1
|
Dai Y, Yang L, Cao G, Mo L, Yang C, Zhu Y, Guo Y, Hong Y, Xu H, Lu S, Du S, He J. Combination therapy and drug co-delivery systems for atherosclerosis. J Control Release 2025; 381:113543. [PMID: 39986476 DOI: 10.1016/j.jconrel.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of plaque within the arteries. Despite advances in therapeutic strategies including anti-inflammatory, antioxidant, and lipid metabolism modulation treatments over the past two decades, the treatment of atherosclerosis remains challenging, as arterial damage is the result of interconnected pathological factors. Therefore, current monotherapies often fail to address the complex nature of this disease, leading to insufficient therapeutic outcomes. This review addressed this paucity of effective treatment options by comprehensively exploring the potential for combination therapies and advanced drug co-delivery systems for the treatment of atherosclerosis. We investigated the pathological features of and risk factors for atherosclerosis, underscoring the importance of drug combination therapies for the treatment of atherosclerotic diseases. We discuss herein mathematical models for quantifying the efficacy of the combination therapies and provide a systematic summary of drug combinations for the treatment of atherosclerosis. We also provide a detailed review of the latest advances in nanoparticle-based drug co-delivery systems for the treatment of atherosclerosis, focusing on the design of carriers with high biocompatibility and efficacy. By exploring the possibilities and challenges inherent to this approach, we aim to highlight cutting-edge technologies that can foster the development of innovative strategies, optimize drug co-administration, improve treatment outcomes, and reduce the burden of atherosclerosis-related morbidity and mortality on the healthcare system.
Collapse
Affiliation(s)
- Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Li Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Guosheng Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Liqing Mo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuxi Zhu
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yi Hong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hanlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shi Du
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
2
|
Patra S, Jyotirmayee, Kumar K, Pareek D, Gupta PS, Mourya AR, Das T, Wasnik K, Verma M, Chawla R, Batra T, Paik P. Organ-targeted drug delivery systems (OTDDS) of poly[( N-acryloylglycine)- co-( N-acryloyl-L-phenylalanine methyl ester)] copolymer library and effective treatment of triple-negative breast cancer. J Mater Chem B 2025; 13:3876-3894. [PMID: 39996447 DOI: 10.1039/d4tb02445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Organ-targeted drug delivery systems (OTDDS) are essential for the effective treatment of complicated diseases. Triple-negative breast cancer (TNBC) is an aggressive cancer with high mortality and requires targeted therapeutics. This work was aimed at designing a library of polymeric OTDDS with N-acryloyl-glycine (NAG) and N-acryloyl-L-phenylalanine methyl ester (NAPA) [p(NAG-co-NAPA)(x:y)] and screening its in vivo organ-targeting specificity. Among this library, the best p(NAG-co-NAPA)(x:y) NPs with an x : y ratio of 1 : 4 and size of 160-210 nm targeted breasts to a high extent compared to other organs and thus were optimized for TNBC treatment. A network pharmacology study was performed, which revealed that 14 genes were responsible for TNBC, and a combination of DHA (targets 6 genes) and piperine (targets 8 genes) drugs was used to optimize the formulation, achieving the maximum therapeutic efficiency against TNBC with an IC50 value of 350 μg mL-1. The designed organ-specific polymeric nanoparticle (NP) library, identification of target genes and proteins responsible for TNBC, and the optimized formulation for effective combination therapy established an effective therapeutic option for TNBC. The findings of this work further demonstrate that this polymeric library of NPs shows exciting therapeutic potential for treating TNBC and presents innovative treatment options for critical diseases of the liver, heart, lungs and kidney.
Collapse
Affiliation(s)
- Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Jyotirmayee
- School of Biotechnology, Institute of Science, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Krishan Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Anjali Ramsabad Mourya
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Taniya Das
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Malkhey Verma
- School of Biotechnology, Institute of Science, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Ruchi Chawla
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Tarun Batra
- Department of Oncology, Institute of Medical Sciences (IMS), Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| |
Collapse
|
3
|
Khafaga DSR, Muteeb G, Aswa DW, Aatif M, Farhan M, Allam S. Green chemistry: Modern therapies using nanocarriers for treating rare brain cancer metastasis from colon cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100213. [PMID: 39826871 DOI: 10.1016/j.slasd.2025.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Brain metastasis (BM) from colon cancer is associated with a poor prognosis and restricted treatment alternatives, largely due to issues related to blood-brain barrier (BBB) permeability and the negative effects of standard chemotherapy. Nanotechnology improves treatment efficacy by enabling targeted and controlled drug delivery. This review article evaluates the potential of nanotechnology-based therapies for treating colon cancer BM, emphasizing their capacity to cross the BBB, diminish metastatic growth, and enhance overall survival rates. A review of multiple studies evaluated nanoparticles (NPs) as carriers for chemotherapy, focusing on parameters including particle size, surface charge, and drug-loading capacity. The study also reviewed studies that examined BBB penetration, in vitro tumor accumulation, and in vivo tumor growth inhibition. In vitro findings indicated that NPs accumulate more efficiently in BM tissue than in healthy brain tissue and show significant BBB penetration. In vivo, nanotherapy markedly inhibited tumor growth and prolonged survival relative to conventional chemotherapy or control treatments while also exhibiting reduced side effects. Recent studies demonstrated that plant extracts can effectively and safely synthesize nanomaterials, positioning them as a viable and environmentally friendly precursor for nanomaterial production. Nanotechnology-based therapies demonstrate significant potential in the treatment of colon cancer BM by minimizing systemic toxicity, enhancing therapeutic efficacy, and facilitating more targeted drug delivery. Further research is required to confirm these findings and implement them in clinical practice.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City 43511, Suez, Egypt.
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Darin W Aswa
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| |
Collapse
|
4
|
Alhowyan AA, Harisa GI. From Molecular Therapies to Lysosomal Transplantation and Targeted Drug Strategies: Present Applications, Limitations, and Future Prospects of Lysosomal Medications. Biomolecules 2025; 15:327. [PMID: 40149863 PMCID: PMC11940627 DOI: 10.3390/biom15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Lysosomes are essential intracellular organelles involved in plentiful cellular processes such as cell signaling, metabolism, growth, apoptosis, autophagy, protein processing, and maintaining cellular homeostasis. Their dysfunction is linked to various diseases, including lysosomal storage disorders, inflammation, cancer, cardiovascular diseases, neurodegenerative conditions, and aging. This review focuses on current and emerging therapies for lysosomal diseases (LDs), including small medicines, enzyme replacement therapy (ERT), gene therapy, transplantation, and lysosomal drug targeting (LDT). This study was conducted through databases like PubMed, Google Scholar, Science Direct, and other research engines. To treat LDs, medicines target the lysosomal membrane, acidification processes, cathepsins, calcium signaling, mTOR, and autophagy. Moreover, small-molecule therapies using chaperones, macro-therapies like ERT, gene therapy, and gene editing technologies are used as therapy for LDs. Additionally, endosymbiotic therapy, artificial lysosomes, and lysosomal transplantation are promising options for LD management. LDT enhances the therapeutic outcomes in LDs. Extracellular vesicles and mannose-6-phosphate-tagged nanocarriers display promising approaches for improving LDT. This study concluded that lysosomes play a crucial role in the pathophysiology of numerous diseases. Thus, restoring lysosomal function is essential for treating a wide range of conditions. Despite endosymbiotic therapy, artificial lysosomes, lysosomal transplantation, and LDT offering significant potential for LD control, there are ample challenges regarding safety and ethical implications.
Collapse
Affiliation(s)
- Adel A. Alhowyan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
5
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
6
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
7
|
Ye D, Liu H, Dai E, Fan J, Wu L. Recent advances in nanomedicine design strategies for targeting subcellular structures. iScience 2025; 28:111597. [PMID: 39811659 PMCID: PMC11732483 DOI: 10.1016/j.isci.2024.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The current state of cancer treatment has encountered limitations, with each method having its own drawbacks. The emergence of nanotechnology in recent years has highlighted its potential in overcoming these limitations. Nanomedicine offers various drug delivery mechanisms, including passive, active, and endogenous targeting, with the advantage of modifiability and shapability. This flexibility enables researchers to develop tailored treatments for different types of tumors and populations. As nanodrug technology evolves from first to third generation, the focus is now on achieving precise drug delivery by targeting subcellular structures within tumors. This review summarizes the progress made in subcellular structure-targeted nanodrugs over the past 5 years, highlighting design strategies for targeting mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus, and cytoskeleton. The review also addresses the current status, limitations, and future directions about the research of nanodrugs.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zhang J, Wang Z, Liao Y, Tong J, Gao R, Zeng Z, Bai Y, Wei Y, Guo X. Black phosphorus nanoplatform coated with platelet membrane improves inhibition of atherosclerosis progression through macrophage targeting and efferocytosis. Acta Biomater 2025; 192:377-393. [PMID: 39608658 DOI: 10.1016/j.actbio.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Plaque rupture in atherosclerosis (AS) is a major cause of acute cardiovascular events. Macrophage-induced inflammatory responses and accumulation of excess reactive oxygen species (ROS) primarily induce unstable plaques. Therefore, targeting ROS clearance and functional modulation of macrophages are clinically crucial for improving plaque stability and inhibiting AS progression. Here, we constructed a bionic nano-delivery platform, PBP@siR@PM, using platelet membranes (PM) coated with black phosphorus nanosheets (BPNSs) to target macrophages in atherosclerotic plaques. Meanwhile, PM-coated BPNSs (PBP@siR@PM) were used to deliver small interfering RNA silencing Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) into macrophages. Furthermore, macrophage efferocytosis was restored by inhibiting CaMKIIγ and increasing the expression of MerTK, a cytosolic receptor, thus promoting the clearance of apoptotic cells from plaques. This study demonstrated that intraplaque macrophage-targeted therapy using the bionic nano-delivery platform PBP@siR@PM effectively removed excess ROS from macrophages, promoted efferocytosis, cleared apoptotic cells in plaques, improved plaque stability, and largely inhibited AS progression in ApoE-/- mice after high fat diet. In summary, this study proposes a therapeutic strategy for AS and highlights the outstanding therapeutic potential of biomimetic nanomaterials in this type of chronic inflammatory disease. STATEMENT OF SIGNIFICANCE: Rupture of atherosclerotic unstable plaques is a major cause of acute cardiovascular events. Macrophage-induced chronic inflammation and oxidative stress due to overloaded ROS are major contributors to plaque rupture. In this study, we focused on the improvement of macrophage efferocytosis within the plaque for the effective treatment of atherosclerosis. A bionic nano-delivery platform was constructed using platelet membranes (PM) coated black phosphorus nanosheets (BPNSs) to target macrophages in atherosclerotic plaques. In conclusion, intraplaque macrophage-targeted therapy based on the bionic nano-delivery platform PBP@siR@PM effectively scavenges overloaded ROS in macrophages, promotes efferocytosis, removes apoptotic cells from plaques, and improves plaque stability, which significantly inhibits the progression of atherosclerosis in ApoE-/- mice after a high-fat diet.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuanglin Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Bai
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029 Beijing, China.
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
10
|
Wang Y, Shi J, Xin M, Kahkoska AR, Wang J, Gu Z. Cell-drug conjugates. Nat Biomed Eng 2024; 8:1347-1365. [PMID: 38951139 PMCID: PMC11646559 DOI: 10.1038/s41551-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
By combining living cells with therapeutics, cell-drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell-drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiaqi Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Minhang Xin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Wei P, Wang Y, Feng H, Zhang F, Ji Z, Zhang K, Zhang Q, Jiang L, Qian Y, Fu Y. Gene-Engineered Cerium-Exosomes Mediate Atherosclerosis Therapy Through Remodeling of the Inflammatory Microenvironment and DNA Damage Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404463. [PMID: 39235409 DOI: 10.1002/smll.202404463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Indexed: 09/06/2024]
Abstract
The pro-inflammatory immune microenvironment in the localized lesion areas and the absence of DNA damage repair mechanisms in endothelial cells serve as essential accelerating factors in the development of atherosclerosis. The lack of targeted therapeutic strategies represents a significant limitation in the efficacy of therapeutic agents for atherosclerosis. In this study, Genetically engineered SNHG12-loaded cerium-macrophage exosomes (Ce-Exo) are designed as atherosclerosis-targeting agents. In vivo studies demonstrated that Ce-Exo exhibited multivalent targeting properties for macrophages, with a 4.1-fold higher atherosclerotic plaque-aggregation ability than that of the control drugs. This suggests that Ce-Exo has a higher homing capacity and deeper penetration into the atherosclerotic plaque. In apolipoprotein E-deficient mice, Ce-Exo found to effectively remodel the immune microenvironment in the lesion area, repair endothelial cell damage, and inhibit the development of atherosclerosis. This study provides a novel approach to the treatment of atherosclerosis and demonstrates the potential of cell-derived drug carriers in biomedicine.
Collapse
Affiliation(s)
- Peng Wei
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yifan Wang
- Department of Emergency Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Haiyan Feng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Fan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Zhenyan Ji
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai Zhang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Qiang Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuxuan Qian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yimu Fu
- Department of Emergency Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
12
|
Rodríguez-Castejón J, Beraza-Millor M, Solinís MÁ, Rodríguez-Gascón A, Del Pozo-Rodríguez A. Targeting strategies with lipid vectors for nucleic acid supplementation therapy in Fabry disease: a systematic review. Drug Deliv Transl Res 2024; 14:2615-2628. [PMID: 38587758 PMCID: PMC11383842 DOI: 10.1007/s13346-024-01583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
Fabry disease (FD) results from a lack of activity of the lysosomal enzyme α-Galactosidase A (α-Gal A), leading to the accumulation of glycosphingolipids in several different cell types. Protein supplementation by pDNA or mRNA delivery presents a promising strategy to tackle the underlying genetic defect in FD. Protein-coding nucleic acids in FD can be either delivered to the most affected sites by the disease, including heart, kidney and brain, or to specialized organs that can act as a production factory of the enzyme, such as the liver. Lipid-based systems are currently at the top of the ranking of non-viral nucleic acid delivery systems, and their versatility allows the linking to the surface of a wide range of molecules to control their biodistribution after intravenous administration. This systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement guidelines and provides an overview and discussion of the targeting ligands that have been employed so far to actively vectorize intravenously administered non-viral vectors based on lipid carriers to clinically relevant organs in the treatment of FD, for protein-coding nucleic acid (pDNA and mRNA) supplementation. Among the thirty-two studies included, the majority focus on targeting the liver and brain. The targeting of the heart has been reported to a lesser degree, whereas no articles addressing kidney-targeting have been recorded. Although a great effort has been made to develop organ-specific nucleic acid delivery systems, the design of active-targeted carriers with high quality, good clinical translation, and large-scale manufacturing capacity is still challenging.
Collapse
Affiliation(s)
- Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, Vitoria-Gasteiz, 01006, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, Vitoria-Gasteiz, 01006, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, Vitoria-Gasteiz, 01006, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, Vitoria-Gasteiz, 01006, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, Vitoria-Gasteiz, 01006, Spain.
| |
Collapse
|
13
|
Wang M, Zhong H, Li Y, Li J, Zhang X, He F, Wei P, Wang HH, Nie Z. Advances in Bioinspired Artificial System Enabling Biomarker-Driven Therapy. Chemistry 2024; 30:e202401593. [PMID: 38923644 DOI: 10.1002/chem.202401593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Bioinspired molecular engineering strategies have emerged as powerful tools that significantly enhance the development of novel therapeutics, improving efficacy, specificity, and safety in disease treatment. Recent advancements have focused on identifying and utilizing disease-associated biomarkers to optimize drug activity and address challenges inherent in traditional therapeutics, such as frequent drug administrations, poor patient adherence, and increased risk of adverse effects. In this review, we provide a comprehensive overview of the latest developments in bioinspired artificial systems (BAS) that use molecular engineering to tailor therapeutic responses to drugs in the presence of disease-specific biomarkers. We examine the transition from open-loop systems, which rely on external cues, to closed-loop feedback systems capable of autonomous self-regulation in response to disease-associated biomarkers. We detail various BAS modalities designed to achieve biomarker-driven therapy, including activatable prodrug molecules, smart drug delivery platforms, autonomous artificial cells, and synthetic receptor-based cell therapies, elucidating their operational principles and practical in vivo applications. Finally, we discuss the current challenges and future perspectives in the advancement of BAS-enabled technology and envision that ongoing advancements toward more programmable and customizable BAS-based therapeutics will significantly enhance precision medicine.
Collapse
Affiliation(s)
- Meixia Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huan Zhong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yangbing Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xinxin Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fang He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
14
|
Liu J, Liu J, Mu W, Ma Q, Zhai X, Jin B, Liu Y, Zhang N. Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems. ACS NANO 2024; 18:20861-20885. [PMID: 39082637 DOI: 10.1021/acsnano.4c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Liver fibrosis (LF) is a pathological repair reaction caused by a chronic liver injury that affects the health of millions of people worldwide, progressing to life-threatening cirrhosis and liver cancer without timely intervention. Due to the complexity of LF pathology, multiple etiological characteristics, and the deposited extracellular matrix, traditional drugs cannot reach appropriate targets in a time-space matching way, thus decreasing the therapeutic effect. Nanoparticle drug delivery systems (NDDS) enable multidrug co-therapy and develop multifactor delivery strategies targeting pathological processes, showing great potential in LF therapy. Based on the pathogenesis and the current clinical treatment status of LF, we systematically elucidate the targeting mechanism of NDDS used in the treatment of LF. Subsequently, we focus on the progress of drug delivery applications for LF, including combined delivery for the liver fibrotic pathological environment, overcoming biological barriers, precise intracellular regulation, and intelligent responsive delivery for the liver fibrotic microenvironment. We hope that this review will inspire the rational design of NDDS for LF in the future in order to provide ideas and methods for promoting LF regression and cure.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
15
|
Harisa GI, Faris TM, Sherif AY, Alzhrani RF, Alanazi SA, Kohaf NA, Alanazi FK. Coding Therapeutic Nucleic Acids from Recombinant Proteins to Next-Generation Vaccines: Current Uses, Limitations, and Future Horizons. Mol Biotechnol 2024; 66:1853-1871. [PMID: 37578574 DOI: 10.1007/s12033-023-00821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
This study aims to highlight the potential use of cTNAs in therapeutic applications. The COVID-19 pandemic has led to significant use of coding therapeutic nucleic acids (cTNAs) in terms of DNA and mRNA in the development of vaccines. The use of cTNAs resulted in a paradigm shift in the therapeutic field. However, the injection of DNA or mRNA into the human body transforms cells into biological factories to produce the necessary proteins. Despite the success of cTNAs in the production of corona vaccines, they have several limitations such as instability, inability to cross biomembranes, immunogenicity, and the possibility of integration into the human genome. The chemical modification and utilization of smart drug delivery cargoes resolve cTNAs therapeutic problems. The success of cTNAs in corona vaccine production provides perspective for the eradication of influenza viruses, Zika virus, HIV, respiratory syncytial virus, Ebola virus, malaria, and future pandemics by quick vaccine design. Moreover, the progress cTNAs technology is promising for the development of therapy for genetic disease, cancer therapy, and currently incurable diseases.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia.
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| | - Riyad F Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alanazi
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Science Collage of Pharmacy, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Pei L, Li R, Wang X, Xu D, Gong F, Chen W, Zheng X, Liu W, Zhao S, Wang Q, Mao E, Chen E, Chen Y, Yang Z. MSCs-derived extracellular vesicles alleviate sepsis-associated liver dysfunction by inhibiting macrophage glycolysis-mediated inflammatory response. Int Immunopharmacol 2024; 128:111575. [PMID: 38280334 DOI: 10.1016/j.intimp.2024.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Sepsis-associated liver dysfunction (SALD) aggravates the disease progression and prognosis of patients. Macrophages in the liver play a crucial role in the occurrence and development of SALD. Human umbilical cord mesenchymal stem cells (MSCs), by secreting extracellular vesicles (EVs), show beneficial effects in various inflammatory diseases. However, whether MSC-derived EVs (MSC-EVs) could ameliorate the inflammatory response in liver macrophages and the underlying mechanisms remain unclear. In this study, a mouse model of sepsis induced by lipopolysaccharide (LPS) challenge was used to investigate the immunomodulatory functions of MSC-EVs in SALD. LPS-stimulated primary Kupffer cells (KCs) and Raw264.7 were used to further explore the potential mechanisms of MSC-EVs in regulating the inflammatory response of macrophages. The results showed that MSC-EVs alleviated liver tissue injury and facilitated the polarization of M1 to M2 macrophages. Further in vitro studies confirmed that MSC-EVs treatment significantly downregulated the expression of several enzymes related to glycolysis and reduced the glycolytic flux by inhibiting hypoxia-inducible factor 1α (HIF-1α) expression, thus effectively inhibiting the inflammatory responses of macrophages. These findings reveal that the application of MSC-EVs might be a potential therapeutic strategy for treating SALD.
Collapse
Affiliation(s)
- Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanzhi Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Sinsinbar G, Bindra AK, Liu S, Chia TW, Yoong Eng EC, Loo SY, Lam JH, Schultheis K, Nallani M. Amphiphilic Block Copolymer Nanostructures as a Tunable Delivery Platform: Perspective and Framework for the Future Drug Product Development. Biomacromolecules 2024; 25:541-563. [PMID: 38240244 DOI: 10.1021/acs.biomac.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Nanoformulation of active payloads or pharmaceutical ingredients (APIs) has always been an area of interest to achieve targeted, sustained, and efficacious delivery. Various delivery platforms have been explored, but loading and delivery of APIs have been challenging because of the chemical and structural properties of these molecules. Polymersomes made from amphiphilic block copolymers (ABCPs) have shown enormous promise as a tunable API delivery platform and confer multifold advantages over lipid-based systems. For example, a COVID booster vaccine comprising polymersomes encapsulating spike protein (ACM-001) has recently completed a Phase I clinical trial and provides a case for developing safe drug products based on ABCP delivery platforms. However, several limitations need to be resolved before they can reach their full potential. In this Perspective, we would like to highlight such aspects requiring further development for translating an ABCP-based delivery platform from a proof of concept to a viable commercial product.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Anivind Kaur Bindra
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Shaoqiong Liu
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Teck Wan Chia
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Eunice Chia Yoong Eng
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Ser Yue Loo
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Jian Hang Lam
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Katherine Schultheis
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Madhavan Nallani
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| |
Collapse
|
18
|
Harisa GI, Faris TM, Sherif AY, Alzhrani RF, Alanazi SA, Kohaf NA, Alanazi FK. Gene-editing technology, from macromolecule therapeutics to organ transplantation: Applications, limitations, and prospective uses. Int J Biol Macromol 2023; 253:127055. [PMID: 37758106 DOI: 10.1016/j.ijbiomac.2023.127055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Gene editing technologies (GETs) could induce gene knockdown or gene knockout for biomedical applications. The clinical success of gene silence by RNAi therapies pays attention to other GETs as therapeutic approaches. This review aims to highlight GETs, categories, mechanisms, challenges, current use, and prospective applications. The different academic search engines, electronic databases, and bibliographies of selected articles were used in the preparation of this review with a focus on the fundamental considerations. The present results revealed that, among GETs, CRISPR/Cas9 has higher editing efficiency and targeting specificity compared to other GETs to insert, delete, modify, or replace the gene at a specific location in the host genome. Therefore, CRISPR/Cas9 is talented in the production of molecular, tissue, cell, and organ therapies. Consequently, GETs could be used in the discovery of innovative therapeutics for genetic diseases, pandemics, cancer, hopeless diseases, and organ failure. Specifically, GETs have been used to produce gene-modified animals to spare human organ failure. Genetically modified pigs are used in clinical trials as a source of heart, liver, kidneys, and lungs for xenotransplantation (XT) in humans. Viral, non-viral, and hybrid vectors have been utilized for the delivery of GETs with some limitations. Therefore, extracellular vesicles (EVs) are proposed as intelligent and future cargoes for GETs delivery in clinical applications. This study concluded that GETs are promising for the production of molecular, cellular, and organ therapies. The use of GETs as XT is still in the early stage as well and they have ethical and biosafety issues.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Riyad F Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alanazi
- Pharmaceutical Care Services, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Science Collage of Pharmacy, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Li J, Zhou H, Liu C, Zhang S, Du R, Deng Y, Zou X. Biomembrane‐inspired design of medical micro/nanorobots: From cytomembrane stealth cloaks to cellularized Trojan horses. AGGREGATE 2023; 4. [DOI: 10.1002/agt2.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMicro/nanorobots are promising for a wide range of biomedical applications (such as targeted tumor, thrombus, and infection therapies in hard‐to‐reach body sites) because of their tiny size and high maneuverability through the actuation of external fields (e.g., magnetic field, light, ultrasound, electric field, and/or heat). However, fully synthetic micro/nanorobots as foreign objects are susceptible to phagocytosis and clearance by diverse phagocytes. To address this issue, researchers have attempted to develop various cytomembrane‐camouflaged micro/nanorobots by two means: (1) direct coating of micro/nanorobots with cytomembranes derived from living cells and (2) the swallowing of micro/nanorobots by living immunocytes via phagocytosis. The camouflaging with cytomembranes or living immunocytes not only protects micro/nanorobots from phagocytosis, but also endows them with new characteristics or functionalities, such as prolonging propulsion in biofluids, targeting diseased areas, or neutralizing bacterial toxins. In this review, we comprehensively summarize the recent advances and developments of cytomembrane‐camouflaged medical micro/nanorobots. We first discuss how cytomembrane coating nanotechnology has been employed to engineer synthetic nanomaterials, and then we review in detail how cytomembrane camouflage tactic can be exploited to functionalize micro/nanorobots. We aim to bridge the gap between cytomembrane‐cloaked micro/nanorobots and nanomaterials and to provide design guidance for developing cytomembrane‐camouflaged micro/nanorobots.
Collapse
Affiliation(s)
- Jinhua Li
- School of Medical Technology Beijing Institute of Technology Beijing China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Chun Liu
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shuailong Zhang
- School of Mechatronical Engineering Beijing Institute of Technology Beijing China
| | - Ran Du
- School of Materials Science & Engineering Key Laboratory of High Energy Density Materials of the Ministry of Education Beijing Institute of Technology Beijing China
| | - Yulin Deng
- School of Life Science Beijing Institute of Technology Beijing China
| | - Xuenong Zou
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
20
|
Bai W, Hu Y, Zhao J, Shi L, Ge C, Zhu Z, Rao J. Precision Dosing of Antibiotics and Potentiators by Hypoxia-Responsive Nanoparticles for Overcoming Antibiotic Resistance in Gram-Negative Bacteria. ACS Macro Lett 2023; 12:1193-1200. [PMID: 37590266 DOI: 10.1021/acsmacrolett.3c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The stalling development of antibiotics, especially against intrinsically resistant Gram-negative pathogens associated with outer membranes, leads to an emerging antibiotic crisis across the globe. To breathe life into existing drugs, we herein report a hypoxia-responsive nanoparticle (NP) that encapsulates a hydrophobic antibiotic, rifampicin, and a cationic potentiator, polysulfonium. The simultaneous release of antibiotics and potentiators can be promoted and inhibited in response to the severity of bacterial-induced hypoxia, leading to antimicrobial dosing in a precision manner. Under the synergism of polysulfoniums with membrane-disruption capability, the NPs can intensively decrease the antibiotic dose by up to 66-95% in eliminating planktonic Gram-negative P. aeruginosa bacteria and achieve an 8-log reduction of bacteria in mature biofilms at rifampicin MIC. The NP formulation demonstrates that precision dosing of antibiotics and potentiators regulated by hypoxia provides a promising strategy to maximize efficacy and minimize toxicity in treating Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Weiguang Bai
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Yongjin Hu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jinghua Zhao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Liuqi Shi
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Chunhua Ge
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Zhiyuan Zhu
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou, Zhejiang 318001, PR China
| | - Jingyi Rao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| |
Collapse
|
21
|
Corral-Nájera K, Chauhan G, Serna-Saldívar SO, Martínez-Chapa SO, Aeinehvand MM. Polymeric and biological membranes for organ-on-a-chip devices. MICROSYSTEMS & NANOENGINEERING 2023; 9:107. [PMID: 37649779 PMCID: PMC10462672 DOI: 10.1038/s41378-023-00579-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/01/2023]
Abstract
Membranes are fundamental elements within organ-on-a-chip (OOC) platforms, as they provide adherent cells with support, allow nutrients (and other relevant molecules) to permeate/exchange through membrane pores, and enable the delivery of mechanical or chemical stimuli. Through OOC platforms, physiological processes can be studied in vitro, whereas OOC membranes broaden knowledge of how mechanical and chemical cues affect cells and organs. OOCs with membranes are in vitro microfluidic models that are used to replace animal testing for various applications, such as drug discovery and disease modeling. In this review, the relevance of OOCs with membranes is discussed as well as their scaffold and actuation roles, properties (physical and material), and fabrication methods in different organ models. The purpose was to aid readers with membrane selection for the development of OOCs with specific applications in the fields of mechanistic, pathological, and drug testing studies. Mechanical stimulation from liquid flow and cyclic strain, as well as their effects on the cell's increased physiological relevance (IPR), are described in the first section. The review also contains methods to fabricate synthetic and ECM (extracellular matrix) protein membranes, their characteristics (e.g., thickness and porosity, which can be adjusted depending on the application, as shown in the graphical abstract), and the biological materials used for their coatings. The discussion section joins and describes the roles of membranes for different research purposes and their advantages and challenges.
Collapse
Affiliation(s)
- Kendra Corral-Nájera
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Gaurav Chauhan
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Serna-Saldívar
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Martínez-Chapa
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Mohammad Mahdi Aeinehvand
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| |
Collapse
|
22
|
Liu Y, He M, Yuan Y, Nie C, Wei K, Zhang T, Chen T, Chu X. Neutrophil-Membrane-Coated Biomineralized Metal-Organic Framework Nanoparticles for Atherosclerosis Treatment by Targeting Gene Silencing. ACS NANO 2023; 17:7721-7732. [PMID: 37023215 DOI: 10.1021/acsnano.3c00288] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Antisense oligonucleotides (ASOs) are promising tools for gene silencing and have been exploited as therapeutics for human disease. However, delivery of therapeutic ASOs to diseased tissues or cells and subsequent escape from the endosomes and release of ASO in the cytosol remain a challenge. Here, we reported a neutrophil-membrane-coated zeolitic imidazolate framework-8 (ZIF-8) nanodelivery platform (AM@ZIF@NM) for the targeted transportation of ASOs against microRNA-155 (anti-miRNA-155) to the endothelial cells in atherosclerotic lesions. Neutrophil membrane could improve plaque endothelial cells targeting through the interaction between neutrophil membrane protein CD18 and endothelial cell membrane protein intercellular adhesion molecule-1 (ICAM-1). The ZIF-8 "core" provided high loading capacity and efficient endolysosomal escaping ability. Delivery of anti-miR-155 effectively downregulated miR-155 expression and also saved the expression of its target gene BCL6. Moreover, RELA expression and the expression of its downstream target genes CCL2 and ICAM-1 were correspondingly reduced. Consequently, this anti-miR-155 nanotherapy can inhibit the inflammation of atherosclerotic lesions and alleviate atherosclerosis. Our study shows that the designed biomimetic nanodelivery system has great application prospects in the treatment of other chronic diseases.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yi Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Kaiji Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Tong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
23
|
Jan N, Madni A, Khan S, Shah H, Akram F, Khan A, Ertas D, Bostanudin MF, Contag CH, Ashammakhi N, Ertas YN. Biomimetic cell membrane-coated poly(lactic- co-glycolic acid) nanoparticles for biomedical applications. Bioeng Transl Med 2023; 8:e10441. [PMID: 36925703 PMCID: PMC10013795 DOI: 10.1002/btm2.10441] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are commonly used for drug delivery because of their favored biocompatibility and suitability for sustained and controlled drug release. To prolong NP circulation time, enable target-specific drug delivery and overcome physiological barriers, NPs camouflaged in cell membranes have been developed and evaluated to improve drug delivery. Here, we discuss recent advances in cell membrane-coated PLGA NPs, their preparation methods, and their application to cancer therapy, management of inflammation, treatment of cardiovascular disease and control of infection. We address the current challenges and highlight future research directions needed for effective use of cell membrane-camouflaged NPs.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of PharmacyMirpur University of Science and Technology (MUST)MirpurPakistan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Faizan Akram
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Derya Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
| | - Mohammad F. Bostanudin
- College of PharmacyAl Ain UniversityAbu DhabiUnited Arab Emirates
- AAU Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUnited Arab Emirates
| | - Christopher H. Contag
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM–Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM–National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
24
|
Muruganantham S, Krishnaswami V, Kandasamy R, Alagarsamy S. Potentiating the solubility of BCS class II drug zaltoprofen using nanodispersion technology. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2173224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Selvakumar Muruganantham
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | | | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
25
|
Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. NATURE REVIEWS. MATERIALS 2023; 8:282-300. [PMID: 36691401 PMCID: PMC9850348 DOI: 10.1038/s41578-022-00529-7] [Citation(s) in RCA: 222] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 05/03/2023]
Abstract
Genetic drugs based on nucleic acid biomolecules are a rapidly emerging class of medicines that directly reprogramme the central dogma of biology to prevent and treat disease. However, multiple biological barriers normally impede the intracellular delivery of nucleic acids, necessitating the use of a delivery system. Lipid and polymer nanoparticles represent leading approaches for the clinical translation of genetic drugs. These systems circumnavigate biological barriers and facilitate the intracellular delivery of nucleic acids in the correct cells of the target organ using passive, active and endogenous targeting mechanisms. In this Review, we highlight the constituent materials of these advanced nanoparticles, their nucleic acid cargoes and how they journey through the body. We discuss targeting principles for liver delivery, as it is the organ most successfully targeted by intravenously administered nanoparticles to date, followed by the expansion of these concepts to extrahepatic (non-liver) delivery. Ultimately, this Review connects emerging materials and biological insights playing key roles in targeting specific organs and cells in vivo.
Collapse
Affiliation(s)
- Sean A. Dilliard
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Daniel J. Siegwart
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX USA
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
26
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
27
|
Fei Y, Ma Y, Zhang H, Li H, Feng G, Fang J. Nanotechnology for research and treatment of the intestine. J Nanobiotechnology 2022; 20:430. [PMID: 36175955 PMCID: PMC9523975 DOI: 10.1186/s12951-022-01517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
The establishment of intestinal in vitro models is crucial for elucidating intestinal cell-microbe intrinsic connections and interaction mechanisms to advance normalized intestinal diagnosis and precision therapy. This review discusses the application of nanomaterials in mucosal therapy and mechanism research in combination with the study of nanoscaffold in vitro models of the gut. By reviewing the original properties of nanomaterials synthesized by different physicochemical principles and modifying the original properties, the contribution of nanomaterials to solving the problems of short survival period, low cell differentiation rate, and poor reduction ability in traditional intestinal models is explored. According to nanomaterials’ different diagnostic mediators and therapeutic targets, the current diagnostic principles in inflammatory bowel disease, intestinal cancer, and other diseases are summarized inductively. In addition, the mechanism of action of nanomedicines in repairing mucosa, inhibiting inflammation, and alleviating the disease process is also discussed. Through such systematic elaboration, it offers a basis for nanomaterials to help advance in vitro research on the intestine and provide precision treatments in the clinic.
Collapse
Affiliation(s)
- Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China
| | - Huaizu Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China.
| |
Collapse
|
28
|
Munir MU. Nanomedicine Penetration to Tumor: Challenges, and Advanced Strategies to Tackle This Issue. Cancers (Basel) 2022; 14:cancers14122904. [PMID: 35740570 PMCID: PMC9221319 DOI: 10.3390/cancers14122904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Nanomedicine has been under investigation for several years to improve the efficiency of chemotherapeutics, having minimal pharmacological effects clinically. Ineffective tumor penetration is mediated by tumor environments, including limited vascular system, rising cancer cells, higher interstitial pressure, and extra-cellular matrix, among other things. Thus far, numerous methods to increase nanomedicine access to tumors have been described, including the manipulation of tumor micro-environments and the improvement of nanomedicine characteristics; however, such outdated approaches still have shortcomings. Multi-functional convertible nanocarriers have recently been developed as an innovative nanomedicine generation with excellent tumor infiltration abilities, such as tumor-penetrating peptide-mediated transcellular transport. The developments and limitations of nanomedicines, as well as expectations for better outcomes of tumor penetration, are discussed in this review.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
29
|
Wang Q, Wang C, Li S, Xiong Y, Wang H, Li Z, Wan J, Yang X, Li Z. Influence of Linkers within Stimuli-Responsive Prodrugs on Cancer Therapy: A Case of Five Doxorubicin Dimer-Based Nanoparticles. CHEMISTRY OF MATERIALS 2022; 34:2085-2097. [DOI: 10.1021/acs.chemmater.1c03346] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan 430040, P. R. China
| |
Collapse
|
30
|
Wettability and Stability of Naproxen, Ibuprofen and/or Cyclosporine A/Silica Delivery Systems. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The characteristics of the wetting process of the porous surface of silica gel when penetrated by base liquids (water and n-octane), ethanol and stable drug systems (naproxen, ibuprofen and cyclosporine A), as biologically active substances in two ethanol concentrations, were determined by the wetting rate vs. time. The tests were performed for contacted and non-contacted plates with the vapours of the wetting liquid. Thin-layer liquid chromatography was used to determine the penetration rate of the SiO2-coated plates, taking into account the linear dependence consistent with the Washburn equation. Additionally, the changes in the adhesive tension ΔG were determined for the tested drugs. Drug stability tests were conducted using the dynamic light scattering technique and microelectrophoresis. The penetration time of the plate depends on the properties and structure of the wetting liquid droplets. The types of interactions (dispersive, electrostatic and hydrogen bonding) formed between the silanol surface groups of the silica gel and the groups contained in the adsorbate particles are also very important factors. The greater the impact force, the slower the wetting process due to the strong penetration of the liquid into the pores of the substrate. The characteristics of the drug wetting/stability process may contribute to the development of their new forms, creating delivery systems with greater efficiency and lower side effects.
Collapse
|
31
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
32
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021; 341:227-246. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Nanocarriers have been widely employed in preclinical studies and clinical trials for the delivery of anticancer drugs. The most important causes of failure in clinical translation of nanocarriers is their inefficient accumulation and penetration which arises from special characteristics of tumor microenvironment such as insufficient blood supply, dense extracellular matrix, and elevated interstitial fluid pressure. Various strategies such as engineering extracellular matrix, optimizing the physicochemical properties of nanocarriers have been proposed to increase the depth of tumor penetration; however, these strategies have not been very successful so far. Novel strategies such as transformable nanocarriers, transcellular transport of peptide-modified nanocarriers, and bio-inspired carriers have recently been emerged as an advanced generation of drug carriers. In this study, the latest developments of nanocarrier-based drug delivery to solid tumor are presented with their possible limitations. Then, the prospects of advanced drug delivery systems are discussed in detail.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
33
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
Wu S, Li T, Liu W, Huang Y. Ferroptosis and Cancer: Complex Relationship and Potential Application of Exosomes. Front Cell Dev Biol 2021; 9:733751. [PMID: 34568341 PMCID: PMC8455874 DOI: 10.3389/fcell.2021.733751] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell death induction has become popular as a novel cancer treatment. Ferroptosis, a newly discovered form of cell death, features regulated, iron-dependent accumulation of lipid hydroperoxides. Since this word “ferroptosis” was coined, numerous studies have examined the complex relationship between ferroptosis and cancer. Here, starting from the intrinsic hallmarks of cancer and cell death, we discuss the theoretical basis of cell death induction as a cancer treatment. We review various aspects of the relationship between ferroptosis and cancer, including the genetic basis, epigenetic modification, cancer stem cells, and the tumor microenvironment, to provide information and support for further research on ferroptosis. We also note that exosomes can be applied in ferroptosis-based therapy. These extracellular vesicles can deliver different molecules to modulate cancer cells and cell death pathways. Using exosomes to control ferroptosis occurring in targeted cells is promising for cancer therapy.
Collapse
Affiliation(s)
- Shuang Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
35
|
Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, Maishu SP, Akter R, Rahman MH, Karthika C, Murad W, Qusty N, Qusti S, Alshammari EM, Batiha GES, Altalbawy FMA, Albooq MIM, Alamri BM. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules 2021; 26:4998. [PMID: 34443593 PMCID: PMC8402133 DOI: 10.3390/molecules26164998] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Protity Shuvra Dey
- Department of Food Science & Nutrition Management, J.D. Birla Institute, Kolkata 700020, India;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Tanima Bhattacharya
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | | | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Naeem Qusty
- Biochemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah 80200, Saudi Arabia;
| | - Safaa Qusti
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Eida M. Alshammari
- Department of Medical Laboratories, Faculty of Applied Medical Sciences, Umma Al-Qura University, Mecca P.O. Box 715, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Farag M. A. Altalbawy
- National institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt;
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Mona I. M. Albooq
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Badrieah M. Alamri
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
36
|
Zhang W, Sheng T, Gu Z, Zhang Y. Strategies for Browning Agent Delivery. Pharm Res 2021; 38:1327-1334. [PMID: 34398404 DOI: 10.1007/s11095-021-03081-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022]
Abstract
Obesity expands as a global climbing epidemic that is often correlated to cardiovascular diseases and endocrine disorders. Converting white adipocytes to brown adipocytes for enhanced energy expenditure has recently emerged as a promising anti-obesity treatment. However, the conventional approaches to apply browning agents systematically suffer from off-target effects, multiple dosage requirements, and poor patient compliance. To date, various delivery strategies have been reported to deliver browning agents for obesity treatment in a safer and more controllable manner. This review will discuss the latest designs in browning agent delivery systems with a focus on nanomedicines and transdermal patches.
Collapse
Affiliation(s)
- Wentao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China. .,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yuqi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
The role of microneedle arrays in drug delivery and patient monitoring to prevent diabetes induced fibrosis. Adv Drug Deliv Rev 2021; 175:113825. [PMID: 34111467 DOI: 10.1016/j.addr.2021.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Diabetes affects approximately 450 million adults globally. If not effectively managed, chronic hyperglycaemia causes tissue damage that can develop into fibrosis. Fibrosis leads to end-organ complications, failure of organ systems occurs, which can ultimately cause death. One strategy to tackle end-organ complications is to maintain normoglycaemia. Conventionally, insulin is administered subcutaneously. Whilst effective, this delivery route shows several limitations, including pain. The transdermal route is a favourable alternative. Microneedle (MN) arrays are minimally invasive and painless devices that can enhance transdermal drug delivery. Convincing evidence is provided on MN-mediated insulin delivery. MN arrays can also be used as a diagnostic tool and monitor glucose levels. Furthermore, sophisticated MN array-based systems that integrate glucose monitoring and drug delivery into a single device have been designed. Therefore, MN technology has potential to revolutionise diabetes management. This review describes the current applications of MN technology for diabetes management and how these could prevent diabetes induced fibrosis.
Collapse
|
38
|
Cortez‐Jugo C, Czuba‐Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021; 10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Bio-nanoscience research encompasses studies on the interactions of nanomaterials with biological structures or what is commonly referred to as the biointerface. Fundamental studies on the influence of nanomaterial properties, including size, shape, composition, and charge, on the interaction with the biointerface have been central in bio-nanoscience to assess nanomaterial efficacy and safety for a range of biomedical applications. However, the state of the cells, tissues, or biological models can also influence the behavior of nanomaterials at the biointerface and their intracellular processing. Focusing on the "bio" in bio-nano, this review discusses the impact of biological properties at the cellular, tissue, and whole organism level that influences nanomaterial behavior, including cell type, cell cycle, tumor physiology, and disease states. Understanding how the biological factors can be addressed or exploited to enhance nanomaterial accumulation and uptake can guide the design of better and suitable models to improve the outcomes of materials in nanomedicine.
Collapse
Affiliation(s)
- Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ewa Czuba‐Wojnilowicz
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Abigail Tan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
39
|
Dong F, Hong F. Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/ β-Catenin Signal Transduction Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For the exosomes secreted by umbilical cord-originated mesenchymal stem cells (so-called hucMSC-exo), they can be applied to treat a variety of clinical diseases as a therapeutic strategy. The Wnt/β-catenin signal pathway has received widespread attention for its capability
to modulate multiple kinds of diseases including diabetic nephropathy. Our study aimed to assess the therapeutic efficiency of exosomes secreted by hucMSC-exo on the rat model with diabetic nephropathy (DN). Rats were given an intraperitoneal injection of streptozotocin (60 mg/kg) to induce
diabetes, while rats in blank group received same amount of buffer. The DN rats were randomized into DN group and treatment group (treated with hucMSC-exo) followed by analysis of total urine protein, creatinine and urea nitrogen in serum, the histopathological changes in rat kidneys and Wnt-4
and β-catenin expression by western blot. In comparison with the rats in DN group, those in hucMSC-exo treatment group exhibited significantly reduced indexes related to urinary and renal function biochemical tests (P < 0.05). HE staining of kidney tissues showed that
abnormal degree of renal damage was significantly alleviated after treatment. In addition, exosomes can ameliorate the symptoms of renal damage in DN rats through modulating the Wnt-4/β-catenin signal pathway. It provides an experimental basis for hucMSC-exo as a new treatment
method for DN. hucMSC-exo can ameliorate the renal function and the tissue damage in DN rats through impeding Wnt-4/β-catenin signal pathway thereby providing a basis for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Nephrology, Fujian Provincial Hospital, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Fuyuan Hong
- Department of Nephrology, Fujian Provincial Hospital, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
| |
Collapse
|
40
|
Li D, Dong C, Ma X, Zhao X. Integrin α vβ 6-targeted MR molecular imaging of breast cancer in a xenograft mouse model. Cancer Imaging 2021; 21:44. [PMID: 34187570 PMCID: PMC8244136 DOI: 10.1186/s40644-021-00411-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/08/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The motif RXDLXXL-based nanoprobes allow specific imaging of integrin αvβ6, a protein overexpressed during tumorigenesis and tumor progression of various tumors. We applied a novel RXDLXXL-coupled cyclic arginine-glycine-aspartate (RGD) nonapeptide conjugated with ultrasmall superparamagnetic iron oxide nanoparticles (referred to as cFK-9-USPIO) for the application of integrin αvβ6-targeted magnetic resonance (MR) molecular imaging for breast cancer. METHODS A novel MR-targeted nanoprobe, cFK-9-USPIO, was synthesized by conjugating integrin αvβ6-targeted peptide cFK-9 to N-amino (-NH2)-modified USPIO nanoparticles via a dehydration esterification reaction. Integrin αvβ6-positive mouse breast cancer (4 T1) and integrin αvβ6 negative human embryonic kidney 293 (HEK293) cell lines were incubated with cFK-9-AbFlour 647 (blocking group) or cFK-9-USPIO (experimental group), and subsequently imaged using laser scanning confocal microscopy (LSCM) and 3.0 Tesla magnetic resonance imaging (MRI) system. The affinity of cFK-9 targeting αvβ6 was analyzed by calculating the mean fluorescent intensity in cells, and the nanoparticle targeting effect was measured by the reduction of T2 values in an in vitro MRI. The in vivo MRI capability of cFK-9-USPIO was investigated in 4 T1 xenograft mouse models. Binding of the targeted nanoparticles to αvβ6-positive 4 T1 tumors was determined by ex vivo histopathology. RESULTS In vitro laser scanning confocal microscopy (LSCM) imaging showed that the difference in fluorescence intensity between the targeting and blocking groups of 4 T1 cells was significantly greater than that in HEK293 cells (P < 0.05). The in vitro MRI demonstrated a more remarkable T2 reduction in 4 T1 cells than in HEK293 cells (P < 0.001). The in vivo MRI of 4 T1 xenograft tumor-bearing nude mice showed significant T2 reduction in tumors compared to controls. Prussian blue staining further confirmed that αvβ6 integrin-targeted nanoparticles were specifically accumulated in 4 T1 tumors and notably fewer nanoparticles were detected in 4 T1 tumors of mice injected with control USPIO and HEK293 tumors of mice administered cFK-9-USPIO. CONCLUSIONS Integrin αvβ6-targeted nanoparticles have great potential for use in the detection of αvβ6-overexpressed breast cancer with MR molecular imaging.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | | | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| |
Collapse
|
41
|
Qu M, Wang C, Zhou X, Libanori A, Jiang X, Xu W, Zhu S, Chen Q, Sun W, Khademhosseini A. Multi-Dimensional Printing for Bone Tissue Engineering. Adv Healthc Mater 2021; 10:e2001986. [PMID: 33876580 PMCID: PMC8192454 DOI: 10.1002/adhm.202001986] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Indexed: 02/05/2023]
Abstract
The development of 3D printing has significantly advanced the field of bone tissue engineering by enabling the fabrication of scaffolds that faithfully recapitulate desired mechanical properties and architectures. In addition, computer-based manufacturing relying on patient-derived medical images permits the fabrication of customized modules in a patient-specific manner. In addition to conventional 3D fabrication, progress in materials engineering has led to the development of 4D printing, allowing time-sensitive interventions such as programed therapeutics delivery and modulable mechanical features. Therapeutic interventions established via multi-dimensional engineering are expected to enhance the development of personalized treatment in various fields, including bone tissue regeneration. Here, recent studies utilizing 3D printed systems for bone tissue regeneration are summarized and advances in 4D printed systems are highlighted. Challenges and perspectives for the future development of multi-dimensional printed systems toward personalized bone regeneration are also discussed.
Collapse
Affiliation(s)
- Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Canran Wang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weizhe Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
42
|
Bimová P, Barbieriková Z, Grenčíková A, Šípoš R, Škulcová AB, Krivjanská A, Mackuľak T. Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22203-22220. [PMID: 33733403 DOI: 10.1007/s11356-021-13270-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnologies and different types of nanomaterials belong in present day to intensively studied materials due to their unique properties and diverse potential applications in, e.g., electronics, medicine, or display technologies. Together with the investigation of their desired beneficial properties, a need to investigate and evaluate their influence on the environment and possible harmful effects towards living organisms is growing. This review summarizes possible toxic effects of nanomaterials on environment and living organisms, focusing on the possible bioaccumulation in organisms, toxicity, and its mechanisms. The main goal of this review is to refer to potential environmental risks rising from the use of nanomaterials and the necessity to deal with the possible toxic effects considering the growing interest in the wide-scale utilization of these materials. Electron paramagnetic resonance spectroscopy as the only analytical technique capable of detecting radical species enables detection, quantification, and monitoring of the generation of short-lived radicals often coupled with toxic effects of nanomaterials, which makes it an important method in the process of nanotoxicity mechanism determination.
Collapse
Affiliation(s)
- Paula Bimová
- Department of Inorganic Technology, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Zuzana Barbieriková
- Department of Physical Chemistry, Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Grenčíková
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Rastislav Šípoš
- Department of Inorganic Chemistry, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Andrea Butor Škulcová
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Krivjanská
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
43
|
Khojastehfar A, Mahjoub S. Application of Nanocellulose Derivatives as Drug Carriers; A Novel Approach in Drug Delivery. Anticancer Agents Med Chem 2021; 21:692-702. [PMID: 32781969 DOI: 10.2174/1871520620666200811111547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/23/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The production of nanocellulose for drug delivery systems has achieved increased attention in the past decade. High capacity for swelling and absorption of the liquid phase, high flexibility in creating different derivatives, economical cost, and ease of access to the primary source, all of these properties have encouraged researchers to use nanocellulose and its derivatives as a high-performance drug carrier. OBJECTIVE The recent progress summary of cellulose-based nanocarriers designing and practical approaches in drug delivery. METHODS We conducted a literature review on the development of the nanocellulose and its derivatives as a high-performance drug carrier. RESULTS In this review, we have attempted to present the latest advances in cellulose modifications for the design of pharmaceutical nanocarriers. At first, cellulose properties and structural classification of nanocellulose were introduced. Then, focusing on medical applications, some efforts and laboratory trials in cellulose-based nano designing were also discussed. The findings demonstrate the benefits of nanocellulose in drug delivery and its potential for modifying by adding functional groups to enhance drug delivery efficiency. Due to the physical and chemical properties of cellulose and its high flexibility to interact with other compounds, a broad perspective can be imagined in the diverse research and novel forms of nanocarriers. CONCLUSION The cellulose nanocarriers can be considered as an attractive platform for researchers to design new structures of pharmaceutical carriers and increase the efficiency of these nanocarriers in drug delivery for the treatment of diseases such as cancer.
Collapse
Affiliation(s)
- Ali Khojastehfar
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Soleiman Mahjoub
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
44
|
Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021; 170:396-424. [PMID: 32987096 DOI: 10.1016/j.addr.2020.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Electroactive materials are employed at the interface of biology and electronics due to their advantageous intrinsic properties as soft organic electronics. We examine the most recent literature of electroactive material-based biosensors and their emerging role as theranostic devices for the delivery of therapeutic agents. We consider electroactive materials through the lens of smart drug delivery systems as materials that enable the release of therapeutic cargo in response to specific physiological and external stimuli and discuss the way these mechanisms are integrated into medical devices with examples of the latest advances. Studies that harness features unique to conductive polymers are emphasized; lastly, we highlight new perspectives and future research direction for this emerging technology and the challenges that remain to overcome.
Collapse
|
45
|
Kumari R, Sunil D. A mechanistic insight into benefits of aggregation induced emissive luminogens in cancer. J Drug Target 2021; 29:592-608. [PMID: 33399029 DOI: 10.1080/1061186x.2020.1868479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Exploration of advanced chemotheranostics that benefit from a combined in vivo strategy of cancer diagnosis and chemotherapy simultaneously is highly valued and will expose novel possibilities in modifying treatment and reduce side effects. In recent years, nanodrug delivery systems that incorporate aggregation-induced emissive luminogens (AIEgens) have been developed to track and monitor anticancer drug release, trace translocation processes and predict chemotherapeutic responses. There are several classes of AIEgen based chemotheranostics such us stimuli-responsive nanoprodrugs, pH-sensitive mesoporous silica nanocarriers, supramolecular polymer systems, drug encapsulated carriers, carrier-free nanodrugs, self-indicating drug delivery nanomachines and AIEgen-prodrug co-assembly. The present review conveys mechanistic insight into the benefits of AIEgens in the theranostic application by illustrating the recent breakthroughs in chemotheranostic nanomedicines that incorporate these unique fluorophores as signal reporters. The perspectives that can be further explored are also highlighted with the hope to instil more research interest in the advancement of AIE active cancer chemotheranostics for imaging and treatment in vivo.HIGHLIGHTSAggregation induced emissive materials (AIEgens) exhibit unique advantages over conventional luminogens for synergistic diagnosis and chemotherapy of cancer in vivo.The combination of AIE and nanotechnology offers an excellent platform to fabricate advanced chemotheranostics for cancer therapy.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
46
|
Ou LC, Zhong S, Ou JS, Tian JW. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis. Acta Pharmacol Sin 2021; 42:10-17. [PMID: 32457416 DOI: 10.1038/s41401-020-0436-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
Atherosclerosis (AS) is the main pathological cause of coronary heart disease (CHD). Current clinical interventions including statin drugs can effectively reduce acute myocardial infarction and stroke to some extent, but residual risk remains high. The current clinical treatment regimens are relatively effective for early atherosclerotic plaques and can even reverse their progression. However, the effectiveness of these treatments for advanced AS is not ideal, and advanced atherosclerotic plaques-the pathological basis of residual risk-can still cause a recurrence of acute cardiovascular and cerebrovascular events. Recently, nanomedicine-based treatment strategies have been extensively used in antitumor therapy, and also shown great potential in anti-AS therapy. There are many microstructures in late-stage atherosclerotic plaques, such as neovascularization, micro-calcification, and cholesterol crystals, and these have become important foci for targeted nanomedicine delivery. The use of targeted nanoparticles has become an important strategy for the treatment of advanced AS to further reduce the residual risk of cardiovascular events. Furthermore, the feasibility and safety of nanotechnology in clinical treatment have been preliminarily confirmed. In this review, we summarize the application of nanomedicine delivery in the treatment of advanced AS and the clinical value of several promising nanodrugs.
Collapse
|
47
|
Tu Y, Dong Y, Wang K, Shen S, Yuan Y, Wang J. Intercellular delivery of bioorthogonal chemical receptors for enhanced tumor targeting and penetration. Biomaterials 2020; 259:120298. [DOI: 10.1016/j.biomaterials.2020.120298] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/25/2022]
|
48
|
Zhou X, Jiang X, Qu M, Aninwene G, Jucaud V, Moon JJ, Gu Z, Sun W, Khademhosseini A. Engineering Antiviral Vaccines. ACS NANO 2020; 14:12370-12389. [PMID: 33001626 PMCID: PMC7534801 DOI: 10.1021/acsnano.0c06109] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/18/2020] [Indexed: 05/11/2023]
Abstract
Despite the vital role of vaccines in fighting viral pathogens, effective vaccines are still unavailable for many infectious diseases. The importance of vaccines cannot be overstated during the outbreak of a pandemic, such as the coronavirus disease 2019 (COVID-19) pandemic. The understanding of genomics, structural biology, and innate/adaptive immunity have expanded the toolkits available for current vaccine development. However, sudden outbreaks and the requirement of population-level immunization still pose great challenges in today's vaccine designs. Well-established vaccine development protocols from previous experiences are in place to guide the pipelines of vaccine development for emerging viral diseases. Nevertheless, vaccine development may follow different paradigms during a pandemic. For example, multiple vaccine candidates must be pushed into clinical trials simultaneously, and manufacturing capability must be scaled up in early stages. Factors from essential features of safety, efficacy, manufacturing, and distributions to administration approaches are taken into consideration based on advances in materials science and engineering technologies. In this review, we present recent advances in vaccine development by focusing on vaccine discovery, formulation, and delivery devices enabled by alternative administration approaches. We hope to shed light on developing better solutions for faster and better vaccine development strategies through the use of biomaterials, biomolecular engineering, nanotechnology, and microfabrication techniques.
Collapse
Affiliation(s)
- Xingwu Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Moyuan Qu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine. Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology. Hangzhou, 310006, China
| | - George Aninwene
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, 90095 USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
49
|
Xu B, Zhou W, Cheng L, Zhou Y, Fang A, Jin C, Zeng J, Song X, Guo X. Novel Polymeric Hybrid Nanocarrier for Curcumin and Survivin shRNA Co-delivery Augments Tumor Penetration and Promotes Synergistic Tumor Suppression. Front Chem 2020; 8:762. [PMID: 33134256 PMCID: PMC7550741 DOI: 10.3389/fchem.2020.00762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023] Open
Abstract
A major barrier for co-delivery of gene medicine with small molecular chemotherapeutic drugs in solid tumors is the inadequate tumor penetration and transfection. In this study, a novel polymeric nanocarrier with integrated properties of tumor penetration, nuclear targeting, and pH-responsive features was designed, and further used to achieve the synergistic anti-tumor effect of curcumin (CUR) and survivin shRNA (pSUR). The polymeric hybrid nanocarrier was constructed from the FDA-approved polymer PLGA and a novel conjugated triblock polymer W5R4K-PEG2K-PHIS (WPH). CUR and pSUR were simultaneously encapsulated in the dual-drug-loaded nanoparticles (CUR/pSUR-NPs) by a modified double-emulsion solvent evaporation (W/O/W) method. The obtained nanoparticles exhibited better pharmaceutical properties with a uniform spherical morphology and sustained release manners of CUR and pSUR. Excellent features including preferable cellular uptake, efficient endosomal escape, enhanced tumor penetration, and elevated transfection efficiency were further proven. Additionally, a markedly enhanced anti-tumor efficacy for CUR/shRNA-NPs was achieved on SKOV-3 and Hela cells. The synergistic anti-tumor effect involved the inhibition of tumor cell proliferation, induction of cell apoptosis, and the activation of caspase-3 pathways. This work sets up an innovative co-delivery nanosystem to suppress tumor growth, contributing to the development of a comprehensive nanoparticulate strategy for future clinical applications.
Collapse
Affiliation(s)
- Bei Xu
- Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defect and Related Disorders of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Otolaryngology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Wen Zhou
- Department of Otolaryngology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Cheng
- Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defect and Related Disorders of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chaohui Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Guo
- Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defect and Related Disorders of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Engineering extracellular matrix to improve drug delivery for cancer therapy. Drug Discov Today 2020; 25:1727-1734. [DOI: 10.1016/j.drudis.2020.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
|