1
|
Chen L, Xu X, Zhou Y. The association between the systemic inflammation response index and overactive bladder: a cross-sectional study. Eur J Med Res 2025; 30:481. [PMID: 40518516 PMCID: PMC12168402 DOI: 10.1186/s40001-025-02773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 06/06/2025] [Indexed: 06/18/2025] Open
Abstract
BACKGROUND Overactive bladder (OAB) is an intricate disorder with an unclear pathophysiological relationship with inflammation. This study employs the Systemic Inflammation Response Index (SIRI) as a quantitative measure of systemic inflammatory status and explores its association with both the risk and severity of OAB, as assessed by the Overactive Bladder Symptom Score (OABSS). METHODS Population data from the National Health and Nutrition Examination Survey (NHANES) in 2005-2020 were extracted. Weighted logistic regression and weighted linear regression models were utilized to examine the relation of SIRI to OAB risk and OABSS. The possible nonlinear relation of SIRI to clinical outcomes was examined via restricted cubic spline (RCS) models. In addition, subgroup analyses and interaction tests helped to explore the consistency of these associations across subpopulations. RESULTS 23,915 individuals were encompassed for our analysis. 9011 (21%) were diagnosed with OAB. Both weighted linear and logistic regression analyses demonstrated a significant link of SIRI to OAB risk and symptom severity (fully adjusted model: β = 0.143, 95% CI 0.086-0.200, P < 0.001; OR = 1.268, 95% CI 1.122-1.413, P < 0.001). The RCS model showed a significant nonlinear relation of SIRI to clinical outcomes. Subgroup analyses further demonstrated the consistency of these associations across various subgroups. CONCLUSIONS SIRI is a significant risk factor for OAB, and higher SIRI levels are strongly related to heightened OAB symptom severity.
Collapse
Affiliation(s)
- Liandong Chen
- The Fifth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xier Xu
- The School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Yidong Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
2
|
Mueller M, Drumm BT, Hannan JL, Ruetten H. Advancing our Understanding of the Urothelium and Lamina Propria, Hormone Receptors, Vascular Supply, and Sensory Aspects of the Female Human Urethra. Neurourol Urodyn 2025; 44:935-943. [PMID: 40103421 PMCID: PMC12018138 DOI: 10.1002/nau.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE Urinary continence is important for women's health and wellbeing. The female urethra has been understudied and mechanisms of continence remain poorly understood. Our objective is to provide a summary of current knowledge of the epithelium and lamina propria, hormone receptors, vascular supply, and sensory aspects of the female urethra and highlight continued gaps in knowledge. METHODS In October of 2020, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) sponsored a virtual seminar series entitled "Female Urethral Function and Failure: Advancing Basic and Translational Research for Genitourinary Conditions". We summarize the information presented during session 3 presentations, provide additional information from recent studies, and highlight continued gaps in knowledge. RESULTS A sensory role for urethral mucosa seems apparent based on the dense innervation of sensory afferent neurons but how the sensory afferents contribute to continence remains poorly understood. There is a complex relationship with behavior that comes into play when evaluating the contribution of sex hormones to urinary physiology. We need to update our understanding of where hormone receptors are located in the female urinary tract. Many causes of impaired urethral blood flow are also common risk factors for urinary dysfunction but we don't know how vasculature contributes to continence. Altered afferent urethral function has been implicated in several disease states, but is largely understudied. CONCLUSION There is much that remains to be learned about the urothelium and lamina propria, expression and influence of sex hormones and hormone receptors, vascular supply, and sensory aspects of the female urethra. TRIAL REGISTRATION No new data was generated for this manuscript, no clinical trial was conducted, and therefore clinical trial registration was not necessary.
Collapse
Affiliation(s)
- Margaret Mueller
- University of Chicago, Section of Urogynecology and Reconstructive Pelvic Surgery, Chicago, Illinois, USA
| | - Bernard T. Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Johanna L. Hannan
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hannah Ruetten
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Zhou Y, Liu Q, Cong H, Liao L. Advancements in the management of overactive bladder in women using nano-botulinum toxin type A: A narrative review. Curr Urol 2025; 19:77-83. [PMID: 40314015 PMCID: PMC12042194 DOI: 10.1097/cu9.0000000000000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 05/03/2025] Open
Abstract
Intravesical injections of botulinum toxin type A (BTX-A) are effective for treating refractory overactive bladder (OAB) in women. However, the adverse effects linked to the injections, such as hematuria, pain, and infection, and need for repeated injections can lower patient compliance and make the treatment inconvenient. Hence, urologists are actively pursuing less invasive and more convenient methods for the intravesical delivery of BTX-A. Advances in nanotechnology have facilitated noninvasive intravesical drug delivery. Currently, liposomes, hydrogels, nanoparticles, and many other forms of carriers can be used to enhance bladder wall permeability. This facilitates the entry of BTX-A into the bladder wall, allowing it to exert its effects. In this review, the feasibility and efficacy of liposomes, thermosensitive hydrogels, and hyaluronic acid-phosphatidylethanolamine for the treatment of OAB in women are discussed along with recent animal experiments on the use of nanotechnology-delivered BTX-A for the treatment of OAB in female rat models. Although the clinical efficacy of nanocarrier-encapsulated BTX-A for the treatment of OAB in women has not yet matched that of direct urethral muscle injection of BTX-A, improvements in certain symptoms indicate the potential of bladder instillation of nanocarrier-encapsulated BTX-A for future clinical applications. Consequently, further research on nanomaterials is warranted to advance the development of nanocarriers for the noninvasive delivery of BTX-A in the bladder.
Collapse
Affiliation(s)
- Yongheng Zhou
- Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Qinggang Liu
- Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Huiling Cong
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Limin Liao
- Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Sinha S, Cruz F, Cuenca EM, Przydacz M, Kheir GB, Kanai AJ, Van Huele A, Gajewski JB, Tarcan T, Lazar JM, Weiss JP, Tyagi P, Abrams P, Wein A. Is It Possible to Regenerate the Underactive Detrusor? Part 1. Molecular and Stem Cell Therapies Targeting the Urinary Bladder and Neural Axis - ICI-RS 2024. Neurourol Urodyn 2025; 44:577-584. [PMID: 39370871 DOI: 10.1002/nau.25597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Detrusor muscle weakness is commonly noted on urodynamics in patients with refractory voiding difficulty. No approved therapies have been proven to augment the strength of a detrusor voiding contraction. METHODS This subject was discussed by a think-tank at the International Consultation on Incontinence- Research Society (ICI-RS) meeting held in Bristol, June 2024. The discussions of the think-tank are being published in two parts. This first part discusses molecular and stem cell therapies targeting the urinary bladder and the neural axis. RESULTS Senescence of the urothelium and extracellular ATP acting through P2X3 receptors might be important in detrusor underactivity. Several molecules such as parasympathomimetics, acotiamide, ASP8302, neurokinin-2 agonists have been explored but none has shown unequivocal clinical benefit. Different stem cell therapy approaches have been used, chiefly in neurogenic dysfunction, with some studies showing benefit. Molecular targets for the neural axis have included TRPV-4, Bombesin, and serotoninergic receptors and TAC-302 which induces neurite growth. CONCLUSIONS Several options are currently being pursued in the search for an elusive molecular or stem cell option for enhancing the power of the detrusor muscle. These encompass a wide range of approaches that target each aspect of the contraction mechanism including the urothelium of bladder and urethra, myocyte, and neural pathways. While none of these have shown unequivocal clinical utility, some appear promising. Lessons from other fields of medicine might prove instructive. CLINICAL TRIAL REGISTRATION Not necessary. Not a clinical trial.
Collapse
Affiliation(s)
- Sanjay Sinha
- Department of Urology, Apollo Hospital, Hyderabad, India
| | - Francisco Cruz
- Departamento de Urologia, Hospital de S. João, Faculdade de Medicina do Porto, Porto, Portugal
| | | | | | | | - Anthony J Kanai
- Department of Medicine and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Jerzy B Gajewski
- Department of Urology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tufan Tarcan
- Departments of Urology, Marmara University School of Medicine and Koç University School of Medicine, Istanbul, Turkey
| | - Jason M Lazar
- Department of Cardiology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jeffrey P Weiss
- Department of Urology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Abrams
- Department of Urology, University of Bristol, Bristol, UK
| | - Alan Wein
- Desai-Seth Institute of Urology, University of Miami, Miami, Florida, USA
| |
Collapse
|
5
|
Gutierrez Cruz A, Borhani Peikani M, Beaulac TD, Mutafova-Yambolieva VN. Prostaglandins Differentially Regulate the Constitutive and Mechanosensitive Release of Soluble Nucleotidases in the Urinary Bladder Mucosa. Int J Mol Sci 2024; 26:131. [PMID: 39795990 PMCID: PMC11720413 DOI: 10.3390/ijms26010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders. Using an ex vivo murine detrusor-free bladder model to access the LP during bladder filling and a sensitive HPLC-FLD detection methodology, we evaluated the decrease in ATP and the increase in adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine by s-NTDs released in the LP. Endogenous PGE2 increased the spontaneous but not the distention-induced release of s-NTD via EP2 and EP3 prostanoid receptors, whereas exogenous PGE2 increased the spontaneous s-NTD release via EP3, EP4, and FP receptors and the distention-induced s-NTD release via EP1-4 and FP receptors. Endogenous PGF2α, PGD2, and PGI2 did not change the s-NTD release. Exogenous PGD2 increased the spontaneous s-NTD release via DP2 receptors and the distention-induced s-NTD release via DP1 and DP2 receptors. Exogenous PGF2α increased the spontaneous but not the distention-induced release of s-NTD via FP receptors. It is possible that higher concentrations of PGE2, PGF2α, and PGD2 (as expected in inflammation, bladder pain syndrome, or overactive bladder) potentiate the release of s-NTDs and the consecutive degradation of ATP as a safeguard mechanism to prevent the development of excessive bladder excitability and overactivity by high amounts of extracellular ATP.
Collapse
|
6
|
Ramsay S, Yew WP, Brookes S, Zagorodnyuk V. A combination of peripherally restricted CB 1 and CB 2 cannabinoid receptor agonists reduces bladder afferent sensitisation in cystitis. Eur J Pharmacol 2024; 985:177078. [PMID: 39532227 DOI: 10.1016/j.ejphar.2024.177078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Cannabinoid agonists can potentially ameliorate lower urinary tract symptoms (LUTS), including pain associated with interstitial cystitis/bladder pain syndrome (IC/BPS). This study aims to determine the contributions of the cannabinoid 1 receptors (CB1Rs) and CB2Rs in regulating the activity of different functional classes of afferents, comparing normal healthy bladder with bladders from guinea pigs with protamine/zymosan-induced cystitis. The mechanosensitivity of different functional afferent classes was determined by ex vivo single-unit extracellular recordings. Peripherally restricted CB1R preferential agonists, ACEA and PrNMI and peripherally restricted CB2R selective agonists, 4Q3C and olorinab all reduced the mechanosensitivity of mucosal bladder afferents. The potency and efficacy of these synthetic cannabinoid agonists were significantly increased in cystitis compared to controls. Combined application of CB1R agonists, ACEA or PrNMI with the CB2R agonist, 4Q3C produced additive inhibitory effects. ACEA and PrNMI also inhibited the stretch-induced firing of high-threshold muscular bladder afferents in animals with cystitis. In contrast, low- and high-threshold muscular-mucosal bladder afferents were unaffected by the CB1R and CB2R agonists in control and cystitis. Our data indicated that peripherally restricted CB1R and CB2R agonists effectively reduce the sensitisation of probable nociceptive afferents in the bladder in cystitis. The findings also suggest a potential benefit of simultaneously targeting both the CB1Rs and CB2Rs to ameliorate LUTS in cystitis.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Wai Ping Yew
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Simon Brookes
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
7
|
Yew WP, Hibberd T, Spencer NJ, Zagorodnyuk V. Piezo1, but not ATP, is required for mechanotransduction by bladder mucosal afferents in cystitis. Auton Neurosci 2024; 256:103231. [PMID: 39627069 DOI: 10.1016/j.autneu.2024.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Piezo ion channels play a role in bladder sensation, but the sensory afferent subtypes that utilise Piezo channels have not been fully explored. We made single-unit extracellular recordings from mucosal-projecting bladder afferents in guinea pigs with protamine/zymosan-induced cystitis. The Piezo1 agonist, Yoda1, significantly potentiated mechanosensitivity, while its antagonist, Dooku1, abolished this potentiation. The P2 purinoceptor antagonist, PPADS abolished α,β-methylene ATP-induced excitation of mucosal afferents without affecting their mechanical activation or potentiation of mechanosensitivity by Yoda1. The findings suggest Piezo1, but not ATP, is required for mechanotransduction in bladder mucosal afferents in cystitis.
Collapse
Affiliation(s)
- Wai Ping Yew
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Timothy Hibberd
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Nick J Spencer
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
8
|
Elmasri M, Clark A, Grundy L. Peripheral Mechanisms Underlying Bacillus Calmette-Guerin-Induced Lower Urinary Tract Symptoms (LUTS). Brain Sci 2024; 14:1203. [PMID: 39766402 PMCID: PMC11675006 DOI: 10.3390/brainsci14121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) accounts for approximately 70-75% of all bladder cancer cases. The standard treatment for high-risk NMIBC involves transurethral tumour resection followed by intravesical Bacillus Calmette-Guerin (BCG) immunotherapy. While BCG immunotherapy is both safe and effective, it frequently leads to the development of lower urinary tract symptoms (LUTS) such as urinary urgency, frequency, dysuria, and pelvic discomfort. These symptoms can significantly diminish patients' quality of life and may result in the discontinuation of BCG treatment, adversely affecting oncological outcomes. Despite the considerable clinical impact of BCG-induced LUTS, the underlying mechanisms remain unclear, hindering the implementation or development of effective treatments. This review provides novel insights into the potential mechanisms underlying BCG-induced LUTS, focusing on the integrated roles of afferent and efferent nerves in both normal and pathological bladder sensation and function. Specifically, this review examines how the body's response to BCG-through the development of inflammation, increased urothelial permeability, and altered urothelial signalling-might contribute to LUTS development. Drawing from known mechanisms in other common urological disorders and data from successful clinical trials involving NMIBC patients, this review summarises evidence supporting the likely changes in both sensory nerve signalling and bladder muscle function in the development of BCG-induced LUTS. However, further research is required to understand the intricate mechanisms underlying the development of BCG-induced LUTS and identify why some patients are more likely to experience BCG intolerance. Addressing these knowledge gaps could have profound implications for patients' quality of life, treatment adherence, and overall outcomes in NMIBC care.
Collapse
Affiliation(s)
| | | | - Luke Grundy
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia; (M.E.); (A.C.)
| |
Collapse
|
9
|
Nishizaki N, Oshiro S, Tohya M, Watanabe S, Okazaki T, Takahashi K, Kirikae T, Shimizu T. Propionimicrobium lymphophilum in urine of children with monosymptomatic nocturnal enuresis. Front Cell Infect Microbiol 2024; 14:1377992. [PMID: 39654976 PMCID: PMC11626389 DOI: 10.3389/fcimb.2024.1377992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Background Despite a unique microbiome in urine, the relationship between nocturnal enuresis and the urobiome remains unclear. This study aimed to compare the presence of specific bacterial species in the urine of children with and without nocturnal enuresis. Methods We used 16S ribosomal RNA gene sequencing to analyze the urobiome in urine samples obtained from the two groups of children. The presence of Propionimicrobium lymphophilum was examined using real-time PCR in the urine of 25 children diagnosed with monosymptomatic nocturnal enuresis (MNE), and 17 children without this condition. Results Children with MNE exhibited a significantly higher prevalence of P. lymphophilum: 16 out of 25 (64.0%) compared to 4 out of 17 (23.5%) in the control group. Among children with frequent bedwetting, there was a significantly higher prevalence of P. lymphophilum;15 out of 16 (93.8%) compared to 2 out of 9 (22.2%) in those with infrequent bedwetting. Bacterial culture tests confirmed the anaerobic growth of P. lymphophilum isolates from urine samples of two PCR-positive patients with MNE. These isolates were found to be susceptible to ampicillin. Conclusion These findings suggest that P. lymphophilum may be associated with chronic urinary tract infections and potentially contribute to the development of MNE in children.
Collapse
Affiliation(s)
- Naoto Nishizaki
- Department of Pediatrics, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Satoshi Oshiro
- AMR Research Laboratory, Juntendo Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo, Japan
| | - Mari Tohya
- Division of Food Safety Information, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Shin Watanabe
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadaharu Okazaki
- Department of Pediatric Surgery, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Ken Takahashi
- Department of Pediatrics, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Teruo Kirikae
- AMR Research Laboratory, Juntendo Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo, Japan
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Liu H, Li P, Zhao M, Ma T, Lv G, Liu L, Wen J, Liu J, Yan J, Li J, Xiao Z, Wang W, Wang H, Xiao P, Zhang X. Activation of Piezo1 channels enhances spontaneous contractions of isolated human bladder strips via acetylcholine release from the mucosa. Eur J Pharmacol 2024; 983:176954. [PMID: 39237075 DOI: 10.1016/j.ejphar.2024.176954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Enhanced spontaneous bladder contractions (SBCs) have been thought one of the important underlying mechanisms for detrusor overactivity (DO). Piezo1 channel has been demonstrated involved in bladder function and dysfunction in rodents. We aimed to investigate the modulating role of Piezo1 in SBCs activity of human bladder. Human bladder tissues were obtained from 24 organ donors. SBCs of isolated bladder strips were recorded in organ bath. Piezo1 expression was examined with reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining. ATP and acetylcholine release in cultured human urothelial cells was measured. Piezo1 is abundantly expressed in the bladder mucosa. Activation of Piezo1 with its specific agonist Yoda1 (100 nM-100 μM) enhanced the SBCs activity in isolated human bladder strips in a concentration-dependent manner. The effect of Yoda1 mimicked the effect of a low concentration (30 nM) of carbachol, which can be attenuated by removing the mucosa, blocking muscarinic receptors with atropine (1 μM), and blocking purinergic receptors with pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS, 30 μM), but not by tetrodotoxin (1 μM). Activation of urothelial Piezo1 with Yoda1 (30 μM) or hypotonic solution induced the release of ATP and acetylcholine in cultured human urothelial cells. In patients with benign prostatic hyperplasia, greater Piezo1 expression was observed in bladder mucosa from patients with DO than patients without DO. We conclude that upregulation and activation of Piezo1 may contribute to DO generation in patients with bladder outlet obstruction by promoting the urothelial release of ATP and acetylcholine. Inhibition of Piezo1 may be a novel therapeutic approach in the treatment of overactive bladder.
Collapse
Affiliation(s)
- Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Shandong, PR China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Tianjia Ma
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Guangda Lv
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Lei Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Jiaxin Liu
- Department of Kidney Transplantation, The Second Hospital of Shandong University, Jinan, PR China
| | - Jieke Yan
- Department of Kidney Transplantation, The Second Hospital of Shandong University, Jinan, PR China
| | - Jinyang Li
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Zhiying Xiao
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Wenzhen Wang
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Haoyu Wang
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China
| | - Pan Xiao
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China.
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR China.
| |
Collapse
|
11
|
Mutafova-Yambolieva VN. Mechanosensitive release of ATP in the urinary bladder mucosa. Purinergic Signal 2024:10.1007/s11302-024-10063-6. [PMID: 39541058 DOI: 10.1007/s11302-024-10063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.
Collapse
|
12
|
Aizawa N, Natsuya H, Fujita T. Changes of the Urothelial Barrier System in the Cyclophosphamide-Induced Cystitis in Rats by Using a Newly Established "Inside-Out" Urinary Bladder Preparation. Low Urin Tract Symptoms 2024; 16:e12538. [PMID: 39537131 DOI: 10.1111/luts.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES The study was aimed to establish the "inside-out" preparation with the urothelium and investigate the changes in urothelial permeability of the cyclophosphamide (CYP)-induced cystitis model in rats. METHODS In female rats with or without CYP injection, the isolated whole bladder was utilized as an "inside-out" preparation with the urothelium, which was created by reversing the bladder from a top portion. The preparation was fixed in the organ bath, and instilled with a Krebs solution (0.5 mL) through the bladder neck. After it was kept under an isovolumetric condition, high K+ (KCl: 50 mM) or acetylcholine (ACh: 10 μM) was added into the organ bath. RESULTS In the normal bladder, the intravesical pressure of the inside-out preparation with the urothelium did not change with the addition of KCl or ACh. Contrarily, in the CYP-injected bladder 24 or 48 h after injection of CYP, the intravesical pressure of the inside-out preparation increased with the addition of KCl or ACh. Histological examinations showed a denuded and/or cracked surface of the urothelial layer, and the intensity of uroplakin III staining of the urothelial layer decreased in the CYP-injected rats. CONCLUSIONS The study demonstrated the bladder urothelium has robust barrier mechanisms for preventing the absorption of water (urine) under the normal condition. However, these barrier mechanisms were disrupted in the CYP-induced cystitis, suggesting that water and urine insults can be permeabilized into the urinary bladder, specifically to the smooth muscle layer.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Hiroki Natsuya
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
13
|
Asiri YI, Moni SS, Ramar M, Chidambaram K. Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings. Pharmaceuticals (Basel) 2024; 17:1439. [PMID: 39598351 PMCID: PMC11597627 DOI: 10.3390/ph17111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Despite major advancements in our understanding of its fundamental causes, pain-both acute and chronic-remains a serious health concern. Various preclinical investigations utilizing diverse animal, cellular, and alternative models are required and frequently demanded by regulatory approval bodies to bridge the gap between the lab and the clinic. Investigating naturally occurring painful disorders can speed up medication development at the preclinical and clinical levels by illuminating molecular pathways. A wide range of animal models related to pain have been developed to elucidate pathophysiological mechanisms and aid in identifying novel targets for treatment. Pain sometimes drugs fail clinically, causing high translational costs due to poor selection and the use of preclinical tools and reporting. To improve the study of pain in a clinical context, researchers have been creating innovative models over the past few decades that better represent pathological pain conditions. In this paper, we provide a summary of traditional animal models, including rodents, cellular models, human volunteers, and alternative models, as well as the specific characteristics of pain diseases they model. However, a more rigorous approach to preclinical research and cutting-edge analgesic technologies may be necessary to successfully create novel analgesics. The research highlights from this review emphasize new opportunities to develop research that includes animals and non-animals using proven methods pertinent to comprehending and treating human suffering. This review highlights the value of using a variety of modern pain models in animals before human trials. These models can help us understand the different mechanisms behind various pain types. This will ultimately lead to the development of more effective pain medications.
Collapse
Affiliation(s)
- Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| |
Collapse
|
14
|
Yang Z, Liu Y, Xiang Y, Chen R, Chen L, Wang S, Lv L, Zang M, Zhou N, Li S, Shi B, Li Y. ILC2-derived CGRP triggers acute inflammation and nociceptive responses in bacterial cystitis. Cell Rep 2024; 43:114859. [PMID: 39412984 DOI: 10.1016/j.celrep.2024.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide involved in nociceptor neuronal function, plays a critical role in mediating neuroinflammation and pain. In this study, we find that bladder group 2 innate lymphoid cells (ILC2s) function as primary producers of CGRP in the early phase of bacterial cystitis, contributing to increased inflammation, altered voiding behavior, and heightened pelvic allodynia. Furthermore, we demonstrate that interleukin (IL)-33, a cytokine secreted by urothelial cells, upregulates CGRP production by ILC2s in the bladder during uropathogenic Escherichia coli (UPEC) infection. Moreover, our research reveals that monocytes expressing high levels of receptor activity-modifying protein 1 (RAMP1), a CGRP receptor, mediate the pro-inflammatory effects of CGRP-producing ILC2s. In summary, our results underscore the significance of the immune cell-derived neuropeptides in the pathology of UPEC infection, suggesting a promising therapeutic approach targeting the IL-33-ILC2-CGRP axis for managing lower urinary tract symptoms in bacterial cystitis.
Collapse
Affiliation(s)
- Zizhuo Yang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yinrui Xiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Rui Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shuai Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Linchen Lv
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| | - Yan Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| |
Collapse
|
15
|
Birder LA, Wolf-Johnston A, Ritov V, Stern JNH, Moldwin R, Kuo HC, Jackson EK. Purine nucleoside phosphorylase as a target for the treatment of interstitial cystitis/bladder pain syndrome with and without Hunner lesions. Sci Rep 2024; 14:21898. [PMID: 39300176 DOI: 10.1038/s41598-024-73280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Chronic visceral pain disorders, such as interstitial cystitis/bladder pain syndrome (IC/BPS), are difficult to treat, and therapies are limited in number and efficacy. Emerging evidence suggests that alterations in the enzyme purine nucleoside phosphorylase (PNPase) may participate in oxidative injury and cellular damage. PNPase is important for the metabolism of 'tissue-protective' purine metabolites to 'tissue-damaging' purines that generate free radicals. The aim of this study is to test whether patients living with IC/BPS without or with Hunner lesions and irrespective of any therapies exhibit purine dysregulation with higher levels of tissue-damaging purine metabolites as measured by liquid chromatography-tandem mass spectrometry. Our results demonstrate that levels of urotoxic purine metabolites (hypoxanthine and xanthine) in IC/BPS patients with and without Hunner lesions are elevated compared to healthy controls. These findings suggest there may be pathophysiologic commonalities between patient subtypes. Furthermore, the accumulation of uroprotective purines and depletion of urodamaging purines by PNPase inhibition may be therapeutically effective in both groups of patients.
Collapse
Affiliation(s)
- Lori A Birder
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
- University of Pittsburgh School of Medicine, A 1217 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15217, USA.
| | - Amanda Wolf-Johnston
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Vladimir Ritov
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Joel N H Stern
- Northwell Health, Zucker School of Medicine at Hofstra/Northwell, Arthur Smith Institute for Urology, Lake Success, NY, 11549, USA
| | - Robert Moldwin
- Northwell Health, Zucker School of Medicine at Hofstra/Northwell, Arthur Smith Institute for Urology, Lake Success, NY, 11549, USA
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Tzu Chi University, Hualien, Taiwan
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
16
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR, Parekh PS, Jani M. Disabled-2, a versatile tissue matrix multifunctional scaffold protein with multifaceted signaling: Unveiling its potential in the cancer battle. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5533-5557. [PMID: 38502243 DOI: 10.1007/s00210-024-03037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
A multifunctional scaffold protein termed Disabled-2 (Dab2) has recently gained attention in the scientific community and has emerged as a promising candidate in the realm of cancer research. Dab2 protein is involved in a variety of signaling pathways, due to which its significance in the pathogenesis of several carcinomas has drawn considerable attention. Dab2 is essential for controlling the advancement of cancer because it engages in essential signaling pathways such as the Wnt/β-catenin, epidermal growth factor receptor (EGFR), and transforming growth factor-beta (TGF-β) pathways. Dab2 can also repress epithelial-mesenchymal transition (EMT) which is involved in tumor progression with metastatic expansion and adds another layer of significance to its possible impact on cancer spread. Furthermore, the role of Dab2 in processes such as cell growth, differentiation, apoptosis, invasion, and metastasis has been explored in certain investigative studies suggesting its significance. The present review examines the role of Dab2 in the pathogenesis of various cancer subtypes including breast cancer, ovarian cancer, gastric cancer, prostate cancer, and bladder urothelial carcinoma and also sheds some light on its potential to act as a therapeutic target and a prognostic marker in the treatment of various carcinomas. By deciphering this protein's diverse signaling, we hope to provide useful insights that may pave the way for novel therapeutic techniques and tailored treatment approaches in cancer management. Preclinical and clinical trial data on the impact of Dab2 regulation in cancer have also been included, allowing us to delineate role of Dab2 in tumor suppressor function, as well as its correlation with disease stage classification and potential therapy options. However, we observed that there is very scarce data in the form of studies on the evaluation of Dab2 role and treatment function in carcinomas, and further research into this matter could prove beneficial in the generation of novel therapeutic agents for patient-centric and tailored therapy, as well as early prognosis of carcinomas.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Maharsh Jani
- Anand Niketan Shilaj, Ahmedabad, 380059, Gujarat, India
| |
Collapse
|
17
|
Liu J, Wang C, Wang W, Ding N, Liu J, Liu H, Wen J, Sun W, Zu S, Zhang X, Yan J. Activation of Piezo1 or TRPV2 channels inhibits human ureteral contractions via NO release from the mucosa. Front Pharmacol 2024; 15:1410565. [PMID: 38989142 PMCID: PMC11233528 DOI: 10.3389/fphar.2024.1410565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
We aimed to investigate the expression and motor modulatory roles of several mechano-sensitive channels (MSCs) in human ureter. Human proximal ureters were obtained from eighty patients subjected to nephrectomy. Expression of MSCs at mRNA, protein and functional levels were examined. Contractions of longitudinal ureter strips were recorded in organ bath. A fluorescent probe Diaminofluoresceins was used to measure nitric oxide (NO). RT-PCR analyses revealed predominant expression of Piezo1 and TRPV2 mRNA in intact ureter and mucosa. Immunofluorescence assays indicate proteins of MSCs (Piezo1/Piezo2, TRPV2 and TRPV4) were mainly distributed in the urothelium. Ca2+ imaging confirmed functional expression of TRPV2, TRPV4 and Piezo1 in cultured urothelial cells. Specific agonists of Piezo1 (Yoda1, 3-300 μM) and TRPV2 (cannabidiol, 3-300 μM) attenuated the frequency of ureteral contractions in a dose-dependent manner while the TRPV4 agonist GSK1016790A (100 nM-1 μM) exerted no effect. The inhibitory effects of Piezo1 and TRPV2 agonists were significantly blocked by the selective antagonists (Dooku 1 for Piezo1, Tranilast for TRPV2), removal of the mucosa, and pretreatment with NO synthase inhibitor L-NAME (10 μM). Yoda1 (30 μM) and cannabidiol (50 μM) increased production of NO in cultured urothelial cells. Our results suggest that activation of Piezo1 or TRPV2 evokes NO production and release from mucosa that may mediate mechanical stimulus-induced reduction of ureter contractions. Our findings support the idea that targeting Piezo1 and TRPV2 channels may be a promising pharmacological strategy for ureter stone passage or colic pain relief.
Collapse
Affiliation(s)
- Jianing Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Cong Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wenyu Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiaxin Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jieke Yan
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Kheir GB, Verbakel I, Wyndaele M, Monaghan TF, Sinha S, Larsen TH, Van Laecke E, Birder L, Hervé F, Everaert K. Lifelong LUTS: Understanding the bladder's role and implications across transition phases, a comprehensive review. Neurourol Urodyn 2024; 43:1066-1074. [PMID: 38289317 DOI: 10.1002/nau.25304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Lower urinary tract symptoms (LUTSs) are a diverse array of urinary and pelvic dysfunctions that can emerge from childhood, extend through adulthood, and persist into older age. This narrative review aims to provide a comprehensive perspective on the continuum of LUTS and shed light on the underlying mechanisms and clinical implications that span across the lower urinary tract. METHODS A panel of five experts from Belgium, the Netherlands, India, Denmark, and the United States participated in an intensive research to explore and pinpoint existing insights into the lifelong concept of LUTS, particularly at the pelvic level. The experts reviewed the existing literature and held a webinar to discuss their findings. RESULTS Childhood LUTS can persist, resolve, or progress into bladder underactivity, dysfunctional voiding, or pain syndromes. The Lifelong character can be explained by pelvic organ cross-talk facilitated through complex neurological and nonneurological interactions. At the molecular level, the role of vasopressin receptors in the bladder's modulation and their potential relevance to therapeutic strategies for LUTS are explored. Frailty emerges as a parallel concept to lifelong LUTS, with a complex and synergistic relationship. Frailty, not solely an age-related condition, accentuates LUTS severity with insufficient evidence regarding the effectiveness and safety profile of the available therapeutic modalities. CONCLUSION Understanding lifelong LUTSs offers insights into genetic, anatomical, neurological, and molecular mechanisms. Further research could identify predictive biomarkers, elucidate the role of clinically translatable elements in pelvic cross-talk, and uncover molecular signatures for personalized management.
Collapse
Affiliation(s)
- George Bou Kheir
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Irina Verbakel
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Michel Wyndaele
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas F Monaghan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sanjay Sinha
- Department of Urology, Apollo Hospital, Hyderabad, Telangana, India
| | - Tove Holm Larsen
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Erik Van Laecke
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Lori Birder
- Departments of Medicine and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - François Hervé
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Karel Everaert
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
19
|
Peng L, Chen JW, Chen YZ, Zhang C, Shen SH, Liu MZ, Fan Y, Yang SQ, Zhang XZ, Wang W, Gao XS, Di XP, Ma YC, Zeng X, Shen H, Jin X, Luo DY. UPK3A + umbrella cell damage mediated by TLR3-NR2F6 triggers programmed destruction of urothelium in Hunner-type interstitial cystitis/painful bladder syndrome. J Pathol 2024; 263:203-216. [PMID: 38551071 DOI: 10.1002/path.6275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 05/12/2024]
Abstract
Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Liao Peng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jia-Wei Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuan-Zhuo Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chi Zhang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Si-Hong Shen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Meng-Zhu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yang Fan
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Shi-Qin Yang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Wei Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiao-Shuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xing-Peng Di
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yu-Cheng Ma
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiao Zeng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Shen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - De-Yi Luo
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- Pelvic Floor Diseases Center, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
20
|
Liang P, Tang QL, Lin T, Tang ZK, Liu FD, Zhou XZ, Tao RZ. Efficacy and safety of pelvic floor magnetic stimulation combined with mirabegron in female patients with refractory overactive bladder: a prospective study. Front Neurosci 2024; 18:1373375. [PMID: 38660220 PMCID: PMC11040079 DOI: 10.3389/fnins.2024.1373375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Objective To observe the efficacy and safety of pelvic floor magnetic stimulation (PFMS) combined with mirabegron in female patients with refractory overactive bladder (OAB) symptoms. Patients and methods A total of 160 female patients with refractory OAB symptoms were prospectively randomized into two groups. Eighty cases in the combination group accepted PFMS and mirabegron therapy and 80 cases as control only accepted mirabegron therapy (The clinical trial registry number: ChiCTR2200070171). The lower urinary tract symptoms, OAB questionnaire (OAB-q) health-related quality of life (HRQol), symptom bother score and OABSS between two groups were compared at the 1st, 2nd and 4th week ends. Results All of 160 patients were randomly assigned to two groups, of which 80 patients were included in the combination group and 80 in the mirabegron group. The incidences of LUTS, including urgency, frequent urination, and incontinence episodes, in the 2nd week and the 4th week after combination treatment were significantly lower than those in the mirabegron group (p < 0.05). The incidence of drug-related adverse events between two groups was similar, and there was no statistically significant difference (p > 0.05). With respect to secondary variables, the OAB-q HRQol score in the combination group was statistically superior in comparison with that in the mirabegron group between the 2nd week and the 4th week (p < 0.05). This was consistent with the primary outcome. Meanwhile, from the second to fourth week, the OAB-q symptom bother score and OABSS in the combination group were both lower than in the mirabegron group (p < 0.05). Conclusion Combination therapy of PFMS and mirabegron demonstrated significant improvements over mirabegron monotherapy in reducing refractory OAB symptoms for female patients, and providing a higher quality of life without increasing bothersome adverse effects. Clinical Trial Registration https://www.chictr.org.cn/, ChiCTR-INR-22013524.
Collapse
Affiliation(s)
- Ping Liang
- Department of General Surgery, The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qing-Lai Tang
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Lin
- Department of Urology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Zheng-Kun Tang
- Department of Clinical Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Fa-de Liu
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Zhu Zhou
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong-Zhen Tao
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Chen H, Hoi MPM, Lee SMY. Medicinal plants and natural products for treating overactive bladder. Chin Med 2024; 19:56. [PMID: 38532487 DOI: 10.1186/s13020-024-00884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/02/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Overactive bladder (OAB) presents a high prevalence of 16-18% worldwide. The pathophysiology of OAB is still poorly understood while effective therapy or countermeasure are very limited. On the other hand, medicinal plants and herbal remedies have been utilized for treating lower urinary tract symptoms (LUTS) in both Eastern and Western cultures since ancient times. In recent years, accumulating progress has also been made in OAB treatment research by using medicinal plants. METHODS Relevant literature on the studies of medicinal plants and herbs used to treat OAB was reviewed. The medicinal plants were summarized and categorized into two groups, single-herb medications and herbal formulations. RESULTS The present review has summarized current understanding of OAB's pathophysiology, its available treatments and new drug targets. Medicinal plants and natural products which have been used or have shown potential for OAB treatment were updated and comprehensively categorized. Studies on a wide variety of medicinal plants showed promising results, although only a few phytochemicals have been isolated and identified. Until now, none of these herbal compounds have been further developed into clinical therapeutics for OAB. CONCLUSIONS This review provides the basis for discovering and designing new phytopharmaceutical candidates with effective and well-tolerated properties to treat OAB. Increasing evidences indicate new strategies with alternative herbal treatment for OAB have high efficacy and safety, showing great promise for their clinical use. Future studies in a rigorously designed controlled manner will be beneficial to further support the eligibility of herbal treatment as OAB therapeutics.
Collapse
Affiliation(s)
- Huanxian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
22
|
Wolf-Johnston A, Ikeda Y, Zabbarova I, Kanai AJ, Bastacky S, Moldwin R, Stern JN, Jackson EK, Birder LA. Purine nucleoside phosphorylase inhibition is an effective approach for the treatment of chemical hemorrhagic cystitis. JCI Insight 2024; 9:e176103. [PMID: 38271096 PMCID: PMC10972598 DOI: 10.1172/jci.insight.176103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Hemorrhagic cystitis may be induced by infection, radiation therapy, or medications or may be idiopathic. Along with hemorrhagic features, symptoms include urinary urgency and frequency, dysuria (painful urination), and visceral pain. Cystitis-induced visceral pain is one of the most challenging types of pain to treat, and an effective treatment would address a major unmet medical need. We assessed the efficacy of a purine nucleoside phosphorylase inhibitor, 8-aminoguanine (8-AG), for the treatment of hemorrhagic/ulcerative cystitis. Lower urinary tract (LUT) function and structure were assessed in adult Sprague-Dawley rats, treated chronically with cyclophosphamide (CYP; sacrificed day 8) and randomized to daily oral treatment with 8-AG (begun 14 days prior to CYP induction) or its vehicle. CYP-treated rats exhibited multiple abnormalities, including increased urinary frequency and neural mechanosensitivity, reduced bladder levels of inosine, urothelial inflammation/damage, and activation of spinal cord microglia, which is associated with pain hypersensitivity. 8-AG treatment of CYP-treated rats normalized all observed histological, structural, biochemical, and physiological abnormalities. In cystitis 8-AG improved function and reduced both pain and inflammation likely by increasing inosine, a tissue-protective purine metabolite. These findings demonstrate that 8-AG has translational potential for reducing pain and preventing bladder damage in cystitis-associated LUT dysfunctions.
Collapse
Affiliation(s)
| | - Youko Ikeda
- Renal-Electrolyte Division, Department of Medicine
| | | | - Anthony J Kanai
- Renal-Electrolyte Division, Department of Medicine
- Department of Pharmacology and Chemical Biology; and
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert Moldwin
- Arthur Smith Institute for Urology, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, USA
| | - Joel Nh Stern
- Arthur Smith Institute for Urology, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, USA
| | | | - Lori A Birder
- Renal-Electrolyte Division, Department of Medicine
- Department of Pharmacology and Chemical Biology; and
| |
Collapse
|
23
|
van Ginkel C, Hurst RE, Janssen D. The urothelial barrier in interstitial cystitis/bladder pain syndrome: its form and function, an overview of preclinical models. Curr Opin Urol 2024; 34:77-83. [PMID: 37933666 PMCID: PMC10842656 DOI: 10.1097/mou.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
PURPOSE OF REVIEW Investigating bladder pain syndrome/interstitial cystitis (IC/BPS) preclinically is challenging. Various research models have been used to mimic the urothelial barrier closely and replicate the disease. The aim of this review is to discuss preclinical research related to the urothelial barrier in context of IC/BPS. RECENT FINDINGS In vivo models mimic IC/BPS mainly with toxic substances in the urine, with protaminesulfate and proteoglycan deglycolysation resembling a temporary impaired barrier as seen in IC/BPS. This temporary increased permeability has also been found in vitro models. Glycosaminoglycan replenishment therapy has been described, in vivo and in vitro, to protect and enhance recover properties of the urothelium. The roles of immune and neurogenic factors in the pathogenesis of IC/BPS remains relatively understudied. SUMMARY Preclinical studies provide opportunities to identify the involvement of specific pathologic pathways in IC/BPS. For further research is warranted to elucidate the primary or secondary role of permeability, together with inflammatory and neurogenic causes of the disease.
Collapse
Affiliation(s)
- Charlotte van Ginkel
- Department of Urology, Radboud university medical Center, Nijmegen, The Netherlands
| | | | - Dick Janssen
- Department of Urology, Radboud university medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Mormone E, Cisternino A, Capone L, Caradonna E, Sbarbati A. The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans. Int J Mol Sci 2024; 25:2326. [PMID: 38397003 PMCID: PMC10889234 DOI: 10.3390/ijms25042326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Given the recent evidence in the clinical application of regenerative medicine, mostly on integumentary systems, we focused our interests on recent bladder regeneration approaches based on mesenchymal stem cells (MSCs), platelet-rich plasma (PRP), and hyaluronic acid (HA) in the treatment of interstitial cystitis/bladder pain syndrome (IC/BPS) in humans. IC/BPS is a heterogeneous chronic disease with not-well-understood etiology, characterized by suprapubic pain related to bladder filling and urothelium dysfunction, in which the impairment of immunological processes seems to play an important role. The histopathological features of IC include ulceration of the mucosa, edema, denuded urothelium, and increased detection of mast cells and other inflammatory cells. A deeper understanding of the molecular mechanism underlying this disease is essential for the selection of the right therapeutic approach. In fact, although various therapeutic strategies exist, no efficient therapy for IC/BPS has been discovered yet. This review gives an overview of the clinical and pathological features of IC/BPS, with a particular focus on the molecular pathways involved and a special interest in the ongoing few investigational therapies in IC/BPS, which use new regenerative medicine approaches, and their synergetic combination. Good knowledge of the molecular aspects related to stem cell-, PRP-, and biomaterial-based treatments, as well as the understanding of the molecular mechanism of this pathology, will allow for the selection of the right and best use of regenerative approaches of structures involving connective tissue and epithelia, as well as in other diseases.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Intitute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Antonio Cisternino
- Santa Maria di Bari Hospital, Via Antonio de Ferraris 22, 70124 Bari, Italy;
| | - Lorenzo Capone
- Department of Urology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy;
| | | | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, Human Anatomy and Histology Section, University of Verona, 37129 Verona, Italy;
| |
Collapse
|
25
|
Kwon J, Kim DY, Cho KJ, Hashimoto M, Matsuoka K, Kamijo T, Wang Z, Karnup S, Robertson AM, Tyagi P, Yoshimura N. Pathophysiology of Overactive Bladder and Pharmacologic Treatments Including β3-Adrenoceptor Agonists -Basic Research Perspectives. Int Neurourol J 2024; 28:12-33. [PMID: 38461853 DOI: 10.5213/inj.2448002.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or without urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, aging, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myogenic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic contraction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine (ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals in the afferent nerve transmission process. β3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhibition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a β3-agonist, prevents ACh release in the BOO-induced detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via urothelial β3-AR.
Collapse
Affiliation(s)
- Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Leaders Urology Clinic, Daegu, Korea
| | - Duk Yoon Kim
- Department of Urology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tadanobu Kamijo
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Bioengineering, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
de Rijk MM, Peter S, Wolf-Johnston A, Heesakkers J, van Koeveringe GA, Birder LA. Quantification of Aging-Related Decreases in Sensory Innervation of the Bladder Trigone in Rats. Int Neurourol J 2024; 28:40-45. [PMID: 38461855 DOI: 10.5213/inj.2346220.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 03/12/2024] Open
Abstract
PURPOSE The prevalence of lower urinary tract symptoms (LUTS), characterized by problems regarding storage and/or voiding of urine, is known to significantly increase with age. Effective communication between the lower urinary tract and the central nervous system (CNS) is essential for the optimal function of this system, and heavily relies on the efficient interaction between the bladder urothelium and the afferent nerve fibers situated in close proximity to the urothelium within the lamina propria. METHODS We aimed to quantify aging-related differences in the expression of calcitonin gene-related peptide (CGRP, an established marker for sensory nerve fibers) in the trigonal mucosal layers of young (3-4 months) and aged (25-30 months) rats. We evaluated trigonal tissue from 3 animals per age group. Tissue was serially sectioned at 10 μm and stained for CGRP. Images were taken along the full length of the tissue. For each image we computed the total CGRP-positive area (μm2) and the median value for each animal was used for further analysis. RESULTS Upon statistical analysis the aged rats show a significantly lower CGRP-positive area compared to young rats (P=0.0049). These results indicate that aging has a negative effect on the area of CGRP-positive signal in the trigone. CONCLUSION The structural and functional integrity of the sensory web in the trigonum of rats is negatively affected by the aging process, potentially leading to impaired communication between the bladder urothelium the CNS. Consequently, these perturbations in the sensory system may contribute to the pathogenesis or exacerbation LUTS.
Collapse
Affiliation(s)
- Mathijs M de Rijk
- Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Urology, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Saša Peter
- Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Amanda Wolf-Johnston
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Heesakkers
- Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Urology, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Gommert A van Koeveringe
- Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Urology, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Gao X, Jin X, Wang W, Di X, Peng L, Li H, Liao B, Wang K. β-Adrenoceptors regulate urothelial inflammation and zonula occludens in the bladder outlet obstruction model. Int Immunopharmacol 2024; 127:111371. [PMID: 38103410 DOI: 10.1016/j.intimp.2023.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the effects of β-adrenoceptors (ADRBs) on the urothelial inflammation and zonula occludens (ZO) in a rat PBOO model and in an in vitro model. METHODS The PBOO model was established by ligating the bladder neck of rats. Twenty rats were divided into 4 groups: sham operation, PBOO + normal saline, PBOO + ADRB2 agonist, PBOO + ADRB3 agonist. PBOO rats were with treated with ADRBs agonists for 3 weeks. Human urothelial cells (HUCs) were subjected to ADRBs agonist treatment or hydrostatic pressure in an in vitro model. RESULTS In the PBOO group, there was a significant increase in the expression of MCP-1, IL-6 and RANTES compared to the sham group. By contrast, there was a post-PBOO decline in the expression of ZO-1 and ZO-2 in the urothelium. ADRB2 or ADRB3 agonists exhibited downregulated inflammatory cytokine expression and increased ZO expression in the PBOO model. The regulation of inflammation and ZO by ADRB2 and ADRB3 agonists in an in vitro model was found consistent with that in the PBOO model. Moreover, RhoA and ROCK inhibitors suppressed the expression of hydrostatic pressure-induced inflammatory cytokines. Additionally, RhoA agonist reversed the inhibitory effect of ADRBs agonists on the inflammatory secretion from HUCs. CONCLUSIONS ADRB2 and ADRB3 agonists increased ZO protein expression in HUCs in a rat PBOO model and in an in vitro model. Furthermore, ADRB2 and ADRB3 agonists inhibited the secretion of inflammatory cytokines from HUCs by regulating the RhoA/ROCK signaling pathways.
Collapse
Affiliation(s)
- Xiaoshuai Gao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xi Jin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Wei Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xingpeng Di
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Liao Peng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Banghua Liao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
28
|
Gugliandolo E, Franco GA, Marino Y, Peritore AF, Impellizzeri D, Cordaro M, Siracusa R, Fusco R, D’Amico R, Macrì F, Di Paola R, Cuzzocrea S, Crupi R. Uroprotective and pain-relieving effect of dietary supplementation with micronized palmitoyl-glucosamine and hesperidin in a chronic model of cyclophosphamide-induced cystitis. Front Vet Sci 2024; 10:1327102. [PMID: 38249555 PMCID: PMC10797840 DOI: 10.3389/fvets.2023.1327102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Feline idiopathic cystitis is a common, chronic-relapsing disorder of the lower urinary tract. In addition to environmental modification/enrichment, long-term and safe treatment targeting specific pathophysiological changes may be of help. In this context, effective dietary interventions hold clinical promise. Palmitoyl-glucosamine (PGA) and hesperidin (HSP) are safe and authorized feed ingredients for animal nutrition under European regulations. Methods The current study aimed to investigate whether a 3:1 mixture of micronized PGA and HSP could represent a novel mechanism-oriented approach to chronic cystitis management. A newly validated rat model of cyclophosphamide (CYP)-induced chronic cystitis was used (40 mg/kg, three intraperitoneal injections every 3rd day). Animals were randomized to orally receive either vehicle or PGA-HSP at a low (72 + 24 mg/kg) or high (doubled) dose for 13 days, starting 3 days before the chronic CYP protocol, with mesna (2-mercaptoethane-sulfonate) being used as a reference drug. Results Higher PGA-HSP dose was effective at relieving chronic visceral pain, as measured by mechanical allodynia test (von Frey test). The severity of cystitis was also significantly improved, as shown by the reduced sonographic thickening of the bladder wall, as well as the decrease in edema, bleeding and bladder to body weight ratio compared to the vehicle treated group. A significant decrease of MPO activity, MDA level and fibrosis at Masson's trichrome staining was also observed in animals administered PGA-HSP in comparison to vehicle treated ones. The CYP-induced increase in bladder mRNA expression of pro-inflammatory cytokines was also significantly counteracted by the study mixture. Moreover, CYP-induced bladder mast cell accumulation and releasability were significantly decreased by PGA-HSP (even at the low dose), as determined by metachromatic staining, chymase and tryptase immunostaining as well as enzyme-linked immunosorbent assay for histamine and 5-hydoxytriptamine. Discussion PGA-HSP is able to block CYP-induced decrease of tight junction proteins, claudin-1 and occludin, thus preserving the urothelial bladder function. Finally, neuroinflammatory changes were investigated, showing that dietary supplementation with PGA-HSP prevented the activation of neurons and non-neuronal cells (i.e., microglia, astrocytes and mast cells) at the spinal level, and counteracted CYP-induced increase of spinal mRNA encoding for pro-inflammatory cytokines. Altogether, the present findings confirm the uroprotective and pain-relieving effect of PGA-HSP and pave the way to potential and relevant clinical applications of the study supplement in feline idiopathic cystitis.
Collapse
Affiliation(s)
| | | | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | | | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Marika Cordaro
- BioMorf Department, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Wu Y, He Y, Qi J, Wang S, Wang Z. Urinary ATP may be a biomarker of interstitial cystitis/bladder pain syndrome and its severity. BIOMOLECULES & BIOMEDICINE 2024; 24:170-175. [PMID: 37819233 PMCID: PMC10787607 DOI: 10.17305/bb.2023.9694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Urinary tract cells respond to bladder distension by releasing adenosine triphosphate (ATP). Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) exhibit elevated urinary ATP levels compared to asymptomatic controls. This study aimed to evaluate the potential of urinary ATP as a non-invasive biomarker for IC/BPS and its correlation with symptom severity. We included 56 patients diagnosed with IC/BPS and 50 asymptomatic controls. Urine samples were collected from both groups. Urinary ATP levels were quantified using the luciferin-luciferase bioluminescence method. The severity of IC/BPS symptoms was assessed using the visual analogue score (VAS), Interstitial Cystitis Symptom Index (ICSI), and Interstitial Cystitis Problem Index (ICPI) from the O'Leary-Sant score. We specifically examined the correlation between symptom scores and urinary ATP levels in IC/BPS patients. Urinary ATP levels were significantly higher in IC/BPS patients compared to the control group (P < 0.0001). There was a significant positive correlation between urinary ATP concentrations and VAS, ICPI, and ICSI scores among IC/BPS patients (P < 0.0001). The threshold value for ATP concentration was set at 56.6 nM, with an area under the receiver operating characteristic (ROC) curve of 0.811 (95% CI 0.730 - 0.892). Our findings indicate that IC/BPS patients excrete elevated amounts of ATP in their urine. This suggests that urinary ATP might serve as a non-invasive biomarker for IC/BPS, with a predictive potential in terms of symptom severity.
Collapse
Affiliation(s)
- Yanyuan Wu
- Department of Urology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yedie He
- Department of Urology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jun Qi
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Song Wang
- Department of Urology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zongping Wang
- Department of Urology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
30
|
Hardy CC, Korstanje R. Aging and urinary control: Alterations in the brain-bladder axis. Aging Cell 2023; 22:e13990. [PMID: 37740454 PMCID: PMC10726905 DOI: 10.1111/acel.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Age-associated alterations in bladder control affect millions of older adults, with a heavy burden added to families both economically and in quality of life. Therapeutic options are limited with poor efficacy in older adults, lending to a growing need to address the gaps in our current understanding of urinary tract aging. This review summarizes the current knowledge of age-associated alterations in the structure and function of the brain-bladder axis and identifies important gaps in the field that have yet to be addressed. Urinary aging is associated with decreased tissue responsiveness, decreased control over the voiding reflex, signaling dysfunction along the brain-bladder axis, and structural changes within the bladder wall. Studies are needed to improve our understanding of how age affects the brain-bladder axis and identify genetic targets that correlate with functional outcomes.
Collapse
|
31
|
Ihara T, Shinozaki Y, Shigetomi E, Danjo Y, Tsuchiya S, Kanda M, Kamiyama M, Takeda M, Koizumi S, Mitsui T. G protein-coupled receptor 55 activated by palmitoylethanolamide is associated with the development of nocturia associated with circadian rhythm disorders. Life Sci 2023; 332:122072. [PMID: 37704067 DOI: 10.1016/j.lfs.2023.122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
AIMS Bladder function is regulated by clock genes and dysregulation of circadian bladder function can cause nocturia. The blood concentration of palmitoylethanolamide (PEA), a fatty acid metabolite, changes with circadian rhythm. Clock gene abnormalities demonstrate the highest PEA levels during the sleep phase. PEA is a GPR55 agonist that influences urination; therefore, increased PEA during the sleep phase may cause nocturia. Herein, we investigated the function of GPR55 to evaluate the relationship between GPR55 and nocturia that evoked higher PEA during the sleep phase in patients with circadian rhythm disorders. MAIN METHODS Male C57BL/6 mice were used. GPR55 localization was evaluated by immunofluorescence staining, qRT-PCR, and western blotting. Variations in PEA-induced intracellular Ca2+ concentrations were measured in primary cultured mouse urothelial cells (UCs) using Ca2+ imaging. PEA-induced NGF and PGI2 release in UCs was measured by ELISA. The micturition reflex pathway after PEA administration was evaluated using immunofluorescence staining. KEY FINDINGS GPR55 was predominant in the UC layer. PEA induced release of Ca2+ from the endoplasmic reticulum into the UC cytoplasm. ELISA and immunofluorescence staining revealed that NGF and PGI2 were released from bladder UCs, stimulated the pontine micturition center in mice, and induced nocturia. SIGNIFICANCE The loss of regular circadian metabolizing rhythm in fatty acids causes higher blood PEA levels during the sleep phase. Binding of PEA to GPR55 in UC may activate the downstream processes of the micturition reflex, leading to nocturia. These findings suggest a new mechanism for nocturia and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Tatsuya Ihara
- Department of Urology, Toranomon Hospital Kajigaya, Kawasaki, Kanagawa 213-8587, Japan.
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yosuke Danjo
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Sachiko Tsuchiya
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Mie Kanda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Manabu Kamiyama
- Department of Urology, Toranomon Hospital Kajigaya, Kawasaki, Kanagawa 213-8587, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
32
|
Lu Q, Liu Q, Chen S, Wang J, Chen Y, Sun B, Yang Z, Feng H, Yi S, Chen W, Zhu J. The expression and distribution of TACAN in human and rat bladders. Low Urin Tract Symptoms 2023; 15:256-264. [PMID: 37649457 DOI: 10.1111/luts.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES A lot of ion channels participate in the regulation of bladder function. TACAN, a new mechanosensitive ion channel, was first discovered in 2020. TACAN has been found to be expressed in many tissues, such as the dorsal root ganglia (DRG) and adipose tissue. However, it is unclear whether or not TACAN is expressed in the bladder. In this work, we decided to study the expression and distribution of TACAN in human and rat bladders. Meanwhile, the expression of TACAN in the rat model of interstitial cystitis/bladder pain syndrome (IC/BPS) was studied. METHODS Human bladder tissues were obtained from female patients. Cyclophosphamide (CYP) was used to build the rat model of IC/BPS. Real-time polymerase chain reaction, agarose gel electrophoresis, and western blotting were used to assess the expression of TACAN in human and rat bladders. Immunohistochemistry and immunofluorescence were used to observe the distribution of TACAN in human and rat bladders. Hematoxylin-eosin stain, withdrawal threshold, and micturition interval were used to evaluate animal models. RESULTS The results of agarose gel electrophoresis and western blotting suggested that TACAN was expressed in human and rat bladders. Immunohistochemical results suggested that TACAN showed positive immunoreaction in the urothelial and detrusor layers. The immunofluorescence results indicated that TACAN was co-stained with UPKIII, α-SMA, and PGP9.5. The IC/BPS model was successfully established with CYP. The mRNA and protein expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. CONCLUSIONS TACAN was found in human and rat bladders. TACAN was mainly distributed in the urothelial and detrusor layers and bladder nerves. The expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. This new discovery will provide a theoretical basis for future research on the function of TACAN in the bladder and a potential therapeutic target for IC/BPS.
Collapse
Affiliation(s)
- Qudong Lu
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Liu
- Clinical Medicine Postdoctoral Research Station, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiwei Chen
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Jiaolian Wang
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Yongjie Chen
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Huan Feng
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shanhong Yi
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wei Chen
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
33
|
Li Z, Lin D, Luo C, Wei P, Deng B, Li K, Cheng L, Chen Z. The Expression and Function of Piezo Channels in Bladder. Bladder (San Franc) 2023; 10:e21200008. [PMID: 38022708 PMCID: PMC10668602 DOI: 10.14440/bladder.2023.870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
The ability for bladder to perceive and analyze mechanical stimuli, such as stretch and filling, is crucial for its functions, such as urinary storage and voiding. The Piezo channel family, including Piezo1 and Piezo2, represents one of the most essential mechanosensitive ion channels in mammals and is involved in a wide array of physiological and pathological processes. It has been demonstrated in numerous investigations that Piezo channels play a key role in mechanical transduction in various types of cells in bladder by converting mechanical stimuli into biological signals. Notably, mounting evidence suggests that Piezo channels are functionally significant for bladder and are related to several bladder disorders. This review systematically summarizes the importance/role and features of Piezo channels in bladder, including their biophysical properties, location, and functions, with attention specifically paid to their association with the physiology and pathophysiology of bladder. This review aims to provide a novel perspective for the future clinical treatment of bladder dysfunction.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dongxu Lin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Changcheng Luo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Pengyu Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bolang Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Kang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Langqing Cheng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
34
|
Gutierrez Cruz A, Aresta Branco MSL, Borhani Peikani M, Mutafova-Yambolieva VN. Differential Influences of Endogenous and Exogenous Sensory Neuropeptides on the ATP Metabolism by Soluble Ectonucleotidases in the Murine Bladder Lamina Propria. Int J Mol Sci 2023; 24:15650. [PMID: 37958631 PMCID: PMC10647406 DOI: 10.3390/ijms242115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Bladder urothelium and suburothelium/lamina propria (LP) have prominent sensory and transducer functions with the active participation of afferent neurons and urothelium-derived purine mediators such as adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine (ADO). Effective concentrations of purines at receptor targets depend significantly on the extracellular degradation of ATP by ectonucleotidases (ENTDs). We recently reported the regulated release of soluble ENTDs (s-ENTDs) in the LP and the consequent degradation of ATP to ADP, AMP, and ADO. Afferent neurons in the LP can be activated by urothelial ATP and release peptides and other transmitters that can alter the activity of cells in their vicinity. Using a murine decentralized ex vivo detrusor-free bladder model, 1,N6-etheno-ATP (eATP) as substrate, and sensitive HPLC-FLD methodologies, we found that exogenous neuropeptides calcitonin gene-related peptide (CGRP), substance P (Sub P), neurokinin A (NKA), and pituitary adenylate cyclase-activating polypeptide [PACAP (1-38)] all increased the degradation of eATP by s-ENTDs that were released in the LP spontaneously and/or during bladder filling. Using antagonists of neuropeptide receptors, we observed that endogenous NKA did not modify the ATP hydrolysis by s-ENTDs, whereas endogenous Sub P increased both the constitutive and distention-induced release of s-ENTDs. In contrast, endogenous CGRP and PACAP (1-38) increased the distention-induced, but not the spontaneous, release of s-ENTDs. The present study puts forward the novel idea that interactions between peptidergic and purinergic signaling mechanisms in the LP have an impact on bladder excitability and functions by regulating the effective concentrations of adenine purines at effector cells in the LP.
Collapse
Affiliation(s)
| | | | | | - Violeta N. Mutafova-Yambolieva
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA; (A.G.C.); (M.B.P.)
| |
Collapse
|
35
|
Tay C, Grundy L. Animal models of interstitial cystitis/bladder pain syndrome. Front Physiol 2023; 14:1232017. [PMID: 37731545 PMCID: PMC10507411 DOI: 10.3389/fphys.2023.1232017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic disorder characterized by pelvic and/or bladder pain, along with lower urinary tract symptoms that have a significant impact on an individual's quality of life. The diverse range of symptoms and underlying causes in IC/BPS patients pose a significant challenge for effective disease management and the development of new and effective treatments. To facilitate the development of innovative therapies for IC/BPS, numerous preclinical animal models have been developed, each focusing on distinct pathophysiological components such as localized urothelial permeability or inflammation, psychological stress, autoimmunity, and central sensitization. However, since the precise etiopathophysiology of IC/BPS remains undefined, these animal models have primarily aimed to replicate the key clinical symptoms of bladder hypersensitivity and pain to enhance the translatability of potential therapeutics. Several animal models have now been characterized to mimic the major symptoms of IC/BPS, and significant progress has been made in refining these models to induce chronic symptomatology that more closely resembles the IC/BPS phenotype. Nevertheless, it's important to note that no single model can fully replicate all aspects of the human disease. When selecting an appropriate model for preclinical therapeutic evaluation, consideration must be given to the specific pathology believed to underlie the development of IC/BPS symptoms in a particular patient group, as well as the type and severity of the model, its duration, and the proposed intervention's mechanism of action. Therefore, it is likely that different models will continue to be necessary for preclinical drug development, depending on the unique etiology of IC/BPS being investigated.
Collapse
Affiliation(s)
- Cindy Tay
- Neurourology Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Luke Grundy
- Neurourology Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
36
|
Jiang YH, Kuo HC. Current optimal pharmacologic therapies for overactive bladder. Expert Opin Pharmacother 2023; 24:2005-2019. [PMID: 37752121 DOI: 10.1080/14656566.2023.2264183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Overactive bladder (OAB) is a common syndrome in adults. Current pharmacologic treatment includes antimuscarinic agents and β-3 adrenoceptor agonists. For non-responders to oral medication, intravesical injection of botulinum toxin A (BoNT-A) is an effective option. However, these treatments have potential adverse events and should be cautiously selected for appropriate patients. This review presents the recently published results of clinical trials and studies for patients with OAB and the underlying pathophysiology of OAB. Appropriate medical therapy based on pathophysiology of OAB is also presented. AREAS COVERED Literature search from Pubmed from 2001 to 2023 including clinical background, pharmacology, and clinical studies for OAB medications. EXPERT OPINION Treatment of OAB syndrome with any antimuscarinic or β-3 adrenoceptor agonist is feasible as a first-line approach. For patients with suboptimal therapeutic effect to full-dose antimuscarinics or mirabegron, combination with both drugs can improve efficacy. Intravesical BoNT-A 100-U injection provides therapeutic effects for refractory OAB. Patients who are refractory to initial pharmacotherapies should be investigated for the underlying pathophysiology; then an appropriate medication can be added, such as an α1-blocker or anti-inflammatory agents. Patient education about behavioral modification and therapies should always be provided with oral medication or BoNT-A injection for OAB patients.
Collapse
Affiliation(s)
- Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
37
|
Gupta A, Manchanda R. Computational modeling of stretch induced calcium signaling at the apical membrane domain in umbrella cells. Comput Methods Biomech Biomed Engin 2023; 26:1368-1377. [PMID: 36062946 DOI: 10.1080/10255842.2022.2117549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/03/2022]
Abstract
The urinary bladder epithelium comprises a specialised population of superficially placed cells called the umbrella cells. The apical membrane domain of umbrella cells has several intriguing morphological properties and is the site for various signaling activities. A key function of umbrella cells is to sense mechanical stimuli as the bladder stretches in response to filling. More specifically, the mechanotransduction of stretch into subcellular signals is brought about by the activation of Piezo1 channels that mediate calcium into the cell interior. The incoming calcium is critical to several aspects of umbrella cell signaling, including regulation of exocytosis, ATP release and downstream purinergic signaling. We report here a computational framework that models stretch-induced mechanotransduction via Piezo1 channels and the resulting calcium signaling in umbrella cells factoring in morphological details of subcellular compartment volumes. Our results show the following: (i) activation of Piezo1 conductance in response to stretch; (ii) development of varying Piezo1 mediated [Ca2+] profiles in subcellular compartments, namely, the apical sub-plasma membrane space, cytosol and mitochondria. The varying calcium amplitudes and temporal profiles in the subcellular compartments indicate highly specialised roles for stretch-mediated calcium in umbrella cells, including its potential effect on the energetics of mitochondria and the regulation of exocytosis.
Collapse
Affiliation(s)
- Amritanshu Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
38
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
39
|
Michel MC, Cardozo L, Chermansky CJ, Cruz F, Igawa Y, Lee KS, Sahai A, Wein AJ, Andersson KE. Current and Emerging Pharmacological Targets and Treatments of Urinary Incontinence and Related Disorders. Pharmacol Rev 2023; 75:554-674. [PMID: 36918261 DOI: 10.1124/pharmrev.121.000523] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
Overactive bladder syndrome with and without urinary incontinence and related conditions, signs, and disorders such as detrusor overactivity, neurogenic lower urinary tract dysfunction, underactive bladder, stress urinary incontinence, and nocturia are common in the general population and have a major impact on the quality of life of the affected patients and their partners. Based on the deliberations of the subcommittee on pharmacological treatments of the 7th International Consultation on Incontinence, we present a comprehensive review of established drug targets in the treatment of overactive bladder syndrome and the aforementioned related conditions and the approved drugs used in its treatment. Investigational drug targets and compounds are also reviewed. We conclude that, despite a range of available medical treatment options, a considerable medical need continues to exist. This is largely because the existing treatments are symptomatic and have limited efficacy and/or tolerability, which leads to poor long-term adherence. SIGNIFICANCE STATEMENT: Urinary incontinence and related disorders are prevalent in the general population. While many treatments have been approved, few patients stay on long-term treatment despite none of them being curative. This paper provides a comprehensive discussion of existing and emerging treatment options for various types of incontinence and related disorders.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Linda Cardozo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Christopher J Chermansky
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Francisco Cruz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Yasuhiko Igawa
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Kyu-Sung Lee
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Arun Sahai
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Alan J Wein
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Karl-Erik Andersson
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| |
Collapse
|
40
|
Aizawa N, Fujita T. Comparison of the effects of two anesthetics, isoflurane and urethane, on bladder function in rats. J Pharmacol Sci 2023; 152:144-150. [PMID: 37169479 DOI: 10.1016/j.jphs.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
We compared the effects of two anesthetics, isoflurane and urethane on bladder function in rats. Arterial pressure, cystometry (CMG), and rhythmic bladder contractions (RBCs) under isovolumetric conditions, mechanosensitive single-unit afferent activities (SAAs), bladder compliance and bladder myogenic microcontractions (bladder microcontractions), and bladder blood flow, and blood and urine biochemical tests were investigated in isoflurane- or urethane-anesthetized female rats. In results of the CMG, 3/8 rats in the isoflurane group and 7/7 rats in the urethane group showed constant bladder neurogenic contractions for micturition, whereas 5/8 rats in the isoflurane group showed unstable contractions or overflow incontinence. The RBCs appeared in the urethane group but not in the isoflurane group, and SAAs in both the Aδ- and C-fibers, bladder compliance, and bladder microcontractions in the isoflurane group were higher than those in the urethane group during bladder distension. The blood biochemical test showed that the serum calcium level was higher in the isoflurane group. The mean arterial pressure and bladder blood flow were not different between the groups. The results showed that urethane anesthesia more retains bladder neurogenic contractions for micturition compared to isoflurane. In contrast, isoflurane anesthesia more retains bladder function during the storage phase compared to urethane.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan.
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
41
|
Aresta Branco MSL, Gutierrez Cruz A, Borhani Peikani M, Mutafova-Yambolieva VN. Sensory Neurons, PIEZO Channels and PAC1 Receptors Regulate the Mechanosensitive Release of Soluble Ectonucleotidases in the Murine Urinary Bladder Lamina Propria. Int J Mol Sci 2023; 24:ijms24087322. [PMID: 37108490 PMCID: PMC10138949 DOI: 10.3390/ijms24087322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The urinary bladder requires adequate concentrations of extracellular adenosine 5'-triphosphate (ATP) and other purines at receptor sites to function properly. Sequential dephosphorylation of ATP to ADP, AMP and adenosine (ADO) by membrane-bound and soluble ectonucleotidases (s-ENTDs) is essential for achieving suitable extracellular levels of purine mediators. S-ENTDs, in particular, are released in the bladder suburothelium/lamina propria (LP) in a mechanosensitive manner. Using 1,N6-etheno-ATP (eATP) as substrate and sensitive HPLC-FLD methodology, we evaluated the degradation of eATP to eADP, eAMP and eADO in solutions that were in contact with the LP of ex vivo mouse detrusor-free bladders during filling prior to substrate addition. The inhibition of neural activity with tetrodotoxin and ω-conotoxin GVIA, of PIEZO channels with GsMTx4 and D-GsMTx4 and of the pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1) with PACAP6-38 all increased the distention-induced but not spontaneous release of s-ENTDs in LP. It is conceivable, therefore, that the activation of these mechanisms in response to distention restricts the further release of s-ENTDs and prevents excessive hydrolysis of ATP. Together, these data suggest that afferent neurons, PIEZO channels, PAC1 receptors and s-ENTDs form a system that operates a highly regulated homeostatic mechanism to maintain proper extracellular purine concentrations in the LP and ensure normal bladder excitability during bladder filling.
Collapse
Affiliation(s)
- Mafalda S L Aresta Branco
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Alejandro Gutierrez Cruz
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Mahsa Borhani Peikani
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
42
|
Chiengthong K, Bunyavejchevin S. Efficacy of Erbium YAG laser treatment in overactive bladder syndrome: a randomized controlled trial. Menopause 2023; 30:414-420. [PMID: 36854167 DOI: 10.1097/gme.0000000000002159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract
This study showed the efficacy of vaginal Erbium YAG laser in treatment of overactive bladder (OAB) and vaginal atrophy in postmenopausal women. The improvement of overactive bladder symptoms scores was confi rmed by the bladder diary.
Objective
To evaluate the efficacy of vaginal Erbium YAG laser in postmenopausal women presenting with overactive bladder syndrome (OAB) and vaginal atrophy.
Methods
A single center, randomized sham-controlled study was conducted between July 2019 and August 2022. Thai postmenopausal women diagnosed with OAB and who complained of one or more of vaginal atrophy symptoms (VAS) were included. The participants received either one treatment session of vaginal Erbium YAG laser or the sham procedure. The primary outcome was the Thai version Overactive Bladder Symptom Score. The secondary outcomes included results from the Thai version Overactive Bladder questionnaire (OAB-q), Patient Perception of Bladder Condition Questionnaire, bladder diary, VAS score, and Vaginal Health Index score (VHI). Outcome measurements were assessed between groups at 12 weeks after treatment.
Results
Fifty participants were included and randomized. Twenty-five participants were assigned to the vaginal laser group, and 25 to the sham group. At 12-week follow-up, vaginal Erbium YAG laser demonstrated improvement compared with sham group in total Overactive Bladder Symptom Score (6.03 ± 3.36 vs 8.44 ± 3.39, P = 0.015), nocturia (1.71 ± 0.74 vs 2.32 ± 0.70, P = 0.004), and urgency (2 [3] vs 3 [4], P = 0.008). Coping and social subscale of OAB-q, daytime micturition frequency, urgency and maximum urine volume, VAS and VHI scores also significantly improved in the vaginal laser group.
Conclusions
This study showed the efficacy of the vaginal Erbium YAG laser in treatment of OAB and vaginal atrophy in postmenopausal women. The improvement of OAB symptoms scores was confirmed by the bladder diary.
Collapse
Affiliation(s)
- Keerati Chiengthong
- From the Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
43
|
Jafari NV, Rohn JL. An immunoresponsive three-dimensional urine-tolerant human urothelial model to study urinary tract infection. Front Cell Infect Microbiol 2023; 13:1128132. [PMID: 37051302 PMCID: PMC10083561 DOI: 10.3389/fcimb.2023.1128132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionMurine models of urinary tract infection (UTI) have improved our understanding of host-pathogen interactions. However, given differences between rodent and human bladders which may modulate host and bacterial response, including certain biomarkers, urothelial thickness and the concentration of urine, the development of new human-based models is important to complement mouse studies and to provide a more complete picture of UTI in patients.MethodsWe originally developed a human urothelial three-dimensional (3D) model which was urine tolerant and demonstrated several urothelial biomarkers, but it only achieved human thickness in heterogenous, multi-layered zones and did not demonstrate the comprehensive differentiation status needed to achieve barrier function. We optimised this model by altering a variety of conditions and validated it with microscopy, flow cytometry, transepithelial electrical resistance and FITC-dextran permeability assays to confirm tissue architecture, barrier integrity and response to bacterial infection.ResultsWe achieved an improved 3D urine-tolerant human urothelial model (3D-UHU), which after 18-20 days of growth, stratified uniformly to 7-8 layers comprised of the three expected, distinct human cell types. The apical surface differentiated into large, CD227+ umbrella-like cells expressing uroplakin-1A, II, III, and cytokeratin 20, all of which are important terminal differentiation markers, and a glycosaminoglycan layer. Below this layer, several layers of intermediate cells were present, with a single underlying layer of CD271+ basal cells. The apical surface also expressed E-cadherin, ZO-1, claudin-1 and -3, and the model possessed good barrier function. Infection with both Gram-negative and Gram-positive bacterial classes elicited elevated levels of pro-inflammatory cytokines and chemokines characteristic of urinary tract infection in humans and caused a decrease in barrier function.DiscussionTaken together, 3D-UHU holds promise for studying host-pathogen interactions and host urothelial immune response.
Collapse
|
44
|
Girard BM, Campbell SE, Vizzard MA. Stress-induced symptom exacerbation: Stress increases voiding frequency, somatic sensitivity, and urinary bladder NGF and BDNF expression in mice with subthreshold cyclophosphamide (CYP). FRONTIERS IN UROLOGY 2023; 3:1079790. [PMID: 37811396 PMCID: PMC10558155 DOI: 10.3389/fruro.2023.1079790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Symptom exacerbation due to stress is prevalent in many disease states, including functional disorders of the urinary bladder (e.g., overactive bladder (OAB), interstitial cystitis/bladder pain syndrome (IC/BPS)); however, the mechanisms underlying the effects of stress on micturition reflex function are unclear. In this study we designed and evaluated a stress-induced symptom exacerbation (SISE) mouse model that demonstrates increased urinary frequency and somatic (pelvic and hindpaw) sensitivity. Cyclophosphamide (CYP) (35 mg/kg; i.p., every 48 hours for a total of 4 doses) or 7 days of repeated variate stress (RVS) did not alter urinary bladder function or somatic sensitivity; however, both CYP alone and RVS alone significantly (p ≤ 0.01) decreased weight gain and increased serum corticosterone. CYP treatment when combined with RVS for 7 days (CYP+RVS) significantly (p ≤ 0.01) increased serum corticosterone, urinary frequency and somatic sensitivity and decreased weight gain. CYP+RVS exposure in mice significantly (p ≤ 0.01) increased (2.6-fold) voiding frequency as we determined using conscious, open-outlet cystometry. CYP+RVS significantly (p ≤ 0.05) increased baseline, threshold, and peak micturition pressures. We also evaluated the expression of NGF, BDNF, CXC chemokines and IL-6 in urinary bladder in CYP alone, RVS alone and CYP+RVS mouse cohorts. Although all treatments or exposures increased urinary bladder NGF, BDNF, CXC and IL-6 content, CYP+RVS produced the largest increase in all inflammatory mediators examined. These results demonstrated that CYP alone or RVS alone creates a change in the inflammatory environment of the urinary bladder but does not result in a change in bladder function or somatic sensitivity until CYP is combined with RVS (CYP+RVS). The SISE model of CYP+RVS will be useful to develop testable hypotheses addressing underlying mechanisms where psychological stress exacerbates symptoms in functional bladder disorders leading to identification of targets and potential treatments.
Collapse
Affiliation(s)
- Beatrice M Girard
- The Larner College of Medicine at The University of Vermont, Department of Neurological Sciences, Burlington, VT, 05405
| | - Susan E Campbell
- The Larner College of Medicine at The University of Vermont, Department of Neurological Sciences, Burlington, VT, 05405
| | - Margaret A Vizzard
- The Larner College of Medicine at The University of Vermont, Department of Neurological Sciences, Burlington, VT, 05405
| |
Collapse
|
45
|
Ramsay S, Zagorodnyuk V. Role of circadian rhythms and melatonin in bladder function in heath and diseases. Auton Neurosci 2023; 246:103083. [PMID: 36871511 DOI: 10.1016/j.autneu.2023.103083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
The circadian system modulates all visceral organ physiological processes including urine storage and voiding. The "master clock" of the circadian system lies within suprachiasmatic nucleus of the hypothalamus while "peripheral clocks" are found in most peripheral tissue and organs, including the urinary bladder. Disruptions of circadian rhythms can cause organ malfunction and disorder or exacerbate pre-existing ones. It has been suggested that nocturia, which develops mostly in the elderly, could be a circadian-related disorder of the bladder. In the bladder, many types of gap junctions and ion channels in the detrusor, urothelium and sensory nerves are likely under strict local peripheral circadian control. The pineal hormone, melatonin, is a circadian rhythm synchroniser capable of controlling a variety of physiological processes in the body. Melatonin predominantly acts via the melatonin 1 and melatonin 2 G-protein coupled receptors expressed in the central nervous system, and many peripheral organs and tissues. Melatonin could be beneficial in the treatment of nocturia and other common bladder disorders. The ameliorating action of melatonin on bladder function is likely due to multiple mechanisms which include central effects on voiding and peripheral effects on the detrusor and bladder afferents. More studies are warranted to determine the precise mechanisms of circadian rhythm coordination of the bladder function and melatonin influences on the bladder in health and diseases.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
46
|
Lee WC, Wu KLH, Tain YL, Leu S, Cheng YT, Chan JYH. Impaired insulin signaling at the bladder mucosa facilitates metabolic syndrome-associated bladder overactivity in rats with maternal and post-weaning fructose exposure. J Formos Med Assoc 2023; 122:258-266. [PMID: 36207218 DOI: 10.1016/j.jfma.2022.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/09/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND/PURPOSE Metabolic syndrome (MetS) and overactive bladder might share common pathophysiologies. Environmental fructose exposure during pre- and postnatal periods of rats may program MetS-associated bladder overactivity. We explored the dysregulated insulin signalling at bladder mucosa, as a common mechanism, in facilitating bladder overactivity in rats with MetS induced by maternal and post-weaning fructose diet. METHODS Male offspring of Sprague-Dawley rats were subject into 4 groups by maternal and post-weaning diets (i.e., Control/Control, Fructose/Control, Control/Fructose and Fructose/Fructose by diets). Micturition behavior was evaluated. Acidic ATP solution was used to elicit cystometric reflex along with insulin counteraction. Concentration-response curves to insulin were plotted. The canonical signalling pathway of insulin was evaluated in the bladder mucosal using Western blotting. Levels of detrusor cGMP and urinary NO2 plus NO3 were measured. RESULTS Male offspring with any fructose exposure presents traits of MetS and bladder overactivity. We observed all fructose exposure groups have the poor urodynamic response to insulin during ATP solution stimulation and poor insulin-activated detrusor relaxation in organ bath study. Compared to controls, the Control/Fructose and Fructose/Fructose groups showed the increased phosphorylation levels of IRS1 (Ser307) and IRS2 (Ser731); thus, suppressed the downstream effectors and urinary NOx/detrusor cGMP levels. The Fructose/Control group showed the compensatory increase of phospho-AKT (Ser473) and phospho-eNOS/eNOS levels, but decreased in eNOS, phospho-eNOS, urinary NOx, and detrusor cGMP levels. CONCLUSION Our results show dysregulated insulin signalling at bladder mucosa should be a common mechanism of MetS-associated bladder overactivity programmed by pre-and postnatal fructose diet.
Collapse
Affiliation(s)
- Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yuan-Tso Cheng
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
47
|
Neto AC, Santos-Pereira M, Abreu-Mendes P, Neves D, Almeida H, Cruz F, Charrua A. The Unmet Needs for Studying Chronic Pelvic/Visceral Pain Using Animal Models. Biomedicines 2023; 11:biomedicines11030696. [PMID: 36979674 PMCID: PMC10045296 DOI: 10.3390/biomedicines11030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
The different definitions of chronic pelvic/visceral pain used by international societies have changed over the years. These differences have a great impact on the way researchers study chronic pelvic/visceral pain. Recently, the role of systemic changes, including the role of the central nervous system, in the perpetuation and chronification of pelvic/visceral pain has gained weight. Consequently, researchers are using animal models that resemble those systemic changes rather than using models that are organ- or tissue-specific. In this review, we discuss the advantages and disadvantages of using bladder-centric and systemic models, enumerating some of the central nervous system changes and pain-related behaviors occurring in each model. We also present some drawbacks when using animal models and pain-related behavior tests and raise questions about possible, yet to be demonstrated, investigator-related bias. We also suggest new approaches to study chronic pelvic/visceral pain by refining existing animal models or using new ones.
Collapse
Affiliation(s)
- Ana Catarina Neto
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Mariana Santos-Pereira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Pedro Abreu-Mendes
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Delminda Neves
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Henrique Almeida
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Ginecologia-Obstetrícia, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Ana Charrua
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
48
|
Sidwell AB, McClintock C, Beča KI, Campbell SE, Girard BM, Vizzard MA. Repeated variate stress increased voiding frequency and altered TrpV1 and TrpV4 transcript expression in lower urinary tract (LUT) pathways in female mice. FRONTIERS IN UROLOGY 2023; 2:1086179. [PMID: 37692906 PMCID: PMC10492642 DOI: 10.3389/fruro.2022.1086179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Psychological stress is associated with urinary bladder dysfunction (e.g., increased voiding frequency, urgency and pelvic pain); however, the mechanisms underlying the effects of stress on urinary bladder function are unknown. Transient receptor potential (TRP) channels (vanilloid family) may be potential targets for intervention due to their distribution in the LUT and role in pain. Here, we examine a model of repeated variate stress (RVS) of 2 week (wk) or 4 wk duration in female mice and its effects on bladder function, anxiety-like behavior, and TRPV transcript expression in urinary bladder and lumbosacral spinal cord and associated dorsal root ganglia (DRG). Using continuous infusion, open-outlet cystometry in conscious mice, RVS significantly (p ≤ 0.05) decreased infused volume and intermicturition interval. Bladder pressures (threshold, average, minimum, and maximum pressures) were unchanged with RVS. Quantitative PCR demonstrated significant (p ≤ 0.05) changes in TrpV1 and TrpV4 mRNA expression between control and RVS cohorts in the urothelium, lumbosacral spinal cord, and DRG. Future directions will examine the contribution of TRP channels on bladder function, somatic sensation and anxiety-like behavior following RVS.
Collapse
Affiliation(s)
- Amanda B. Sidwell
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Celia McClintock
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Katharine I. Beča
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Susan E. Campbell
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Beatrice M. Girard
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| | - Margaret A. Vizzard
- Department of Neurological Sciences, The Larner College of Medicine at The University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
49
|
Urinary ATP Levels Are Controlled by Nucleotidases Released from the Urothelium in a Regulated Manner. Metabolites 2022; 13:metabo13010030. [PMID: 36676954 PMCID: PMC9862892 DOI: 10.3390/metabo13010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Adenosine 5′-triphosphate (ATP) is released in the bladder lumen during filling. Urothelial ATP is presumed to regulate bladder excitability. Urinary ATP is suggested as a urinary biomarker of bladder dysfunctions since ATP is increased in the urine of patients with overactive bladder, interstitial cystitis or bladder pain syndrome. Altered urinary ATP might also be associated with voiding dysfunctions linked to disease states associated with metabolic syndrome. Extracellular ATP levels are determined by ATP release and ATP hydrolysis by membrane-bound and soluble nucleotidases (s-NTDs). It is currently unknown whether s-NTDs regulate urinary ATP. Using etheno-ATP substrate and HPLC-FLD detection techniques, we found that s-NTDs are released in the lumen of ex vivo mouse detrusor-free bladders. Capillary immunoelectrophoresis by ProteinSimple Wes determined that intraluminal solutions (ILS) collected at the end of filling contain ENTPD3 > ENPP1 > ENPP3 ≥ ENTPD2 = NT5E = ALPL/TNAP. Activation of adenylyl cyclase with forskolin increased luminal s-NTDs release whereas the AC inhibitor SQ22536 had no effect. In contrast, forskolin reduced and SQ22536 increased s-NTDs release in the lamina propria. Adenosine enhanced s-NTDs release and accelerated ATP hydrolysis in ILS and lamina propria. Therefore, there is a regulated release of s-NTDs in the bladder lumen during filling. Aberrant release or functions of urothelial s-NTDs might cause elevated urinary ATP in conditions with abnormal bladder excitability.
Collapse
|
50
|
Andersson KE. Oxidative Stress and Its Relation to Lower Urinary Tract Symptoms. Int Neurourol J 2022; 26:261-267. [PMID: 36599334 PMCID: PMC9816449 DOI: 10.5213/inj.2244190.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 12/30/2022] Open
Abstract
The aim of this review is to discuss how to link lower urinary tract symptoms (LUTS) and oxidative stress (OS) and to define relevant targets for therapeutic intervention. Narrative review based on published literature. Many of the multifactorial pathophysiological mechanisms behind LUTS can initiate reactive oxygen species (ROS) generation. Assuming that OS is a consequence rather than a primary cause of LUTS it seems reasonable to identify both the disease mechanism initiating LUTS, and the source of ROS involved. There are many possible sources of ROS overproduction, but the NADPH oxidase (NOX) family of enzymes is the primary source; NOX activation in turn, may result in the activation of secondary ROS sources, i.e., ROS-dependent ROS production. Selective NOX inhibition therefore seems an attractive therapeutic strategy in LUTS treatment. The finding of NOX2 localization to centers in the brain associated with micturition control, opens up for further studies of NOX involvement in the central control of micturition, normally and in disease. Further information on the localization of the different isoforms of NOX in the LUT e.g., the bladder wall and its components and the prostate, is desirable. To optimize treatment, the pathophysiological mechanism initiating LUTS, and the activated isoform of NOX, should be identified. Unfortunately, in most cases of LUTS this is currently not possible. Even if selective NOX inhibitors have entered the clinical trial stage for treatment of disorders other than LUT dysfunction, their efficacy for LUTS treatment has to be demonstrated. If this can be achieved, an attractive approach would be combination of selective NOX inhibition with established drug therapies.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|