive from metabolic H(2)CO(3), which raises questions about the handling of HCO(3)(-) by principal cells. Accordingly, we tested the hypothesis that a Cl/HCO(3) anion exchanger (AE) related to the solute-linked carrier 4 (SLC4) superfamily mediates the extrusion of HCO(3)(-) across the basal membrane of principal cells. We began by cloning from Aedes Malpighian tubules a full-length cDNA encoding an SLC4-like AE, termed AeAE. When expressed heterologously in Xenopus oocytes, AeAE is both N- and O-glycosylated and mediates Na(+)-independent intracellular pH changes that are sensitive to extracellular Cl(-) concentration and to DIDS. In Aedes Malpighian tubules, AeAE is expressed as two distinct forms: one is O-glycosylated, and the other is N-glycosylated. Significantly, AeAE immunoreactivity localizes to the basal regions of stellate cells but not principal cells. Concentrations of DIDS that inhibit AeAE activity in Xenopus oocytes have no effects on the unstimulated rates of fluid secretion mediated by Malpighian tubules as measured by the Ramsay assay. However, in Malpighian tubules stimulated with kinin or calcitonin-like diuretic peptides, DIDS reduces the diuretic rates of fluid secretion to basal levels. In conclusion, Aedes Malpighian tubules express AeAE in the basal region of stellate cells, where this transporter may participate in producing diuretic rates of transepithelial fluid secretion.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
31
|
Boron WF, Chen L, Parker MD. Modular structure of sodium-coupled bicarbonate transporters. ACTA ACUST UNITED AC 2009; 212:1697-706. [PMID: 19448079 DOI: 10.1242/jeb.028563] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian genomes contain 10 SLC4 genes that, between them, encode three Cl-HCO(3) exchangers, five Na(+)-coupled HCO(3) transporters (NCBTs), one reported borate transporter, and what is reported to be a fourth Cl-HCO(3) exchanger. The NCBTs are expressed throughout the body and play important roles in maintaining intracellular and whole-body pH, as well as contributing to transepithelial transport processes. The importance of NCBTs is underscored by the genetic association of dysfunctional NCBT genes with blindness, deafness, epilepsy, hypertension and metal retardation. Key to understanding the action and regulation of NCBTs is an appreciation of the diversity of NCBT gene products. The transmembrane domains of human NCBT paralogs are 50-84% identical to each other at the amino acid level, and are capable of a diverse range of actions, including electrogenic Na/HCO(3) cotransport (i.e. NBCe1 and NBCe2) and electroneutral Na/HCO(3) cotransport (i.e. NBCn1 and NBCn2), as well as Na(+)-dependent Cl-HCO(3) exchange (i.e. NDCBE). Furthermore, by the use of alternative promoters and alternative-splicing events, individual SLC4 genes have the potential to generate multiple splice variants (as many as 16 in the case of NBCn1), each of which could have unique temporal and spatial patterns of distribution, unitary transporter activity (i.e. flux mediated by one molecule), array of protein-binding partners, and complement of regulatory stimuli. In the first section of this review, we summarize our present knowledge of the function and distribution of mammalian NCBTs and their multiple variants. In the second section of this review we consider the molecular consequences of NCBT variation.
Collapse
Affiliation(s)
- Walter F Boron
- Department of Physiology, Case Western Reserve University Medical School, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
32
|
Chen LM, Haddad GG, Boron WF. Effects of chronic continuous hypoxia on the expression of SLC4A8 (NDCBE) in neonatal versus adult mouse brain. Brain Res 2008; 1238:85-92. [PMID: 18775686 DOI: 10.1016/j.brainres.2008.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/06/2008] [Accepted: 08/14/2008] [Indexed: 01/20/2023]
Abstract
Na-coupled HCO(3) transporters (NCBTs) play important roles in brain pH regulation. One NCBT, the Na-driven Cl-HCO(3) exchanger (SLC4A8 or NDCBE), appears to be the major regulator of intracellular pH (pH(i)), at least in some hippocampal pyramidal neurons. NDCBE is widely expressed throughout the central nervous system in rodent brain. In a previous study, it has been demonstrated that CCH decreases the abundance of NBCn1 and NBCn2 proteins in four regions of the mouse brain: cerebral cortex (CX), subcortex (SCX), cerebellum (CB), and hippocampus (HC). Here we report the effect of CCH (11% O(2)) on the expression of NDCBE protein in mouse brain. Neonates (beginning at age P2) or adult mice (beginning at P90) were subjected to either normoxia or CCH for durations of 14 or 28 days. Membrane-protein levels were assessed by western blotting using our polyclonal antibody directed against NDCBE. In neonates, CCH significantly decreased NDCBE expression in HC after 14 days and SCX after 28 days, but had no significant effect for other combinations of region/duration. In adults, however, CCH significantly decreased (by 20-50%) the expression of NDCBE in all four brain regions, both with 14 and 28 day duration. Thus, the mouse brain exhibits marked developmental differences in the response of NDCBE protein expression to CCH. We hypothesize that decreases in adult NDCBE protein levels, which are probably out of proportion to the decreases in other proteins, may be part of an adaptive response that reduces energy consumption and/or stabilizes brain pH(i). The smaller or absent responses in the young animals could be related to neonatal hypoxia tolerance.
Collapse
Affiliation(s)
- Li-Ming Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA.
| | | | | |
Collapse
|