1
|
Wang KJ, Ye SZ, Jia XL, Wang KY, Meng XY, Fei X, Ye SJ, Ma Q. RON receptor tyrosine kinase as a critical determinant in promoting tumorigenic behaviors of bladder cancer cells through regulating MMP12 and HIF-2α pathways. Cell Death Dis 2024; 15:844. [PMID: 39557851 PMCID: PMC11574271 DOI: 10.1038/s41419-024-07245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The RON receptor tyrosine kinase is critical in the pathogenesis of various cancer types, however, its role in bladder cancer invasive growth is still largely unknown. Here, we found that over 90% of bladder cancer samples exhibit elevated levels of RON expression, with significantly higher expression levels observed in invasive bladder cancer compared to non-invasive bladder cancer. In vitro, RON activation resulted in increased bladder cancer cell migration and invasiveness. Results from mRNA sequencing and transcriptome analysis further demonstrated that MMP12, a downstream molecule of RON, is functionally involved in regulating RON-mediated bladder cancer cell migration and invasiveness. The underlying mechanism appeared to be the RON-mediated inhibition of HIF-2α ubiquitination, which is channeled through the activation of the JNK signaling pathway. Consequently, the activated JNK pathway increased MMP12 expression, ultimately driving bladder cancer cell migration and invasion. As evident in bioinformatics and dual-luciferase reporter assays, the RON mRNA at its 3'-untranslated regions specifically interacted with hsa-miR-659-3p. The binding of hsa-miR-659-3p downregulated the RON gene expression, attenuating the receptor-mediated tumorigenic activities of bladder cancer cells in vitro and in vivo. In conclusion, aberrant RON expression in bladder cancer cells and MMP12 and HIF-2α activities form a functional axis that causes increased bladder cancer cell migration and invasion. The fact that hsa-miR-659-3p downregulates RON expression indicates its critical role in attenuating RON-mediated tumorigenic effect on bladder cancer cells. These findings highlight the importance of RON targeting as a therapeutic means for potential bladder cancer therapy.
Collapse
Affiliation(s)
- Ke-Jie Wang
- Translational Research Laboratory for Urological Diseases, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
- Comprehensive Genitourinary Cancer Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urological Diseases, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
- Comprehensive Genitourinary Cancer Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Xiao-Long Jia
- Department of Urology, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Kai-Yun Wang
- Department of Urology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Xiang-Yu Meng
- Translational Research Laboratory for Urological Diseases, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
- Comprehensive Genitourinary Cancer Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Xin Fei
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Shi-Jie Ye
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Qi Ma
- Comprehensive Genitourinary Cancer Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China.
- Yi-huan Genitourinary Cancer Group, Ningbo, Zhejiang, P.R. China.
| |
Collapse
|
2
|
Shakori Poshteh S, Alipour S, Varamini P. Harnessing curcumin and nanotechnology for enhanced treatment of breast cancer bone metastasis. DISCOVER NANO 2024; 19:177. [PMID: 39527354 PMCID: PMC11554965 DOI: 10.1186/s11671-024-04126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer (BC) bone metastasis poses a significant clinical challenge due to its impact on patient prognosis and quality of life. Curcumin (CUR), a natural polyphenol compound found in turmeric, has shown potential in cancer therapy due to its anti-inflammatory, antioxidant, and anticancer properties. However, its metabolic instability and hydrophobicity have hindered its clinical applications, leading to a short plasma half-life, poor absorption, and low bioavailability. To enhance the drug-like properties of CUR, nanotechnology-based delivery strategies have been employed, utilizing polymeric, lipidic, and inorganic nanoparticles (NPs). These approaches have effectively overcome CUR's inherent limitations by enhancing its stability and cellular bioavailability both in vitro and in vivo. Moreover, targeting molecules with high selectivity towards bone metastasized breast cancer cells can be used for site specific delivery of curcumin. Alendronate (ALN), a bone-seeking bisphosphonate, is one such moiety with high selectivity towards bone and thus can be effectively used for targeted delivery of curcumin loaded nanocarriers. This review will detail the process of bone metastasis in BC, elucidate the mechanism of action of CUR, and assess the efficacy of nanotechnology-based strategies for CUR delivery. Specifically, it will focus on how these strategies enhance CUR's stability and improve targeted delivery approaches in the treatment of BC bone metastasis.
Collapse
Affiliation(s)
- Shiva Shakori Poshteh
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Shohreh Alipour
- Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Drug and Food Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Zhang X, Miao J, Song Y, Zhang J, Miao M. Review on effects and mechanisms of plant-derived natural products against breast cancer bone metastasis. Heliyon 2024; 10:e37894. [PMID: 39318810 PMCID: PMC11420494 DOI: 10.1016/j.heliyon.2024.e37894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bone metastasis is the prevalent form of metastasis in breast cancer, resulting in severe pain, pathological fractures, nerve compression, hypercalcemia, and other complications that significantly impair patients' quality of life. The infiltration and colonization of breast cancer (BC) cells in bone tissue disrupt the delicate balance between osteoblasts and osteoclasts within the bone microenvironment, initiating a vicious cycle of bone metastasis. Once bone metastasis occurs, conventional medical therapy with bone-modifying agents is commonly used to alleviate bone-related complications and improve patients' quality of life. However, the utilization of bone-modifying agents may cause severe drug-related adverse effects. Plant-derived natural products such as terpenoids, alkaloids, coumarins, and phenols have anti-tumor, anti-inflammatory, and anti-angiogenic pharmacological properties with minimal side effects. Certain natural products that exhibit both anti-breast cancer and anti-bone metastasis effects are potential therapeutic agents for breast cancer bone metastasis (BCBM). This article reviewed the effects of plant-derived natural products against BCBM and their mechanisms to provide a reference for the research and development of drugs related to BCBM.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiawen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
4
|
Ma L, Liu Z, Kim E, Huang K, Kim CY, Kim H, Park K, Kwon WS, Lee SI, Kim YG, Lee Y, Choi SY, Zhang H, Kim MO. Parishin A Inhibits Oral Squamous Cell Carcinoma via the AKT/mTOR Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:1277. [PMID: 39458918 PMCID: PMC11510427 DOI: 10.3390/ph17101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is an aggressive cancer with limited treatment options. Parishin A, a natural compound derived from Gastrodia elata, possesses multiple therapeutic properties. However, its effects on OSCC remain unexplored. PURPOSE This study explores the anti-cancer potential of Parishin A on OSCC and its mechanisms. METHODS OSCC cell lines YD-10B and Ca9-22 were treated with varying Parishin A concentrations. Cell viability was detected using the CCK-8 assay, and colony formation was evaluated in agarose gel. Migration and invasion ability were assessed through wound healing and Matrigel invasion assays. The protein expression levels involved in the PI3K/AKT/mTOR signaling pathway and epithelial-mesenchymal transition (EMT) markers were examined via Western blotting. RESULTS Parishin A inhibited OSCC cell viability in both dose- and time-dependent manners, with significant reductions at 20, 40, 60, and 80 μM, without affecting normal human gingival fibroblasts. Colony formation decreased substantially at ≥40 μM higher Parishin A concentrations in a dose-dependent manner. Also, migration and invasion assays showed significant suppression by Parishin A treatment concentration ≥40 μM in a dose-dependent manner, as evidenced by decreased wound closure and invasion. Western blot analyses revealed increased E-cadherin levels and decreased N-cadherin and vimentin levels, suggesting EMT inhibition. Parishin A also decreased the phosphorylation levels of PI3K, AKT, and mTOR. CONCLUSION Collectively, these findings support the potential of Parishin A as an anti-OSCC agent.
Collapse
Affiliation(s)
- Lei Ma
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Zhibin Liu
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Eungyung Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ke Huang
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Chae Yeon Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Hyeonjin Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Kanghyun Park
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - So-Young Choi
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Haibo Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Daegu 37224, Republic of Korea
| |
Collapse
|
5
|
Harken AD, Deoli NT, Perez Campos C, Ponnaiya B, Garty G, Lee GS, Casper MJ, Dhingra S, Li W, Johnson GW, Amundson SA, Grabham PW, Hillman EMC, Brenner DJ. Combined ion beam irradiation platform and 3D fluorescence microscope for cellular cancer research. BIOMEDICAL OPTICS EXPRESS 2024; 15:2561-2577. [PMID: 38633084 PMCID: PMC11019671 DOI: 10.1364/boe.522969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
To improve particle radiotherapy, we need a better understanding of the biology of radiation effects, particularly in heavy ion radiation therapy, where global responses are observed despite energy deposition in only a subset of cells. Here, we integrated a high-speed swept confocally-aligned planar excitation (SCAPE) microscope into a focused ion beam irradiation platform to allow real-time 3D structural and functional imaging of living biological samples during and after irradiation. We demonstrate dynamic imaging of the acute effects of irradiation on 3D cultures of U87 human glioblastoma cells, revealing characteristic changes in cellular movement and intracellular calcium signaling following ionizing irradiation.
Collapse
Affiliation(s)
- Andrew D Harken
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Naresh T Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Citlali Perez Campos
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Grace S Lee
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Malte J Casper
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Shikhar Dhingra
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenze Li
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Gary W Johnson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Peter W Grabham
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - David J Brenner
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
6
|
Sheikh KA, Iqubal A, Alam MM, Akhter M, Khan MA, Ehtaishamul Haque S, Parvez S, Jahangir U, Amir M, Khanna S, Shaquiquzzaman M. A Quinquennial Review of Potent LSD1 Inhibitors Explored for the Treatment of Different Cancers, with Special Focus on SAR Studies. Curr Med Chem 2024; 31:152-207. [PMID: 36718063 DOI: 10.2174/0929867330666230130093442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 02/01/2023]
Abstract
Cancer bears a significant share of global mortality. The enzyme Lysine Specific Demethylase 1 (LSD1, also known as KDM1A), since its discovery in 2004, has captured the attention of cancer researchers due to its overexpression in several cancers like acute myeloid leukaemia (AML), solid tumours, etc. The Lysine Specific Demethylase (LSD1) downregulation is reported to have an effect on cancer proliferation, migration, and invasion. Therefore, research to discover safer and more potent LSD1 inhibitors can pave the way for the development of better cancer therapeutics. These efforts have resulted in the synthesis of many types of derivatives containing diverse structural nuclei. The present manuscript describes the role of Lysine Specific Demethylase 1 (LSD1) in carcinogenesis, reviews the LSD1 inhibitors explored in the past five years and discusses their comprehensive structural activity characteristics apart from the thorough description of LSD1. Besides, the potential challenges, opportunities, and future perspectives in the development of LSD1 inhibitors are also discussed. The review suggests that tranylcypromine derivatives are the most promising potent LSD1 inhibitors, followed by triazole and pyrimidine derivatives with IC50 values in the nanomolar and sub-micromolar range. A number of potent LSD1 inhibitors derived from natural sources like resveratrol, protoberberine alkaloids, curcumin, etc. are also discussed. The structural-activity relationships discussed in the manuscript can be exploited to design potent and relatively safer LSD1 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Khursheed Ahmad Sheikh
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Umar Jahangir
- Department of Amraaz-e-Jild wa Tazeeniyat, School of Unani Medical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Amir
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suruchi Khanna
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
7
|
Han X, Li B. The emerging role of noncoding RNAs in the Hedgehog signaling pathway in cancer. Biomed Pharmacother 2022; 154:113581. [PMID: 36037783 DOI: 10.1016/j.biopha.2022.113581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Hedgehog (HH), a conserved signaling pathway, is involved in embryo development, organogenesis, and other biological functions. Dysregulation and abnormal activation of HH are involved in tumorigenesis and tumor progression. With the emergence of interest in noncoding RNAs, studies on their involvement in abnormal regulation of biological processes in tumors have been published one after another. In this review, we focus on the crosstalk between noncoding RNAs and the HH pathway in tumors and elaborate the mechanisms by which long noncoding RNAs and microRNAs regulate or are regulated by HH signaling in cancer. We also discuss the interaction between noncoding RNAs and the HH pathway from the perspective of cancer hallmarks, presenting this complex network as concisely as possible and organizing ideas for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China. libo--
| |
Collapse
|
8
|
Chu WK, Rono CK, Makhubela BCE. New Triazolyl N^N Bidentate Rh(III), Ir(III), Ru(II) and Os(II) Complexes: Synthesis and Characterization, Probing Possible Relations between Cytotoxicity with Transfer Hydrogenation Efficacy and Interaction with Model Biomolecules. Molecules 2022; 27:2058. [PMID: 35408457 PMCID: PMC9000499 DOI: 10.3390/molecules27072058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin and other metallodrugs have realised great success in clinical chemotherapeutic applications as anticancer drugs. However, severe toxicity to healthy cells and non-selectivity to cancer cells remains a challenge, warranting the further search for alternative agents. Herein, we report the anticancer potential of a series of complexes of the general formula [MCl(p-cym)(k2-N^N-L)]+ X− and [MCl(Cp*)(k2-N^N-L)]+ X−, where M is the metal centre (Ru(II), Os(II), Rh(III) or Ir(III)), L = 1-benzyl-4-pyridinyl-1-H-1,2,3-triazole for L1 and 1-picolyl-4-pyridinyl-1-H-1,2,3-triazole for L2 and X− = Cl−, BF4−, BPh4−. When evaluated for activity against some cancerous and non-cancerous cell lines (namely, HeLa, HEK293, A549 and MT4 cancer cells and the normal healthy kidney cells (BHK21)), most of the compounds displayed poor cytotoxicities against cancer cells except for complexes C2 ([RuCl(p-cym)(k2-N^N-L1)]+ BPh4−, EC50 = 9−16 µM and SI = 14), C7 ([RuCl(p-cym)(k2-N^N-L2)]+ BPh4−, EC50 = 17−53 µM and SI = 4) and C11 ([IrCl(Cp*)(k2-N^N-L2)]+ BF4−, EC50 < 5 µM and SI > 10). Selected complexes C1 ([RuCl(p-cym)(k2-N^N-L1)]+ BF4−), C5 ([IrCl(Cp*)(k2-N^N-L1)]+ BF4−) and C11 showed significant interactions with model biomolecules such as guanosine-5′-monophosphate (5′-GMP), bovine serum albumin (BSA) and amino acids under physiological conditions, possibly through carbenylation and N-coordination with 5′-GMP, N-coordination with L-Histidine and L-proline. While the compounds showed good activities in reducing pyruvate to lactate, there was no direct correlation between catalytic transfer hydrogenation of pyruvate and the observed cytotoxic activities. As observed in this work, the marked influence of single atom replacement in ligand may provide a pivotal approach to improving the cytotoxicity and fine-tuning the selectivity to cancer cells.
Collapse
Affiliation(s)
| | | | - Banothile C. E. Makhubela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, Auckland Park Campus, University of Johannesburg, Johannesburg 2006, South Africa; (W.K.C.); (C.K.R.)
| |
Collapse
|
9
|
Yuan Q, Guo H, Ding J, Jiao C, Qi Y, Zafar H, Ma X, Raza F, Han J. Polyphenol Oxidase as a Promising Alternative Therapeutic Agent for Cancer Therapy. Molecules 2022; 27:1515. [PMID: 35268616 PMCID: PMC8911857 DOI: 10.3390/molecules27051515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers have always been the most difficult to fight, the treatment of cancer is still not considered. Thus, exploring new anticancer drugs is still imminent. Traditional Chinese medicine has played an important role in the treatment of cancer. Polyphenol oxidase (PPO) extracted from Edible mushroom has many related reports on its characteristics, but its role in cancer treatment is still unclear. This study aims to investigate the effects of PPO extracted from Edible mushroom on the proliferation, migration, invasion, and apoptosis of cancer cells in vitro and explore the therapeutic effects of PPO on tumors in vivo. A cell counting kit-8 (CCK8) assay was used to detect the effect of PPO on the proliferation of cancer cells. The effect of PPO on cancer cell migration ability was detected by scratch test. The effect of PPO on the invasion ability of cancer cells was detected by a transwell assay. The effect of PPO on the apoptosis of cancer cells was detected by flow cytometry. Female BALB/c mice (18-25 g, 6-8 weeks) were used for in vivo experiments. The experiments were divided into control group, model group, low-dose group (25 mg/kg), and high-dose group (50 mg/kg). In vitro, PPO extracted from Edible mushroom significantly inhibited the proliferation, migration, and invasion capability of breast cancer cell 4T1, lung cancer cell A549, and prostate cancer cell C4-2, and significantly promoted the apoptosis of 4T1, A549, and C4-2. In vivo experiments showed PPO inhibitory effect on tumor growth. Collectively, the edible fungus extract PPO could play an effective role in treating various cancers, and it may potentially be a promising agent for treating cancers.
Collapse
Affiliation(s)
- Qinqin Yuan
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (Q.Y.); (H.G.); (J.D.)
| | - Huixia Guo
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (Q.Y.); (H.G.); (J.D.)
| | - Jiajie Ding
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (Q.Y.); (H.G.); (J.D.)
| | - Chan Jiao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; (C.J.); (Y.Q.)
| | - Yalei Qi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; (C.J.); (Y.Q.)
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; (C.J.); (Y.Q.)
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jianqiu Han
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (Q.Y.); (H.G.); (J.D.)
| |
Collapse
|
10
|
Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells 2022; 11:cells11030388. [PMID: 35159207 PMCID: PMC8833898 DOI: 10.3390/cells11030388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Bone is one of the most common metastatic sites among breast cancer (BC) patients. Once bone metastasis is developed, patients' survival and quality of life will be significantly declined. At present, there are limited therapeutic options for BC patients with bone metastasis. Different nanotechnology-based delivery systems have been developed aiming to specifically deliver the therapeutic agents to the bone. The conjugation of targeting agents to nanoparticles can enhance the selective delivery of various payloads to the metastatic bone lesion. The current review highlights promising and emerging advanced nanotechnologies designed for targeted delivery of anticancer therapeutics, contrast agents, photodynamic and photothermal materials to the bone to achieve the goal of treatment, diagnosis, and prevention of BC bone metastasis. A better understanding of various properties of these new therapeutic approaches may open up new landscapes in medicine towards improving the quality of life and overall survival of BC patients who experience bone metastasis.
Collapse
|
11
|
Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021; 9:740009. [PMID: 34957091 PMCID: PMC8692837 DOI: 10.3389/fcell.2021.740009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The human body is normally adapted to maintain homeostasis in a terrestrial environment. The novel conditions of a space environment introduce challenges that changes the cellular response to its surroundings. Such an alteration causes physical changes in the extracellular microenvironment, inducing the secretion of cytokines such as interleukin-6 (IL-6) and tumor growth factor-β (TGF-β) from cancer cells to enhance cancer malignancy. Cancer is one of the most prominent cell types to be affected by mechanical cues via active interaction with the tumor microenvironment. However, the mechanism by which cancer cells mechanotransduce in the space environment, as well as the influence of this process on human health, have not been fully elucidated. Due to the growing interest in space biology, this article reviews cancer cell responses to the representative conditions altered in space: microgravity, decompression, and irradiation. Interestingly, cytokine and gene expression that assist in tumor survival, invasive phenotypic transformation, and cancer cell proliferation are upregulated when exposed to both simulated and actual space conditions. The necessity of further research on space mechanobiology such as simulating more complex in vivo experiments or finding other mechanical cues that may be encountered during spaceflight are emphasized.
Collapse
Affiliation(s)
- Hyondeog Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Yun Shin
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
12
|
The role of extracellular matrix in tumour angiogenesis: the throne has NOx servants. Biochem Soc Trans 2021; 48:2539-2555. [PMID: 33150941 PMCID: PMC7752075 DOI: 10.1042/bst20200208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) dynamics in tumour tissue are deregulated compared to the ECM in healthy tissue along with disorganized architecture and irregular behaviour of the residing cells. Nitric oxide (NO) as a pleiotropic molecule exerts different effects on the components of the ECM driving or inhibiting augmented angiogenesis and tumour progression and tumour cell proliferation and metastasis. These effects rely on the concentration of NO within the tumour tissue, the nature of the surrounding microenvironment and the sensitivity of resident cells to NO. In this review article, we summarize the recent findings on the correlation between the levels of NO and the ECM components towards the modulation of tumour angiogenesis in different types of cancers. These are discussed principally in the context of how NO modulates the expression of ECM proteins resulting in either the promotion or inhibition of tumour growth via tumour angiogenesis. Furthermore, the regulatory effects of individual ECM components on the expression of the NO synthase enzymes and NO production were reviewed. These findings support the current efforts for developing effective therapeutics for cancers.
Collapse
|
13
|
Li JH, Li SY, Shen MX, Qiu RZ, Fan HW, Li YB. Anti-tumor effects of Solanum nigrum L. extraction on C6 high-grade glioma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114034. [PMID: 33746002 DOI: 10.1016/j.jep.2021.114034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum nigrum L. (SN) is a traditional Chinese medicine with anti-tumor effects, has been used in cancer for centuries, but the role on high-grade gliomas (HGG) is not clear. AIM OF THE STUDY This work was to investigate the anti-tumor effects of SN extract on rat C6 glioma in vitro and in vivo, providing a new medium for the treatment of HGG. MATERIALS AND METHODS After identification and quality inspection of SN medicinal materials by HPLC-MS/MS and HPLC, CCK8 and colony formation assay were conducted to study the effects of SN on vitality and proliferation of C6 cells. Cell morphology was evaluated by HE staining, and flow cytometry was used for apoptosis analysis. The effects on cell migration and invasion were determined by transwell and wound healing assay. Western blot was used to further investigate the influence of SN on migration, invasion and apoptosis of tumor cells. In addition, the rat intracranial transplanted tumor model was used to evaluate the effects of SN on growth and infiltration of tumor and proliferation of transplanted tumor cells. RESULTS SN extract suppressed the viability of C6 cells in a dose-dependent manner. The extract attenuated cell cloning, migration and invasion, and induced cell Annexin V+ PI+ late-stage apoptosis. Besides, SN induced the expression of apoptotic proteins including Bax and Cleaved Caspase-3, downregulated anti-apoptotic protein Bcl-2, and decreased the level of migratory proteins MMP-2 and MMP-9. Moreover, SN reduced the growth and infiltration of C6 glioma tissue and suppressed the proliferation of tumor cells in rat brain. CONCLUSIONS SN extract has significant inhibitory activity on the growth and invasion of C6 HGG in vivo and in vitro.
Collapse
Affiliation(s)
- Jia-Hui Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Song-Ya Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Ming-Xue Shen
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Run-Ze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Hong-Wei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| | - Ying-Bin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
14
|
Mehta DK, Das R. Current Expansions and Future Perspectives in Anticancer Drug Therapy. Anticancer Agents Med Chem 2021; 21:1336-1337. [PMID: 34259136 DOI: 10.2174/187152062111210326112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dinesh Kumar Mehta
- MM College of Pharmacy Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Rina Das
- MM College of Pharmacy Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| |
Collapse
|
15
|
Kharb R. Updates on Receptors Targeted by Heterocyclic Scaffolds: New Horizon in Anticancer Drug Development. Anticancer Agents Med Chem 2021; 21:1338-1349. [PMID: 32560614 DOI: 10.2174/1871520620666200619181102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Anticancer is a high priority research area for scientists as cancer is one of the leading causes of death globally. It is pertinent to mention here that conventional anticancer drugs such as methotrexate, vincristine, cyclophosphamide, etoposide, doxorubicin, cisplatin, etc. are not much efficient for the treatment of different types of cancer; also these suffer from serious side effects leading to therapy failure. A large variety of cancerrelated receptors such as carbonic anhydrase, tyrosine kinase, topoisomerase, protein kinase, histone deacetylase, etc. have been identified which can be targeted by anticancer drugs. Heterocycles like oxadiazole, thiazole, thiadiazole, indole, pyridine, pyrimidine, benzimidazole, etc. play a pivotal role in modern medicinal chemistry because they have a broad spectrum of pharmacological activities including prominent anticancer activity. Therefore, it was considered significant to explore heterocyclic compounds reported in recent most literature which can bind effectively with the cancer-related receptors. This will not only provide a targeted approach to deal with cancer but also the safety profile of the drugs can be further improved. The information provided in this manuscript may be found useful for the design and development of anticancer drugs.
Collapse
Affiliation(s)
- Rajeev Kharb
- Centre for Pharmaceutical Chemistry & Pharmaceutical Analysis, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida-201313, Uttar Pradesh, India
| |
Collapse
|
16
|
Monelli F, Besutti G, Djuric O, Bonvicini L, Farì R, Bonfatti S, Ligabue G, Bassi MC, Damato A, Bonelli C, Pinto C, Pattacini P, Giorgi Rossi P. The Effect of Diffuse Liver Diseases on the Occurrence of Liver Metastases in Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:2246. [PMID: 34067076 PMCID: PMC8124499 DOI: 10.3390/cancers13092246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
This systematic review with meta-analysis aimed to assess the effect of diffuse liver diseases (DLD) on the risk of synchronous (S-) or metachronous (M-) liver metastases (LMs) in patients with solid neoplasms. Relevant databases were searched for systematic reviews and cross-sectional or cohort studies published since 1990 comparing the risk of LMs in patients with and without DLD (steatosis, viral hepatitis, cirrhosis, fibrosis) in non-liver solid cancer patients. Outcomes were prevalence of S-LMs, cumulative risk of M-LMs and LM-free survival. Risk of bias (ROB) was assessed using the Newcastle-Ottawa Scale. We report the pooled relative risks (RR) for S-LMs and hazard ratios (HR) for M-LMs. Subgroup analyses included DLD, primary site and continent. Nineteen studies were included (n = 37,591 patients), the majority on colorectal cancer. ROB appraisal results were mixed. Patients with DLD had a lower risk of S-LMs (RR 0.50, 95% CI 0.34-0.76), with a higher effect for cirrhosis and a slightly higher risk of M-LMs (HR 1.11 95% CI, 1.03-1.19), despite a lower risk of M-LMs in patients with vs without viral hepatitis (HR 0.57, 95% CI 0.40-0.82). There may have been a publication bias in favor of studies reporting a lower risk for patients with DLD. DLD are protective against S-LMs and slightly protective against M-LMs for viral hepatitis only.
Collapse
Affiliation(s)
- Filippo Monelli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giulia Besutti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Olivera Djuric
- Epidemiology Unit, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (O.D.); (L.B.); (P.G.R.)
- Center for Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Laura Bonvicini
- Epidemiology Unit, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (O.D.); (L.B.); (P.G.R.)
| | - Roberto Farì
- Radiology Unit, AOU Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.F.); (S.B.); (G.L.)
| | - Stefano Bonfatti
- Radiology Unit, AOU Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.F.); (S.B.); (G.L.)
| | - Guido Ligabue
- Radiology Unit, AOU Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.F.); (S.B.); (G.L.)
| | - Maria Chiara Bassi
- Medical Library, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Angela Damato
- Oncology Department, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.D.); (C.B.); (C.P.)
| | - Candida Bonelli
- Oncology Department, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.D.); (C.B.); (C.P.)
| | - Carmine Pinto
- Oncology Department, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.D.); (C.B.); (C.P.)
| | - Pierpaolo Pattacini
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Paolo Giorgi Rossi
- Epidemiology Unit, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (O.D.); (L.B.); (P.G.R.)
| |
Collapse
|
17
|
Zhang H, Zhang R, Wang L, Li Y, Liao S, Zhou M. Synthesis Strategies for α‐, β‐, γ‐ and δ‐Carbolines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Rong‐Hong Zhang
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique Guizhou Province Key Laboratory of Regenerative Medicine Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences) Center for Tissue Engineering and Stem Cell Research Guizhou Medical University Guiyang 550004 PR China
| | - Li‐Xia Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Yong‐Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Shang‐Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| |
Collapse
|
18
|
Wilson MR, Reske JJ, Holladay J, Neupane S, Ngo J, Cuthrell N, Wegener M, Rhodes M, Adams M, Sheridan R, Hostetter G, Alotaibi FT, Yong PJ, Anglesio MS, Lessey BA, Leach RE, Teixeira JM, Missmer SA, Fazleabas AT, Chandler RL. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep 2020; 33:108366. [PMID: 33176148 PMCID: PMC7682620 DOI: 10.1016/j.celrep.2020.108366] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis affects 1 in 10 women and is characterized by the presence of abnormal endometrium at ectopic sites. ARID1A mutations are observed in deeply invasive forms of the disease, often correlating with malignancy. To identify epigenetic dependencies driving invasion, we use an unbiased approach to map chromatin state transitions accompanying ARID1A loss in the endometrium. We show that super-enhancers marked by high H3K27 acetylation are strongly associated with ARID1A binding. ARID1A loss leads to H3K27 hyperacetylation and increased chromatin accessibility and enhancer RNA transcription at super-enhancers, but not typical enhancers, indicating that ARID1A normally prevents super-enhancer hyperactivation. ARID1A co-localizes with P300 at super-enhancers, and genetic or pharmacological inhibition of P300 in ARID1A mutant endometrial epithelia suppresses invasion and induces anoikis through the rescue of super-enhancer hyperacetylation. Among hyperactivated super-enhancers, SERPINE1 (PAI-1) is identified as an essential target gene driving ARID1A mutant endometrial invasion. Broadly, our findings provide rationale for therapeutic strategies targeting super-enhancers in ARID1A mutant endometrium.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jake J Reske
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Subechhya Neupane
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Julie Ngo
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Nina Cuthrell
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Marc Wegener
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mary Rhodes
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Fahad T Alotaibi
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Physiology, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Paul J Yong
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, Vancouver General Hospital, and BC Cancer, Vancouver, BC, Canada
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Richard E Leach
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Stacey A Missmer
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA; Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
19
|
Riehl BD, Kim E, Lee JS, Duan B, Yang R, Donahue HJ, Lim JY. The Role of Fluid Shear and Metastatic Potential in Breast Cancer Cell Migration. J Biomech Eng 2020; 142:101001. [PMID: 32346724 PMCID: PMC7477709 DOI: 10.1115/1.4047076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
During the migration of cancer cells for metastasis, cancer cells can be exposed to fluid shear conditions. We examined two breast cancer cell lines, MDA-MB-468 (less metastatic) and MDA-MB-231 (more metastatic), and a benign MCF-10A epithelial cell line for their responsiveness in migration to fluid shear. We tested fluid shear at 15 dyne/cm2 that can be encountered during breast cancer cells traveling through blood vessels or metastasizing to mechanically active tissues such as bone. MCF-10A exhibited the least migration with a trend of migrating in the flow direction. Intriguingly, fluid shear played a potent role as a trigger for MDA-MB-231 cell migration, inducing directional migration along the flow with significantly increased displacement length and migration speed and decreased arrest coefficient relative to unflowed MDA-MB-231. In contrast, MDA-MB-468 cells were markedly less migratory than MDA-MB-231 cells, and responded very poorly to fluid shear. As a result, MDA-MB-468 cells did not exhibit noticeable difference in migration between static and flow conditions, as was distinct in root-mean-square (RMS) displacement-an ensemble average of all participating cells. These may suggest that the difference between more metastatic MDA-MB-231 and less metastatic MDA-MB-468 breast cancer cells could be at least partly involved with their differential responsiveness to fluid shear stimulatory cues. Our study provides new data in regard to potential crosstalk between fluid shear and metastatic potential in mediating breast cancer cell migration.
Collapse
Affiliation(s)
- Brandon D. Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Jeong Soon Lee
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Henry J. Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall Lincoln, NE 68588; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
20
|
Digiacomo L, Jafari-Khouzani K, Palchetti S, Pozzi D, Capriotti AL, Laganà A, Zenezini Chiozzi R, Caputo D, Cascone C, Coppola R, Flammia G, Altomare V, Grasso A, Mahmoudi M, Caracciolo G. A protein corona sensor array detects breast and prostate cancers. NANOSCALE 2020; 12:16697-16704. [PMID: 32776050 DOI: 10.1039/d0nr03439h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 05/27/2023]
Abstract
Following exposure to human plasma (HP), nanoparticles (NPs) are coated with a biomolecular layer referred to as a protein corona. We recently revealed that characterizing the protein coronas of various NPs may provide a unique opportunity for cancer identification and discrimination. In other words, protein corona profiles of several NPs, when being analyzed using classifiers, would provide a unique "fingerprint" for each type of disease. Here, we probed the capacity of the protein corona for the identification and discrimination of breast and prostate cancer patients from healthy individuals. Using three lipid NP formulations with distinct physical-chemical properties as a cross-reactive sensor array and a supervised random forest classifier, we identified a set of proteins that showed a significant difference in cancer patients and control subjects. Our data show that many of the corona proteins with the highest discrimination ability between oncological patients and healthy individuals are related to cellular and molecular aspects of breast and prostate cancers.
Collapse
Affiliation(s)
- Luca Digiacomo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | | | - Sara Palchetti
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Daniela Pozzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, "Sapienza" University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, "Sapienza" University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands and Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Damiano Caputo
- Department of General Surgery, University Campus-Biomedico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Chiara Cascone
- Department of General Surgery, University Campus-Biomedico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Roberto Coppola
- Department of General Surgery, University Campus-Biomedico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Gerardo Flammia
- Department of Urology, University Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Vittorio Altomare
- Breast Unit, University Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Antonella Grasso
- Breast Unit, University Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Morteza Mahmoudi
- Precision Health Medicine, Department of Radiology Michigan State University, MI, USA.
| | - Giulio Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
21
|
Goud NS, Kanth Makani VK, Pranay J, Alvala R, Qureshi IA, Kumar P, Bharath RD, Nagaraj C, Yerramsetty S, Pal-Bhadra M, Alvala M. Synthesis, 18F-radiolabeling and apoptosis inducing studies of novel 4, 7-disubstituted coumarins. Bioorg Chem 2020; 97:103663. [DOI: 10.1016/j.bioorg.2020.103663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
|
22
|
Wu X, Li F, Dang L, Liang C, Lu A, Zhang G. RANKL/RANK System-Based Mechanism for Breast Cancer Bone Metastasis and Related Therapeutic Strategies. Front Cell Dev Biol 2020; 8:76. [PMID: 32117996 PMCID: PMC7026132 DOI: 10.3389/fcell.2020.00076] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer remains one of the most life-threatening tumors affecting women. Most patients with advanced breast cancer eventually develop metastatic diseases, which cause significant morbidity and mortality. Approximately two-thirds of patients with advanced breast cancer exhibit osteolytic-type bone metastasis, which seriously reduce the quality of life. Therefore, development of novel therapeutic strategies for treating breast cancer patients with bone metastasis is urgently required. The "seed and soil" theory, which describes the interaction between the circulating breast cancer cells (seeds) and bone microenvironment (soil), is widely accepted as the mechanism underlying metastasis. Disruption of any step in this cycle might have promising anti-metastasis implications. The interaction of receptor activator of nuclear factor-κB ligand (RANKL) and its receptor RANK is fundamental in this vicious cycle and has been shown to be a novel effective therapeutic target. A series of therapeutic strategies have been developed to intervene in this cross-talk. Therefore, in this review, we have systematically introduced the functions of the RANKL/RANK signaling system in breast cancer and discussed related therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Lei Dang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| |
Collapse
|
23
|
Zhong M, Li N, Qiu X, Ye Y, Chen H, Hua J, Yin P, Zhuang G. TIPE regulates VEGFR2 expression and promotes angiogenesis in colorectal cancer. Int J Biol Sci 2020; 16:272-283. [PMID: 31929755 PMCID: PMC6949158 DOI: 10.7150/ijbs.37906] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Metastasis is the leading cause of death in colorectal cancer (CRC) patients. It is regulated mainly by tumor cell angiogenesis, and angiogenesis is caused by the binding of vascular endothelial growth factor (VEGF) to vascular endothelial growth factor receptor 2 (VEGFR2). Tumor necrosis factor-α-induced protein 8 (TNFAIP8, hereto after TIPE) plays an important role in tumorigenesis, development, and prognosis. However, the relationship between TIPE and VEGFR2 in CRC angiogenesis and the mechanism of action remain unknown. Method: In this study, we used quantitative real-time PCR, Western blotting and immunohistochemistry to detect TIPE and VEGFR2 expression in 55 specimens from CRC patients. We also used HCT116 CRC cells and human umbilical vein endothelial cells (HUVECs) for in vitro experiments by stably transducing shTIPE and shRNA control lentivirus into HCT116 cells, detecting VEGFR2 expression after TIPE knockdown and repurposing the culture supernatant as conditioned medium to stimulate angiogenesis of HUVECs. In vivo experiments with chicken chorioallantoic membranes (CAMs) and a nude mouse matrix subcutaneous tumor model were performed to validate the effects of TIPE on angiogenesis. Additionally, we analyzed the expression and phosphorylation levels of PDK1 and blocked PDK1 expression using inhibitors to determine whether TIPE-induced changes in VEGFR2-mediated angiogenesis acted via the PI3K-Akt pathway. Results: We found that TIPE and VEGFR2 are highly expressed in CRC and act as oncogenes. TIPE knockdown also downregulated VEGFR2 expression, which resulted in simultaneous inhibition of cell proliferation, cell migration and angiogenesis. Then, in vivo experiments further demonstrated that TIPE promotes angiogenesis in CRC. Finally, we found that TIPE promotes VEGFR2-mediated angiogenesis by upregulating PDK1 expression and phosphorylation and that blocking PDK1 expression can inhibit this process. Conclusion: TIPE promotes angiogenesis in CRC by regulating the expression of VEGFR2, which may be a target for antiangiogenic cancer therapy.
Collapse
Affiliation(s)
- Mengya Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Nini Li
- Department of Pathology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yuhan Ye
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Huiyu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianyu Hua
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ping Yin
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Guohong Zhuang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
24
|
Korgaonkar N, Yadav KS. Understanding the biology and advent of physics of cancer with perspicacity in current treatment therapy. Life Sci 2019; 239:117060. [DOI: 10.1016/j.lfs.2019.117060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
|
25
|
Malhotra A, Kaur T, Bansal R. Synthesis and Pharmacological Evaluation of 4‐Aryloxyquinazoline Derivatives as Potential Cytotoxic Agents. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anjleena Malhotra
- University Institute of Pharmaceutical SciencesPanjab University Chandigarh 160014 India
| | - Tejinder Kaur
- University Institute of Pharmaceutical SciencesPanjab University Chandigarh 160014 India
| | - Ranju Bansal
- University Institute of Pharmaceutical SciencesPanjab University Chandigarh 160014 India
| |
Collapse
|
26
|
Safaralizadeh R, Ajami N, Nemati M, Hosseinpourfeizi M, Azimzadeh Isfanjani A, Moaddab SY. Disregulation of miR-216a and miR-217 in Gastric Cancer and Their Clinical Significance. J Gastrointest Cancer 2019; 50:78-83. [PMID: 29177609 DOI: 10.1007/s12029-017-0019-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The majority of gastric cancer (GC) diagnoses occur at the middle or late stage of the disease, indicating that finding novel biomarkers that could be detectable at earlier stage is urgently needed. Accumulating studies have shown that microRNAs, a class of tiny single-stranded RNAs, play important roles in multiple biological processes including cancer development. The present study aimed to evaluate the effect of miR-216a and miR-217 in GC. MATERIAL AND METHODS The real-time quantitative reverse-transcription PCR was exploited to identify and compare the expression levels of miR-216a and miR-217 in 37 pairs of samples of gastric cancer tissue and adjacent normal tissue. Superimposed on this, the potential relationship between miR-216a/217 levels and clinicopathological parameters in patients suffering GC was explored. RESULTS The results obtained from this study showed that the miR-216a is significantly upregulated in gastric cancer tissues, compared with adjacent normal tissues, but the altered expression of miR-217 was not significant. For miR-216a/217, no significant correlations were detected between expression levels of these miRNAs and clinical and pathological characteristics of patients. CONCLUSION This prospective study proposes that upregulation of miR-216a might represent an important mechanism for the development of gastric cancer.
Collapse
Affiliation(s)
- Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Naser Ajami
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Nemati
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | | | - Seyed-Yaghob Moaddab
- Liver and Gastroenterology Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Zhou B, Lu X, Hao Y, Yang P. Real-Time Monitoring of the Regulatory Volume Decrease of Cancer Cells: A Model for the Evaluation of Cell Migration. Anal Chem 2019; 91:8078-8084. [DOI: 10.1021/acs.analchem.9b00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Zhou
- Department of Chemistry, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xinxin Lu
- Department of Chemistry, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Yan Hao
- Department of Chemistry, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Peihui Yang
- Department of Chemistry, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
28
|
Narella SG, Shaik MG, Mohammed A, Alvala M, Angeli A, Supuran CT. Synthesis and biological evaluation of coumarin-1,3,4-oxadiazole hybrids as selective carbonic anhydrase IX and XII inhibitors. Bioorg Chem 2019; 87:765-772. [PMID: 30974299 DOI: 10.1016/j.bioorg.2019.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/22/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
With an aim to develop novel heterocyclic hybrids as potent anticancer agents, we synthesized a series of coumarin-1,3,4-oxadiazole hybrids (7a-t) and evaluated for their inhibitory activity against the four physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms CA I, CA II, CA IX and CA XII. The CA inhibition results clearly indicated that the coumarin-1,3,4-oxadiazole derivatives (7a-t) exhibited selective inhibition of the tumor associated isoforms, CA IX and CA XII over CA I and II isoforms. Among all, compound 7b, exhibited significant inhibition in lower micromolar potency against hCA XII, with a Ki of 0.16 µM and compound 7n, exhibited significant inhibition in lower micromolar potency against hCA IX, with a Ki of 2.34 µM respectively. Therefore, compound 7b and 7n could be the potential leads for development of selective anticancer agents by exhibiting a novel mechanism of action through hCA IX and XII inhibition.
Collapse
Affiliation(s)
- Sridhar Goud Narella
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Mohammed Ghouse Shaik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Arifuddin Mohammed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India.
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
29
|
Nagaraju B, Kovvuri J, Kumar CG, Routhu SR, Shareef MA, Kadagathur M, Adiyala PR, Alavala S, Nagesh N, Kamal A. Synthesis and biological evaluation of pyrazole linked benzothiazole-β-naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorg Med Chem 2019; 27:708-720. [PMID: 30679134 DOI: 10.1016/j.bmc.2019.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 11/17/2022]
Abstract
A series of new pyrazole linked benzothiazole-β-naphthol derivatives were designed and synthesized using a simple, efficient and ecofriendly route under catalyst-free conditions in good to excellent yields. These derivatives were evaluated for their cytotoxicity on selected human cancer cell lines. Among those, the derivatives 4j, 4k and 4l exhibited considerable cytotoxicity with IC50 values ranging between 4.63 and 5.54 µM against human cervical cancer cells (HeLa). Structure activity relationship was elucidated by varying different substituents on benzothiazoles and pyrazoles. Further, flow cytometric analysis revealed that these derivatives induced cell cycle arrest in G2/M phase and spectroscopic studies such as UV-visible, fluorescence and circular dichroism studies showed that these derivatives exhibited good DNA binding affinity. Additionally, these derivatives can effectively inhibit the topoisomerase I activity. Viscosity studies and molecular docking studies demonstrated that the derivatives bind with the minor groove of the DNA.
Collapse
Affiliation(s)
- Burri Nagaraju
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Jeshma Kovvuri
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - C Ganesh Kumar
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| | - Sunitha Rani Routhu
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Md Adil Shareef
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Manasa Kadagathur
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Praveen Reddy Adiyala
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Sateesh Alavala
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India.
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India; School of Pharmaceutical Education and Research, (SPER) Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
30
|
de la Cueva-Alique I, Muñoz-Moreno L, de la Torre-Rubio E, Bajo AM, Gude L, Cuenca T, Royo E. Water soluble, optically active monofunctional Pd(ii) and Pt(ii) compounds: promising adhesive and antimigratory effects on human prostate PC-3 cancer cells. Dalton Trans 2019; 48:14279-14293. [DOI: 10.1039/c9dt02873k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water soluble, enantiomerically pure “rule breakers” Pd(ii) and Pt(ii) compounds with promising anticancer potential are reported.
Collapse
Affiliation(s)
- Isabel de la Cueva-Alique
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| | - Laura Muñoz-Moreno
- Departamento de Biología de Sistemas
- Facultad de Medicina y Ciencias de la Salud
- Universidad de Alcalá
- Madrid
- Spain
| | - Elena de la Torre-Rubio
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| | - Ana M. Bajo
- Departamento de Biología de Sistemas
- Facultad de Medicina y Ciencias de la Salud
- Universidad de Alcalá
- Madrid
- Spain
| | - Lourdes Gude
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| | - Tomás Cuenca
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| | - Eva Royo
- Departamento de Química Orgánica y Química Inorgánica
- Instituto de Investigación en Química Andrés M. del Río (IQAR)
- Universidad de Alcalá
- Madrid
- Spain
| |
Collapse
|
31
|
Li GM, Liang CJ, Zhang DX, Zhang LJ, Wu JX, Xu YC. XB130 Knockdown Inhibits the Proliferation, Invasiveness, and Metastasis of Hepatocellular Carcinoma Cells and Sensitizes them to TRAIL-Induced Apoptosis. Chin Med J (Engl) 2018; 131:2320-2331. [PMID: 30246718 PMCID: PMC6166462 DOI: 10.4103/0366-6999.241800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background XB130 is a recently discovered adaptor protein that is highly expressed in many malignant tumors, but few studies have investigated its role in hepatocellular carcinoma (HCC). Therefore, this study explored the relationship between this protein and liver cancer and investigated its molecular mechanism of action. Methods The expression of XB130 between HCC tissues and adjacent nontumor tissues was compared by real-time polymerase chain reaction, immunochemistry, and Western blotting. XB130 silencing was performed using small hairpin RNA. The effect of silencing XB130 was examined using Cell Counting Kit-8, colony assay, wound healing assay, and cell cycle analysis. Results We found that XB130 was highly expressed in HCC tissues (cancer tissues vs. adjacent tissues: 0.23 ± 0.02 vs. 0.17 ± 0.02, P < 0.05) and liver cancer cell lines, particularly MHCC97H and HepG2 (MHCC97H and HepG2 vs. normal liver cell line LO-2: 2.35 ± 0.26 and 2.04 ± 0.04 vs. 1.00 ± 0.04, respectively, all P < 0.05). The Cell Counting Kit-8 assay, colony formation assay, and xenograft model in nude mice showed that silencing XB130 inhibited cell proliferative ability both in vivo and in vitro, with flow cytometry demonstrating that the cells were arrested in the G0/G1 phase in HepG2 (HepG2 XB130-silenced group [shA] vs. HepG2 scramble group [NA]: 74.32 ± 5.86% vs. 60.21 ± 3.07%, P < 0.05) and that the number of G2/M phase cells was decreased (HepG2 shA vs. HepG2 NA: 8.06 ± 2.41% vs. 18.36 ± 4.42%, P < 0.05). Furthermore, the cell invasion and migration abilities were impaired, and the levels of the epithelial-mesenchymal transition-related indicators vimentin and N-cadherin were decreased, although the level of E-cadherin was increased after silencing XB130. Western blotting showed that the levels of phosphorylated phosphoinositide 3-kinase (PI3K) and phospho-protein kinase B (p-Akt) also increased, although the level of phosphorylated phosphatase and tensin homolog increased, indicating that XB130 activated the PI3K/Akt pathway. Furthermore, we found that a reduction in XB130 increased liver cancer cell sensitivity to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Conclusions Our findings suggest that XB130 might be used as a predictor of liver cancer as well as one of the targets for its treatment.
Collapse
Affiliation(s)
- Guang-Ming Li
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chao-Jie Liang
- Department of General Surgery, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Dong-Xin Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Li-Jun Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ji-Xiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ying-Chen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
32
|
Sagredo AI, Sagredo EA, Pola V, Echeverría C, Andaur R, Michea L, Stutzin A, Simon F, Marcelain K, Armisén R. TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines. J Cell Physiol 2018; 234:2037-2050. [PMID: 30343491 DOI: 10.1002/jcp.27371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Transient Receptor Potential Melastatin 4 (TRPM4) is a Ca2+ -activated and voltage-dependent monovalent cation channel, which depolarizes the plasma cell membrane, thereby modulating Ca2+ influx across Ca2+ -permeable pathways. TRPM4 is involved in different physiological processes such as T cell activation and the migration of endothelial and certain immune cells. Overexpression of this channel has been reported in various types of tumors including prostate cancer. In this study, a significant overexpression of TRPM4 was found only in samples from cancer with a Gleason score higher than 7, which are more likely to spread. To evaluate whether TRPM4 overexpression was related to the spreading capability of tumors, TRPM4 was knockdown by using shRNAs in PC3 prostate cancer cells and the effect on cellular migration and invasion was analyzed. PC3 cells with reduced levels of TRPM4 (shTRPM4) display a decrease of the migration/invasion capability. A reduction in the expression of Snail1, a canonical epithelial to mesenchymal transition (EMT) transcription factor, was also observed. Consistently, these cells showed a significant change in the expression of key EMT markers such as MMP9, E-cadherin/N-cadherin, and vimentin, indicating a partial reversion of the EMT process. Whereas, the overexpression of TRPM4 in LnCaP cells resulted in increased levels of Snail1, reduction in the expression of E-cadherin and increase in their migration potential. This study suggests a new and indirect mechanism of regulation of migration/invasion process by TRPM4 in prostate cancer cells, by inducing the expression of Snail1 gene and consequently, increasing the EMT.
Collapse
Affiliation(s)
- Alfredo I Sagredo
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile
| | - Eduardo A Sagredo
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile
| | - Victor Pola
- Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| | - César Echeverría
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile.,Facultad de Medicina, Universidad de Atacama, Copiapo, Chile
| | - Rodrigo Andaur
- Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| | - Luis Michea
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Andrés Stutzin
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Chile
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Katherine Marcelain
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile.,Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| | - Ricardo Armisén
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile.,Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| |
Collapse
|
33
|
Yan X, Lu J, Zou X, Zhang S, Cui Y, Zhou L, Liu F, Shan A, Lu J, Zheng M, Feng B, Zhang Y. The polypeptide N-acetylgalactosaminyltransferase 4 exhibits stage-dependent expression in colorectal cancer and affects tumorigenesis, invasion and differentiation. FEBS J 2018; 285:3041-3055. [PMID: 29931806 DOI: 10.1111/febs.14593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/20/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
The aberrant expression of mucin-type O-glycosylation plays important roles in cancer malignancy. The polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) are a family of conserved enzymes that initiate the mucin-type O-glycosylation in cells. In human, consistent up- or down-regulation of ppGalNAc-Ts expression during cancer development has been frequently reported. Here, we provide evidence that ppGalNAc-T4 shows a stage-dependent expression at the different stages of colorectal cancer (CRC) in the 62 pair-matched tumor/normal tissues. In detail, ppGalNAc-T4 expression is significantly induced at stage I and II but not at stage III and IV. Overexpression of ppGalNAc-T4 in CRC cells enhances colony formation and sphere formation suggesting an important role of ppGalNAc-T4 in tumorigenesis. Conversely, knockdown of ppGalNAc-T4 in CRC cells increases the cell migration and invasion, and leads to an epithelial-mesenchymal transition-like transition. Further analysis suggests that loss of ppGalNAc-T4 contributes to the dedifferentiation of CRC and high expression of ppGalNAc-T4 correlates to a good prognosis of patients. Taken together, our results not only demonstrate a stage-dependent expression of ppGalNAc-T4 in CRC progression, but also suggest that such stage-dependent expression may contribute to the tumorigenesis at the early stage and promote cell migration and invasion at the advanced stage.
Collapse
Affiliation(s)
- Xialin Yan
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Jishun Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Sen Zhang
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Leqi Zhou
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Feng Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Aidong Shan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Jiaoyang Lu
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Minghua Zheng
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Bo Feng
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| |
Collapse
|
34
|
Cai WX, Yu RQ, Ma L, Huang HZ, Zheng LW, Zwahlen R. Differences between epithelial and mesenchymal human tongue cancer cell lines in experimental metastasis. Oncol Lett 2018; 15:9959-9964. [PMID: 29928368 DOI: 10.3892/ol.2018.8591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/08/2018] [Indexed: 12/26/2022] Open
Abstract
Distant metastasis represents the outcome with the worst prognosis for various types of malignant tumors, but little is known regarding the impact of interacting epithelial and mesenchymal phenotypic cancer cells within its etiopathogenesis. In a novel animal model, 48 male athymic Balb/c nude mice underwent subcutaneous and intravenous injection of human tongue cancer cell lines of green fluorescent mesenchymal and red fluorescent epithelial phenotypes, in order to visualize and monitor eventual phenotypic interaction in lung metastasis as well as experimental metastasis in in vivo, ex vivo and histopathological analyses. While the epithelial, but not the mesenchymal, phenotypic human tongue cancer cell line led to direct metastasis in the lungs when injected intravenously, neither of them, even when injected in combination, were able to establish distant metastasis. The results of the present study provide evidence regarding the role of epithelial phenotypic cancer cells in the release of experimental metastasis following tail vein injection in male athymic Balb/c nude mice, in addition to proving fluorescent human tongue cancer cells may be reliably detected under a fluorescence microscope even 8 weeks after the two injection types.
Collapse
Affiliation(s)
- Wei-Xin Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, SAR, P.R. China
| | - Ru Qing Yu
- Department of Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, P.R. China
| | - Li Ma
- Department of Oral Rehabilitation, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, P.R. China
| | - Hong Zhang Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, SAR, P.R. China
| | - Li Wu Zheng
- Department of Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, P.R. China
| | - Roger Zwahlen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, P.R. China
| |
Collapse
|
35
|
Singh A, Mehra V, Sadeghiani N, Mozaffari S, Parang K, Kumar V. Ferrocenylchalcone–uracil conjugates: synthesis and cytotoxic evaluation. Med Chem Res 2018; 27:1260-1268. [DOI: 10.1007/s00044-018-2145-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/27/2018] [Indexed: 01/29/2023]
|
36
|
Chen Y, Lu L, Feng B, Han S, Cui S, Chu X, Chen L, Wang R. Non-coding RNAs as emerging regulators of epithelial to mesenchymal transition in non-small cell lung cancer. Oncotarget 2018; 8:36787-36799. [PMID: 28415568 PMCID: PMC5482698 DOI: 10.18632/oncotarget.16375] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/28/2017] [Indexed: 01/01/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a major health problem that patients suffer from around the world. The epithelial to mesenchymal transition (EMT) has attractive roles in increasing malignant potential and reducing sensitivity to conventional therapeutics in NSCLC cells. Meanwhile, it is now evident that non-coding RNAs (ncRNAs), primarily microRNAs and long non-coding RNAs contribute to tumorigenesis partially via regulating EMT. This article briefly summarizes current researches about EMT-related ncRNAs in NSCLC and discusses their crucial roles in the complex regulatory network. Also, the authors will show the evidence that ncRNAs not only contribute to cancer cells migration and invasion, but also take charge of the resistance of chemotherapy, radiotherapy and EGFR-TIKs. Then, we will further discuss the potential of inhibition of EMT via manipulating relevant ncRNAs to change our current treatment of NSCLC patients.
Collapse
Affiliation(s)
- Ying Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Lu Lu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Shiyun Cui
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| |
Collapse
|
37
|
Alexandrakis MG, Passam FH, Sfiridaki A, Pappa CA, Moschandrea JA, Kandidakis E, Tsirakis G, Kyriakou DS. Serum Levels of Leptin in Multiple Myeloma Patients and Its Relation to Angiogenic and Inflammatory Cytokines. Int J Biol Markers 2018; 19:52-7. [PMID: 15077927 DOI: 10.1177/172460080401900107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Leptin, apart from the regulation of food intake, has been implicated in hematopoiesis, the immune response and angiogenesis. Leptin has been found to be decreased in various hematological malignancies. In the present study leptin was measured in multiple myeloma (MM) patients before and after treatment and correlated with other angiogenic molecules and markers of disease activity. Methods Serum leptin, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), interleukin-1 beta (IL-1β), beta 2 microglobulin (β2M) and C-reactive protein (CRP) were measured in 62 newly diagnosed MM patients, 22 of whom obtaining disease stabilization after treatment. The same parameters were measured in 20 healthy controls. Disease stage was defined according to the Durie-Salmon criteria. Results Leptin, VEGF, b-FGF, IL-1β, and β2M were significantly higher in newly diagnosed MM patients than in controls (p<0.05). VEGF, b-FGF, IL-1β, β2M, CRP but not leptin increased with advancing stage of disease (p<0.01). All parameters decreased significantly following treatment (p<0.001). Although IL-1β correlated positively with VEGF, β2M, b-FGF and CRP, leptin did not correlate with any of the measured parameters. Conclusion Leptin serum levels do not reflect disease severity in MM. However, there seems to be a decrease in leptin following treatment, which may be associated with an alteration in the metabolic state or the chemokine milieu.
Collapse
Affiliation(s)
- M G Alexandrakis
- Division of Medicine, University Hospital of Heraklion, Medical School of Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Shankar B, Jalapathi P, Saikrishna B, Perugu S, Manga V. Synthesis, anti-microbial activity, cytotoxicity of some novel substituted (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl)methanone analogs. Chem Cent J 2018; 12:1. [PMID: 29318401 PMCID: PMC5760494 DOI: 10.1186/s13065-017-0364-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
Background There is a dire need for the discovery and development of new antimicrobial agents after several experiments for a better resistance of microorganisms towards antimicrobial agents become a serious health problem for a few years in the past. As benzimidazole possess various types of biological activities, it has been synthesized, in the present study, a new series of (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl)methanone analogs by using the condensation and screened for its in vitro antimicrobial activity and cytotoxicity. Results The synthesized (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl) benzofuran-2-yl)(phenyl)methanone analogs were confirmed by IR, 1H and 13C-NMR, MS spectra and HRMS spectral data. The synthesized compounds were evaluated for their in vitro antimicrobial potential against Gram-positive (Bacillus subtilis, Bacillus megaterium, Staph aureus and Streptococcus pyogenes), Gram-negative (Escherichia coli, Proteus vulgaris, Proteus mirabilis and Enterobacter aerogenes) bacterial and fungal (Aspergillus niger, Candida albicans, Fusarium oxysporum, Fusarium solani) strains by disc diffusion method and the minimum inhibitory concentration (MIC) in which it has been recorded in microgram per milliliter in comparison to the reference drugs, ciprofloxacin (antibacterial) and nystatin (antifungal). Further, the cytotoxicity (IC50 value) has also been assessed on human cervical (HeLa), Supt1 cancer cell lines by using MTT assay. Conclusions The following screened compounds (4d), (4f), (4g), (4k), (4l), (4o) and (4u) were found to be the best active against all the tested bacterial and fungal strains among all the demonstrated compounds of biological study. The MIC determination was also carried out against bacteria and fungi, the compounds (4f) and (4u) are found to be exhibited excellent potent against bacteria and fungi respectively. The compounds (4f) and (4u) were shown non-toxic in nature after screened for cytotoxicity against the cancer cell lines of human cervical (HeLa) and Supt1. Additionally, structure and antibacterial activity relationship were also further supported by in silico molecular docking studies of the active compounds against DNA topoisomerase.![]() Electronic supplementary material The online version of this article (10.1186/s13065-017-0364-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bhookya Shankar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, India
| | - Pochampally Jalapathi
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, India.
| | - Balabadra Saikrishna
- Molecular Modelling and Medicinal Chemistry Group, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| | - Shaym Perugu
- Biomedical Informatics Centre, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Vijjulatha Manga
- Molecular Modelling and Medicinal Chemistry Group, Department of Chemistry, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
39
|
Liu X, Wang T, Wang Y, Chen Z, Hua D, Yao X, Ma X, Zhang P. Orai1 is critical for Notch-driven aggressiveness under hypoxic conditions in triple-negative breast cancers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:975-986. [PMID: 29307746 DOI: 10.1016/j.bbadis.2018.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/29/2022]
Abstract
It is believed that hypoxia stimulates triple-negative breast cancers (TNBCs) metastasis, which is associated with a poor prognosis. However, the underlying mechanism remains unclear. Here, we demonstrated that hypoxia up-regulates both the levels of Orai1 and Notch1, and the increase in Orai1 is mediated by Notch1 signaling in TNBCs. Functionally, Orai1 caused a sustained elevation of intracellular Ca2+ via Store-operated Ca2+ entry (SOCE), then activated the calcineurin-nuclear factor of activated T-cell 4 (NFAT4, also named NFATc3) in hypoxic TNBCs. Furthermore, pharmacologic inhibition or gene-silencing studies showed that the aggressiveness mediated by Orai1 during hypoxia is dependent on the Notch1/Orai1/SOCE/NFAT4 signaling. Moreover, Orai1 signaling also mediated hypoxia-induced angiogenesis in TNBCs. Thus, our results revealed a novel role of Orai1 as an inducer of aggression and angiogenesis under hypoxic conditions, and this suggests a novel mechanism of hypoxia-induced invasion. It may be worthwhile to further explore the potential of using Orai1 signaling as new target for anti-tumor therapy in TNBCs.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Medicine, Jiangnan University, Wuxi, China; School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Wang
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province, Taiyuan, China
| | - Zhen Chen
- School of Medicine, Jiangnan University, Wuxi, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Xin Ma
- School of Medicine, Jiangnan University, Wuxi, China.
| | - Peng Zhang
- School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
40
|
Kerru N, Singh P, Koorbanally N, Raj R, Kumar V. Recent advances (2015-2016) in anticancer hybrids. Eur J Med Chem 2017; 142:179-212. [PMID: 28760313 DOI: 10.1016/j.ejmech.2017.07.033] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022]
Abstract
In spite of the development of a large number of novel anticancer drugs over the years, Cancer remains as a prominent cause of death, worldwide. Numerous drugs that are currently in clinical practice have developed multidrug resistance along with fatal side effects. Therefore, the utilization of single-target therapy is incapable of providing an effective control on the malignant process. Molecular hybridization, involving a combination of two or more pharmacophores of bioactive scaffolds to generate a single molecular architecture with improved affinity and activity, in comparison to their parent molecules, has emerged as a promising strategy in recent drug discovery research. Hybrid anticancer drugs are of great therapeutic interests since they can potentially overcome most of the pharmacokinetic drawbacks encountered with conventional anticancer drugs. Strategically, the design of anticancer drugs involved the blending or linking of an anticancer drug with another anticancer drug or a carrier molecule which can efficiently target cancer cells with improved biological potential. Major advantages of hybrid anticancer drugs involved increased specificity, better patient compliance, and lower side effects along with reduction in chemo-resistance. The successful utilization of this technique in design and synthesis of novel anticancer hybrids has been well illustrated and documented in the literature. The purpose of the present review article will be to provide an emphasis on the recent developments (2015-16) in anticancer hybrids with insights into their structure-activity relationship (SAR) and mechanism of action.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban 4000, South Africa.
| | - Neil Koorbanally
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Raghu Raj
- Department of Chemistry, DAV College, Amritsar 143001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
41
|
Zanoaga O, Jurj A, Raduly L, Cojocneanu-Petric R, Fuentes-Mattei E, Wu O, Braicu C, Gherman CD, Berindan-Neagoe I. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer. Exp Ther Med 2017; 15:1167-1176. [PMID: 29434704 PMCID: PMC5776638 DOI: 10.3892/etm.2017.5515] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer represents one of the most common forms of cancer in women worldwide, with an increase in the number of newly diagnosed patients in the last decade. The role of fatty acids, particularly of a diet rich in ω-3 and ω-6 polyunsaturated fatty acids (PUFAs), in breast cancer development is not fully understood and remains controversial due to their complex mechanism of action. However, a large number of animal models and cell culture studies have demonstrated that high levels of ω-3 PUFAs have an inhibitory role in the development and progression of breast cancer, compared to ω-6 PUFAs. The present review focused on recent studies regarding the correlation between dietary PUFAs and breast cancer development, and aimed to emphasize the main molecular mechanisms involved in the modification of cell membrane structure and function, modulation of signal transduction pathways, gene expression regulation, and antiangiogenic and antimetastatic effects. Furthermore, the anticancer role of ω-3 PUFAs through the modulation of microRNA expression levels was also reviewed.
Collapse
Affiliation(s)
- Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,Department of Physiopathology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Oscar Wu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Texas Tech University Honors College, McClellan Hall, Lubbock, TX 79409, USA
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Surgical Clinic II Hospital, 400006 Cluj-Napoca, Romania.,Department of Surgery, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 400349 Cluj-Napoca, Romania.,Department of Functional Genomics, Proteomics and Experimental Pathology, Prof Dr Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
42
|
Li Y, Du W, Han J, Ge J. LAMP3 promotes the invasion of osteosarcoma cells via SPP1 signaling. Mol Med Rep 2017; 16:5947-5953. [PMID: 28849219 PMCID: PMC5865773 DOI: 10.3892/mmr.2017.7349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/09/2017] [Indexed: 01/27/2023] Open
Abstract
Osteosarcoma is the most common type of primary bone cancer in children and young adults. The prognosis of osteosarcoma is very poor when it is diagnosed with metastasis. Lysosomal‑associated membrane protein 3 (LAMP3) is a tumor‑specific protein induced by hypoxia, which stimulates invasion and metastasis of various cancer cells via hypoxia‑inducible factor (HIF). A previous study from our group has reported that expression of LAMP3 is significantly increased in lung metastatic osteosarcoma compared with primary osteosarcoma using microarray analysis, suggesting that LAMP3 may be involved in metastatic osteosarcoma. The present study therefore aimed to investigate the role of LAMP3 in osteosarcoma metastasis. Knockdown of LAMP3 decreased the invasion of two osteosarcoma cell lines in vitro. Furthermore, knockdown of LAMP3 increased the expression of secreted phosphoprotein 1 (SPP1), cadherin 1, and keratin 19, while it decreased the expression of matrix metallopeptidase 2, collagen type III α 1, twist family bHLH transcription factor 1 and cadherin 2. Concurrent knockdown of SPP1 and LAMP3 attenuated the changes in gene expression profile induced by LAMP3 knockdown alone. Gene ontology and KEGG analysis demonstrated that SPP1 was involved in cell adhesion, focal adhesion, and extracellular matrix‑receptor interaction. In conclusion, the present results suggest that LAMP3 may be involved in the invasion and metastasis of osteosarcoma via regulating signaling downstream of SPP1. Thus, LAMP3/SPP1 signaling may serve as a potential target in the future to prevent osteosarcoma metastasis.
Collapse
Affiliation(s)
- Yu Li
- Department of Bone Trauma, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Wei Du
- Department of Spine Branch, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Jian Han
- Department of Bone Oncology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Junbo Ge
- Department of Bone Trauma, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
43
|
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 2017; 233:2949-2965. [DOI: 10.1002/jcp.26049] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Mashreghi
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hassan Azarpara
- School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Mahere R. Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine; Ferdowsi University of Mashhad; Mashhad Iran
| | - Arash Jafari
- School of Medicine; Birjand University of Medical Sciences; Birjand Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology; ACECR Isfahan Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahmoud R. Jaafari
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
44
|
Shin JY, Kim HN, Bhang SH, Yoon JK, Suh KY, Jeon NL, Kim BS. Topography-Guided Control of Local Migratory Behaviors and Protein Expression of Cancer Cells. Adv Healthc Mater 2017; 6. [PMID: 28509381 DOI: 10.1002/adhm.201700155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/16/2017] [Indexed: 12/19/2022]
Abstract
In vivo cancer cell migration and invasion are directed by biophysical guidance mechanisms such as pre-existing microtracks and basement membrane extracellular matrices. Here, this paper reports the correlation of the local migratory behavior of cancer cells and the biochemical signal expression using the topography that can guide or inhibit cell behaviors. To this end, the local apparent migration and the protein expression level are investigated with respect to the topographical feature size (flat, nanoline, and microline) and orientation (microline, microconcentric, and microradial) with the collectively migrating (A431) and individually migrating (MDA-MB-231 and U-87-MG) cancer cells. The results show that the migration and the protein expression of focal adhesion kinase, rho-associated protein kinase, and extracellular signal-regulated kinase are localized in the periphery of cell colony. Furthermore, the inhibition of migratory behavior at the periphery recues the protein expression, while the guidance of migration enhances the aforementioned protein expression. The results may imply the employ of biophysical inhibitory factors can help to control invasiveness of cancer cells during the progression state.
Collapse
Affiliation(s)
- Jung-Youn Shin
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Republic of Korea
| | - Hong Nam Kim
- Center for BioMicrosystems; Brain Science Institute; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jeong-Kee Yoon
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Republic of Korea
| | - Kahp-Yang Suh
- School of Mechanical and Aerospace Engineering; Seoul National University; Seoul 08826 Republic of Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering; Seoul National University; Seoul 08826 Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Republic of Korea
- Bio-MAX Institute; Institute for Chemical Processes; Seoul National University; Seoul 08826 Republic of Korea
| |
Collapse
|
45
|
Kumar S, Singh A, Kumar K, Kumar V. Recent insights into synthetic β-carbolines with anti-cancer activities. Eur J Med Chem 2017; 142:48-73. [PMID: 28583770 DOI: 10.1016/j.ejmech.2017.05.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Abstract
Cancer, an uncontrolled and rapid proliferation of abnormal cells, has become one of the leading cause of death worldwide. The development of resistance among the numerous drugs in clinical use has provided strong impetus for the identification and development of novel cancer therapeutics. β-carbolines constitute an important class of pharmacologically active scaffolds known to exert their anticancer activities via diverse mechanisms. The purpose of present review article is to update the readers on the current developments in β-carbolines with an emphasis on synthetic strategies, structure-activity relationships, mechanism of action and in vivo studies wherever possible.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Amandeep Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Kewal Kumar
- Department of Applied Chemistry, Giani Zail Singh Campus College of Engineering & Technology, MRSPTU, Dabwali Road, Bathinda, 151001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
46
|
Singh DR, Ahmed F, Sarabipour S, Hristova K. Intracellular Domain Contacts Contribute to Ecadherin Constitutive Dimerization in the Plasma Membrane. J Mol Biol 2017; 429:2231-2245. [PMID: 28549925 DOI: 10.1016/j.jmb.2017.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/29/2023]
Abstract
Epithelial cadherin (Ecadherin) is responsible for the intercellular cohesion of epithelial tissues. It forms lateral clusters within adherens cell-cell junctions, but its association state outside these clusters is unknown. Here, we use a quantitative Forster resonance energy transfer (FRET) approach to show that Ecadherin forms constitutive dimers and that these dimers exist independently of the actin cytoskeleton or cytoplasmic proteins. The dimers are stabilized by intermolecular contacts that occur along the entire length of Ecadherin, with the intracellular domains having a surprisingly strong favorable contribution. We further show that Ecadherin mutations and calcium depletion induce structural alterations that propagate from the N terminus all the way to the C terminus, without destabilizing the dimeric state. These findings provide context for the interpretation of Ecadherin adhesion experiments. They also suggest that early events of adherens junction assembly involve interactions between from preformed Ecadherin dimers.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA
| | - Fozia Ahmed
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA
| | - Sarvenaz Sarabipour
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
47
|
Zhou Q, Xian M, Xiang S, Xiang D, Shao X, Wang J, Cao J, Yang X, Yang B, Ying M, He Q. All-Trans Retinoic Acid Prevents Osteosarcoma Metastasis by Inhibiting M2 Polarization of Tumor-Associated Macrophages. Cancer Immunol Res 2017; 5:547-559. [PMID: 28515123 DOI: 10.1158/2326-6066.cir-16-0259] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
M2-polarized tumor-associated macrophages (TAM) play a critical role in cancer invasion and metastasis. Here, we report that M2 macrophages enhanced metastasis of K7M2 WT osteosarcoma cells to the lungs in mice, thus establishing M2 TAMs as a therapeutic target for blocking osteosarcoma metastasis. We found that all-trans retinoic acid (ATRA) inhibited osteosarcoma metastasis via inhibiting the M2 polarization of TAMs. ATRA suppressed IL13- or IL4-induced M2-type macrophages, and then inhibited migration of osteosarcoma cells as promoted by M2-type macrophages in vitro ATRA reduced the number of pulmonary metastatic nodes of osteosarcoma and decreased expression of M2-type macrophages in metastatic nodes both in intravenous injection and orthotopic transplantation models. ATRA's effect was independent of conventional STAT3/6 or C/EBPβ signaling, which regulate M2-like polarization of macrophages. Quantitative genomic and functional analyses revealed that MMP12, a macrophage-secreted elastase, was elevated in IL13-skewed TAM polarization, whereas ATRA treatment downregulated IL13-induced secretion of MMP12. This downregulation correlates with the antimetastasis effect of ATRA. Our results show the role of TAM polarization in osteosarcoma metastasis, identify a therapeutic opportunity for antimetastasis treatment, and indicate ATRA treatment as an approach for preventing osteosarcoma metastasis via M2-type polarization intervention. Cancer Immunol Res; 5(7); 547-59. ©2017 AACR.
Collapse
Affiliation(s)
- Qian Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Miao Xian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Senfeng Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Danyan Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Kawczyk-Krupka A, Czuba ZP, Kwiatek B, Kwiatek S, Krupka M, Sieroń K. The effect of ALA-PDT under normoxia and cobalt chloride (CoCl 2)-induced hypoxia on adhesion molecules (ICAM-1, VCAM-1) secretion by colorectal cancer cells. Photodiagnosis Photodyn Ther 2017; 19:103-115. [PMID: 28495508 DOI: 10.1016/j.pdpdt.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The most fundamental problem in cancer biology research is to understand the mechanisms of cancer cell resistance to oncological therapies. Literature reports emphasize the important role of adhesion molecules: intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 (ICAM-1 and VCAM-1) in cancer progression and resistance to treatment. Photodynamic therapy (PDT) could become the component of a personalized approach to colorectal cancer, therefore we examined the effects of ALA (δ-aminolevulinic) acid PDT in normoxia and under cobalt chloride (CoCl2)-induced hypoxia on ICAM-1 and VCAM-1 secretion by colorectal cancer cells. METHODS Human colorectal cancer cells of different malignant potential SW480 and SW620 were used in the experiment. Cell lines were treated ALA, in order to achieve conditions comparable to in vivo hypoxia, CoCl2 was added, then cells were irradiated both in normoxia and in hypoxia-like conditions. Cell viability was assessed using the LDH and MTT assays and apoptosis. ICAM-1 and VCAM-1 concentrations were determined with the Bio - Plex ProTM Assay and System. RESULTS The experiment revealed that ALA PDT under normoxia and CoCl2-induced hypoxia had no significant effect on ICAM-1 and VCAM-1-dependent adhesion of colorectal cancer cells. The secretion of ICAM-1 by SW480 ell line was more pronounced compared to ICAM-1 secretion by SW620 cells. CONCLUSION Determination of tumor marker levels and especially adhesion molecules involved in metastatic spread is necessary. Our experiment reveals, that ALA PDT in normoxia and CoCl2-induced hypoxia has no effect on adhesion molecules secretion by colon cancer cells in vitro.
Collapse
Affiliation(s)
- Aleksandra Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland.
| | - Zenon Pawel Czuba
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Department of Microbiology and Immunology, 19 Jordana St., 41-808 Zabrze, Poland.
| | - Beata Kwiatek
- Specialist Hospital N(o)2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego Street 15, 41-902 Bytom, Poland.
| | - Sebastian Kwiatek
- Specialist Hospital N(o)2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego Street 15, 41-902 Bytom, Poland.
| | - Magdalena Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego Street 15, 41-902 Bytom, Poland.
| | - Karolina Sieroń
- School of Health Sciences in Katowice, Department of Physical Medicine, Chair of Physiotherapy, Medical University of Silesia, Medykow Street 12, 40-752 Katowice, Poland.
| |
Collapse
|
49
|
Changchun K, Pengchao H, Ke S, Ying W, Lei W. Interleukin-17 augments tumor necrosis factor α-mediated increase of hypoxia-inducible factor-1α and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol Lett 2017; 13:3253-3260. [PMID: 28521432 DOI: 10.3892/ol.2017.5825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
Interleukin-17 (IL-17) and tumor necrosis factor (TNF)-α are able to cooperatively alter the expression levels of a number of genes. In the present study, the mRNA expression levels of hypoxia-inducible factor (HIF)-1α were analyzed in MDA-MB-231 breast cancer cells following treatment with IL-17, TNF-α or the combination of IL-17 and TNF-α. The protein expression levels of HIF-1α and vasodilator-stimulated phosphoprotein (VASP) were evaluated using western blot analysis. The adhesive ability of the cells was determined using an MTT assay following treatment with HIF-1α-small interfering RNA and short hairpin RNA-VASP that were used to suppress the expression levels of HIF-1α and VASP protein, respectively. These results demonstrated that IL-17 augmented TNF-α-induced gene expression of HIF-1α. The combination of IL-17 and TNF-α promoted an increase in HIF-1α expression and a decrease in VASP expression and a reduction in the adhesive ability of cells. These results demonstrated that IL-17 effectively enhanced the TNF-α-induced increase in HIF-1α and inhibited VASP expression, thus reducing the adhesion of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Kuang Changchun
- Department of Pathology and Pathophysiology, Research Center of Food and Drug Evaluation, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hu Pengchao
- Department of Pathology and Pathophysiology, Research Center of Food and Drug Evaluation, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Su Ke
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wang Ying
- Department of Pathology and Pathophysiology, Research Center of Food and Drug Evaluation, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Lei
- Department of Pathology and Pathophysiology, Research Center of Food and Drug Evaluation, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
50
|
Luo G, Muyaba M, Lyu W, Tang Z, Zhao R, Xu Q, You Q, Xiang H. Design, synthesis and biological evaluation of novel 3-substituted 4-anilino-coumarin derivatives as antitumor agents. Bioorg Med Chem Lett 2017; 27:867-874. [DOI: 10.1016/j.bmcl.2017.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/11/2023]
|