1
|
Roy P, Tomassoni D, Martinelli I, Bellitto V, Nittari G, Amenta F, Tayebati SK. Protective effects of the R-(+)-thioctic acid treatment: possible anti-inflammatory activity on heart of hypertensive rats. BMC Complement Med Ther 2024; 24:281. [PMID: 39048980 PMCID: PMC11267948 DOI: 10.1186/s12906-024-04547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In cardiovascular disease, high blood pressure is associated with oxidative stress, promoting endothelial dysfunction, vascular remodeling, and inflammation. Clinical trials are discordant that the most effective treatment in the management of hypertension seems to be the administration of anti-hypertensive drugs with antioxidant properties. The study aims to evaluate the effects of the eutomer of thioctic acid on oxidative stress and inflammation in the heart of spontaneously hypertensive rats compared to normotensive Wistar Kyoto rats. METHODS To study the oxidative status, the malondialdehyde and 4-hydroxynonenal concentration, protein oxidation were measured in the heart. Morphological analysis were performed. Immunohistochemistry and Western blot were done for alpha-smooth muscle actin and transforming growth factor beta to assess fibrosis; cytokines and nuclear factor kappaB to assess inflammatory processes. RESULTS Spontaneously hypertensive rats were characterized by hypertension with increased malondialdehyde levels in the heart. OxyBlot in the heart of spontaneously hypertensive rats showed an increase in proteins' oxidative status. Cardiomyocyte hypertrophy and fibrosis in the ventricles were associated with an increased expression of alpha-smooth muscle actin and pro-inflammatory cytokines, reduced by the eutomer of thioctic acid supplementation. CONCLUSIONS Based on this evidence, eutomer of thioctic acid could represent an appropriate antioxidant molecule to reduce oxidative stress and prevent inflammatory processes on the cardiomyocytes and cardiac vascular endothelium.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, 62032, MC, Italy
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Vincenzo Bellitto
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Giulio Nittari
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy.
| |
Collapse
|
2
|
Ryazanova MA, Plekanchuk VS, Prokudina OI, Makovka YV, Alekhina TA, Redina OE, Markel AL. Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding. Biomedicines 2023; 11:1814. [PMID: 37509453 PMCID: PMC10376947 DOI: 10.3390/biomedicines11071814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Research into genetic and physiological mechanisms of widespread disorders such as arterial hypertension as well as neuropsychiatric and other human diseases is urgently needed in academic and practical medicine and in the field of biology. Nevertheless, such studies have many limitations and pose difficulties that can be overcome by using animal models. To date, for the purposes of creating animal models of human pathologies, several approaches have been used: pharmacological/chemical intervention; surgical procedures; genetic technologies for creating transgenic animals, knockouts, or knockdowns; and breeding. Although some of these approaches are good for certain research aims, they have many drawbacks, the greatest being a strong perturbation (in a biological system) that, along with the expected effect, exerts side effects in the study. Therefore, for investigating the pathogenesis of a disease, models obtained using genetic selection for a target trait are of high value as this approach allows for the creation of a model with a "natural" manifestation of the pathology. In this review, three rat models are described: ISIAH rats (arterial hypertension), GC rats (catatonia), and PM rats (audiogenic epilepsy), which are developed by breeding in the Laboratory of Evolutionary Genetics at the Institute of Cytology and Genetics (the Siberian Branch of the Russian Academy of Sciences).
Collapse
Affiliation(s)
- Marina A Ryazanova
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladislava S Plekanchuk
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I Prokudina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yulia V Makovka
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatiana A Alekhina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga E Redina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Arcady L Markel
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Chivers JM, Whiles SA, Miles CB, Biederman BE, Ellison MF, Lovingood CW, Wright MH, Hoover DB, Raafey MA, Youngberg GA, Venkatachalam MA, Zheleznova NN, Yang C, Liu P, Kriegel AJ, Cowley AW, O'Connor PM, Picken MM, Polichnowski AJ. Brown-Norway chromosome 1 mitigates the upregulation of proinflammatory pathways in mTAL cells and subsequent age-related CKD in Dahl SS/JrHsdMcwi rats. Am J Physiol Renal Physiol 2023; 324:F193-F210. [PMID: 36475869 PMCID: PMC9886360 DOI: 10.1152/ajprenal.00145.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has a strong genetic component; however, the underlying pathways are not well understood. Dahl salt-sensitive (SS)/Jr rats spontaneously develop CKD with age and are used to investigate the genetic determinants of CKD. However, there are currently several genetically diverse Dahl SS rats maintained at various institutions and the extent to which some exhibit age-related CKD is unclear. We assessed glomerulosclerosis (GS) and tubulointerstitial fibrosis (TIF) in 3- and 6-mo-old male and female SS/JrHsdMcwi, BN/NHsd/Mcwi [Brown-Norway (BN)], and consomic SS-Chr 1BN/Mcwi (SS.BN1) rats, in which chromosome 1 from the BN rat was introgressed into the genome of the SS/JrHsdMcwi rat. Rats were fed a 0.4% NaCl diet. GS (31 ± 3% vs. 7 ± 1%) and TIF (2.3 ± 0.2 vs. 0.5 ± 0.1) were significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi rats, and CKD was exacerbated in males. GS was minimal in 6- and 3-mo-old BN (3.9 ± 0.6% vs. 1.2 ± 0.4%) and SS.BN1 (2.4 ± 0.5% vs. 1.0 ± 0.3%) rats, and neither exhibited TIF. In SS/JrHsdMcwi and SS.BN1 rats, mean arterial blood pressure was significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi (162 ± 4 vs. 131 ± 2 mmHg) but not SS.BN1 (115 ± 2 vs. 116 ± 1 mmHg) rats. In 6-mo-old SS/JrHsdMcwi rats, blood pressure was significantly greater in females. RNA-sequencing analysis revealed that inflammatory pathways were upregulated in isolated medullary thick ascending tubules in 7-wk-old SS/JrHsdMcwi rats, before the development of tubule pathology, compared with SS.BN1 rats. In summary, SS/JrHsdMcwi rats exhibit robust age-related progression of medullary thick ascending limb abnormalities, CKD, and hypertension, and gene(s) on chromosome 1 have a major pathogenic role in such changes.NEW & NOTEWORTHY This study shows that the robust age-related progression of kidney disease in Dahl SS/JrHsdMcw rats maintained on a normal-salt diet is abolished in consomic SS.BN1 rats. Evidence that medullary thick ascending limb segments of SS/JrHsdMcw rats are structurally abnormal and enriched in proinflammatory pathways before the development of protein casts provides new insights into the pathogenesis of kidney disease in this model.
Collapse
Affiliation(s)
- Jacqueline M Chivers
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Shannon A Whiles
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Conor B Miles
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Brianna E Biederman
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Megan F Ellison
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Connor W Lovingood
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Marie H Wright
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Donald B Hoover
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| | - Muhammad A Raafey
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - George A Youngberg
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | | | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Maria M Picken
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois
| | - Aaron J Polichnowski
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
4
|
Ashraf UM, Atari E, Alasmari F, Waghulde H, Kumar V, Sari Y, Najjar SM, Jose PA, Kumarasamy S. Intrarenal Dopaminergic System Is Dysregulated in SS- Resp18mutant Rats. Biomedicines 2023; 11:111. [PMID: 36672619 PMCID: PMC9855394 DOI: 10.3390/biomedicines11010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The genetic and molecular basis of developing high blood pressure and renal disease are not well known. Resp18mutant Dahl salt-sensitive (SS-Resp18mutant) rats fed a 2% NaCl diet for six weeks have high blood pressure, increased renal fibrosis, and decreased mean survival time. Impairment of the dopaminergic system also leads to hypertension that involves renal and non-renal mechanisms. Deletion of any of the five dopamine receptors may lead to salt-sensitive hypertension. Therefore, we investigated the interaction between Resp18 and renal dopamine in SS-Resp18mutant and Dahl salt-sensitive (SS) rats. We found that SS-Resp18mutant rats had vascular dysfunction, as evidenced by a decrease in vasorelaxation in response to sodium nitroprusside. The pressure-natriuresis curve in SS-Resp18mutant rats was shifted down and to the right of SS rats. SS-Resp18mutant rats had decreased glomerular filtration rate and dopamine receptor subtypes, D1R and D5R. Renal dopamine levels were decreased, but urinary dopamine levels were increased, which may be the consequence of increased renal dopamine production, followed by secretion into the tubular lumen. The increased renal dopamine production in SS-Resp18mutant rats in vivo was substantiated by the increased dopamine production in renal proximal tubule cells treated with L-DOPA. Overall, our study provides evidence that targeted disruption of the Resp18 locus in the SS rat dysregulates the renal dopaminergic system.
Collapse
Affiliation(s)
- Usman M. Ashraf
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ealla Atari
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy & Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Harshal Waghulde
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Vikash Kumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy & Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Pedro A. Jose
- Department of Medicine, Division of Kidney Diseases & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Sivarajan Kumarasamy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
5
|
Ahmad H, Zhao X, Ahmad N, Khan A, Jin Y, Du J, Zheng X, Zeng L, Ouyang Y, Yang P, Chen M, Li X, Yang Z, Tian Z. Benincasa hispida extracts positively regulated high salt-induced hypertension in Dahl salt-sensitive rats: Impact on biochemical profile and metabolic patterns. J Food Biochem 2022; 46:e14497. [PMID: 36314446 DOI: 10.1111/jfbc.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022]
Abstract
Salt-induced hypertension is one of the major issues worldwide and one of the main factors involved in heart and kidney failure. The objective of this study was to investigate the potential role of Benincasa hispida extracts on high salt-induced hypertension in Dahl-salt sensitive (D-SS) rats and to find out the metabolic and biochemical pattern involved in the reduction of hypertension. Twenty-six Dahl salt-sensitive (D-SS) rats were selected and divided into four groups. The metabolic strategy was applied to test the extracts on salt-sensitive hypertension in kidney. Gas Chromatography-Mass spectrometry (GC-MS) was used to identify the potent biochemical profile in renal medulla and cortex of rat kidneys. The differential metabolites of cortex and medulla, enrichment analysis and pathway analysis were performed using metabolomics data. The GC-MS data revealed that 24 different antihypertensive metabolites was detected in renal cortex, while 16 were detected in renal medulla between different groups. The significantly metabolic pathways namely citrate cycle, glutathione metabolism, glycine, serine, and threonine metabolism, glyoxylate and dicarboxylate metabolism, glycerolipid metabolism, alanine, aspartate and glutamate metabolism in renal cortex and glycerolipid metabolism, pentose phosphate pathway, citrate cycle, glycolysis, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis in renal medulla were involved in the process of Hypertension. The results suggest that the extract mainly alter the metabolic pathways of amino acid in Dahl salt-sensitive rats and its antioxidant potential reduced the hypertension patterns of Salt-sensitive rat. The antihypertensive components malic acid, aspartic acid, and glycine of extract can be used as therapeutic drugs to protect kidneys from salt-induced hypertension. PRACTICAL APPLICATIONS: Hypertension is a multifactorial disease and one of the risk factors for heart and kidney failure. Benincasa hispida is a widely used vegetable in China, which belongs to the Cucurbitaceae family. Benincasa hispida (wax gourd) has been used in traditional Chinese medicine for the treatment of inflammation and hypertension. The Benincasa hispida contains many compounds such as amino acids, carbohydrates, volatile compounds, vitamins, and minerals. The amino acid present in the pulp of Benincasa hispida are ornithine, threonine, aspartate, glutamate, serine, glycine, proline, alanine, valine, cysteine, isoleucine, tyrosine, leucine, lysine, phenylalanine, histidine, arginine, and γ-aminobutyric acid. Our results showed that Benincasa hispida is one of the potent natural antioxidants and can maintain normal blood pressure in Dahl salt-sensitive rats (D-SS). In conclusion, the current results provide good theoretical basis for the development and research using Benincasa hispida as an effective natural antioxidant for hypertension.
Collapse
Affiliation(s)
- Hussain Ahmad
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xinrui Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Yuexin Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jie Du
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Li Zeng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Ouyang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Pengfei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Meng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoxue Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
7
|
Levy R, Le TH. Role of GSTM1 in Hypertension, CKD, and Related Diseases across the Life Span. KIDNEY360 2022; 3:2153-2163. [PMID: 36591365 PMCID: PMC9802555 DOI: 10.34067/kid.0004552022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Abstract
Over 20 years after the introduction of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, CKD remains a major public health burden with limited therapeutic options to halt or slow kidney disease progression at all ages. The consensus is that oxidative stress contributes to CKD development and progression. Yet, to date, there is no clear evidence that broad use of antioxidant therapy provides a beneficial effect in CKD. Understanding the specific pathophysiologic mechanisms in those who are genetically most susceptible to oxidative stress is a crucial step to inform therapy in an individualized medicine approach, considering differing exposures and risks across the life span. Glutathione-S-transferase μ 1 (GSTM1) is a phase 2 enzyme involved in inactivation of reactive oxygen species and metabolism of xenobiotics. In particular, those with the highly prevalent GSTM1 null genotype (GSTM1[0/0]) may be more susceptible to kidney disease progression, due to impaired capacity to handle the increased oxidative stress burden in disease states, and might specifically benefit from therapy that targets the redox imbalance mediated by loss of the GSTM1 enzyme. In this review, we will discuss the studies implicating the role of GSTM1 deficiency in kidney and related diseases from experimental rodent models to humans, from the prenatal period through senescence, and the potential underlying mechanism.
Collapse
Affiliation(s)
- Rebecca Levy
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
8
|
Saha P, Mell B, Golonka RM, Bovilla VR, Abokor AA, Mei X, Yeoh BS, Doris PA, Gewirtz AT, Joe B, Vijay-Kumar M. Selective IgA Deficiency in Spontaneously Hypertensive Rats With Gut Dysbiosis. Hypertension 2022; 79:2239-2249. [PMID: 35950503 PMCID: PMC9458624 DOI: 10.1161/hypertensionaha.122.19307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The spontaneously hypertensive rat (SHR) is extensively used to study hypertension. Gut microbiota dysbiosis is a notable feature in SHR for reasons unknown. Immunoglobulin A (IgA) is a major host factor required for gut microbiota homeostasis. We hypothesized that inadequate IgA contributes to gut microbiota dysbiosis in SHR. METHODS IgA was measured in feces, cecum, serum, liver, gut-associated lymphoid tissue, and milk from SHR and Wistar Kyoto rats. IgA regulatory factors like IgM, IgG, and pIgR (polymeric immunoglobulin receptor) were analyzed. IgA and IgG antibodies and blood pressure (BP) were measured before and after administrating a bacterial antigen (ie, flagellin). RESULTS Compared with Wistar Kyoto rats, SHR displayed remarkably near-deficient IgA levels accompanied by compensatory increases in serum IgM and IgG and gut-liver pIgR expression. Inadequate milk IgA in SHR emphasized this immune defect stemmed from the neonatal stage. Reduced IgA+ B cells in circulation and Peyer patches indicated a possible reason for the lower IgA in SHR. Noteworthy, a genetic insufficiency was unlikely because administering flagellin to SHR induced anti-flagellin IgA antibodies. This immune response surprisingly accelerated hypertension development in SHR, suggesting IgA quiescence may help maintain lower BP. CONCLUSIONS This study is the first to reveal IgA deficiency in SHR as one host factor associated with gut microbiota dysbiosis and invigorates future research to determine the pathophysiological role of IgA in hypertension.
Collapse
Affiliation(s)
- Piu Saha
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Blair Mell
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Venugopal R. Bovilla
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ahmed A. Abokor
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xue Mei
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Peter A. Doris
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bina Joe
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
9
|
Koch LG, Britton SL. Biology: Motion is Function. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac030. [PMID: 35859581 PMCID: PMC9279109 DOI: 10.1093/function/zqac030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 01/07/2023]
Abstract
In 1966 Francis Crick declared that: "The ultimate aim of the modern movement in biology is to explain all biology in terms of physics and chemistry." This motivated us to contemplate approaches that unify biology at a fundamental level. Exploration led us to consider the features of energy, entropy, and motion. Overall, it can be considered that motion of matter is the feature of life function. No motion. No function. In initial work we evaluated the hypothesis that the scope for biologic function is mediated mechanistically by a differential for energy transfer. Maximal treadmill running capacity served as a proxy for energy transfer. The span for capacity was estimated "biologically" by application of two-way artificial selection in rats for running capacity. Consistent with our "Energy Transfer Hypothesis" (ETH), low physical health and dysfunction segregated with low running capacity and high physical health and function segregated with high running capacity. The high energy yield of aerobic metabolism is also consonant with the ETH; that is, amongst the elements of the universe, oxygen is second only to fluorine in electronegativity. Although we deem these energy findings possibly correct, they are based on correlation and do not illuminate function via fundamental principles. For consideration of life, Entropy (2nd Law of thermodynamics) can be viewed as an open system that exchanges energy with the universe operating via nonequilibrium thermodynamics. The Principle of Maximal Entropy Production (MEP) states that: If a source of free energy is present, complex systems can intercept the free energy flow, and self-organize to enhance entropy production. The development of Benard convection cells in a water heat gradient demonstrate simplistic operation of MEP. A direct step forward would be to explain the mechanism of the obligatory motion of molecules for life function. Motion may be mediated by operation of "action at a distance" for molecules as considered by the Einstein-Podolsky-Rosen Paradox and confirmed by JS Bell. Magnetism, electricity, and gravity are also examples of action at a distance. We propose that some variant of "action at a distance" as directed by the property of Maximal Entropy Production (MEP) underwrites biologic motion.
Collapse
Affiliation(s)
| | - Steven L Britton
- Department of Molecular and Integrative Physiology and Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Olczak KJ, Taylor-Bateman V, Nicholls HL, Traylor M, Cabrera CP, Munroe PB. Hypertension genetics past, present and future applications. J Intern Med 2021; 290:1130-1152. [PMID: 34166551 DOI: 10.1111/joim.13352] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Essential hypertension is a complex trait where the underlying aetiology is not completely understood. Left untreated it increases the risk of severe health complications including cardiovascular and renal disease. It is almost 15 years since the first genome-wide association study for hypertension, and after a slow start there are now over 1000 blood pressure (BP) loci explaining ∼6% of the single nucleotide polymorphism-based heritability. Success in discovery of hypertension genes has provided new pathological insights and drug discovery opportunities and translated to the development of BP genetic risk scores (GRSs), facilitating population disease risk stratification. Comparing highest and lowest risk groups shows differences of 12.9 mm Hg in systolic-BP with significant differences in risk of hypertension, stroke, cardiovascular disease and myocardial infarction. GRSs are also being trialled in antihypertensive drug responses. Drug targets identified include NPR1, for which an agonist drug is currently in clinical trials. Identification of variants at the PHACTR1 locus provided insights into regulation of EDN1 in the endothelin pathway, which is aiding the development of endothelin receptor EDNRA antagonists. Drug re-purposing opportunities, including SLC5A1 and canagliflozin (a type-2 diabetes drug), are also being identified. In this review, we present key studies from the past, highlight current avenues of research and look to the future focusing on gene discovery, epigenetics, gene-environment interactions, GRSs and drug discovery. We evaluate limitations affecting BP genetics, including ancestry bias and discuss streamlining of drug target discovery and applications for treating and preventing hypertension, which will contribute to tailored precision medicine for patients.
Collapse
Affiliation(s)
- Kaya J Olczak
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Victoria Taylor-Bateman
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hannah L Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Biomedical Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Biomedical Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Potter JC, Whiles SA, Miles CB, Whiles JB, Mitchell MA, Biederman BE, Dawoud FM, Breuel KF, Williamson GA, Picken MM, Polichnowski AJ. Salt-Sensitive Hypertension, Renal Injury, and Renal Vasodysfunction Associated With Dahl Salt-Sensitive Rats Are Abolished in Consomic SS.BN1 Rats. J Am Heart Assoc 2021; 10:e020261. [PMID: 34689582 PMCID: PMC8751849 DOI: 10.1161/jaha.120.020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Abnormal renal hemodynamic responses to salt‐loading are thought to contribute to salt‐sensitive (SS) hypertension. However, this is based largely on studies in anesthetized animals, and little data are available in conscious SS and salt‐resistant rats. Methods and Results We assessed arterial blood pressure, renal function, and renal blood flow during administration of a 0.4% NaCl and a high‐salt (4.0% NaCl) diet in conscious, chronically instrumented 10‐ to 14‐week‐old Dahl SS and consomic SS rats in which chromosome 1 from the salt‐resistant Brown‐Norway strain was introgressed into the genome of the SS strain (SS.BN1). Three weeks of high salt intake significantly increased blood pressure (20%) and exacerbated renal injury in SS rats. In contrast, the increase in blood pressure (5%) was similarly attenuated in Brown‐Norway and SS.BN1 rats, and both strains were completely protected against renal injury. In SS.BN1 rats, 1 week of high salt intake was associated with a significant decrease in renal vascular resistance (−8%) and increase in renal blood flow (15%). In contrast, renal vascular resistance failed to decrease, and renal blood flow remained unchanged in SS rats during high salt intake. Finally, urinary sodium excretion and glomerular filtration rate were similar between SS and SS.BN1 rats during 0.4% NaCl and high salt intake. Conclusions Our data support the concept that renal vasodysfunction contributes to blood pressure salt sensitivity in Dahl SS rats, and that genes on rat chromosome 1 play a major role in modulating renal hemodynamic responses to salt loading and salt‐induced hypertension.
Collapse
Affiliation(s)
- Jacqueline C Potter
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Shannon A Whiles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Conor B Miles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Jenna B Whiles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Mark A Mitchell
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Brianna E Biederman
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Febronia M Dawoud
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Kevin F Breuel
- Department of Obstetrics and Gynecology Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering Illinois Institute of Technology Chicago IL
| | - Maria M Picken
- Department of Pathology Loyola University Medical Center Maywood IL
| | - Aaron J Polichnowski
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN.,Center of Excellence in Inflammation, Infectious Disease and Immunity East Tennessee State University Johnson City TN
| |
Collapse
|
12
|
Samara VA, Das S, Reddy MA, Tanwar VS, Stapleton K, Leung A, Abdollahi M, Ganguly R, Lanting L, Natarajan R. Angiotensin II-Induced Long Non-Coding RNA Alivec Regulates Chondrogenesis in Vascular Smooth Muscle Cells. Cells 2021; 10:2696. [PMID: 34685676 PMCID: PMC8535098 DOI: 10.3390/cells10102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in Angiotensin II (AngII) signaling but their role in chondrogenic transformation of vascular smooth muscle cells (VSMCs) is unknown. We describe a novel AngII-induced lncRNA Alivec (Angiotensin II-induced lncRNA in VSMCs eliciting chondrogenic phenotype) implicated in VSMC chondrogenesis. In rat VSMCs, Alivec and the nearby gene Acan, a chondrogenic marker, were induced by growth factors AngII and PDGF and the inflammatory cytokine TNF-α. AngII co-regulated Alivec and Acan through the activation of AngII type1 receptor signaling and Sox9, a master transcriptional regulator of chondrogenesis. Alivec knockdown with GapmeR antisense-oligonucleotides attenuated the expression of AngII-induced chondrogenic marker genes, including Acan, and inhibited the chondrogenic phenotype of VSMCs. Conversely, Alivec overexpression upregulated these genes and promoted chondrogenic transformation. RNA-pulldown coupled to mass-spectrometry identified Tropomyosin-3-alpha and hnRNPA2B1 proteins as Alivec-binding proteins in VSMCs. Furthermore, male rats with AngII-driven hypertension showed increased aortic expression of Alivec and Acan. A putative human ortholog ALIVEC, was induced by AngII in human VSMCs, and this locus was found to harbor the quantitative trait loci affecting blood pressure. Together, these findings suggest that AngII-regulated lncRNA Alivec functions, at least in part, to mediate the AngII-induced chondrogenic transformation of VSMCs implicated in vascular dysfunction and hypertension.
Collapse
MESH Headings
- Aggrecans/genetics
- Aggrecans/metabolism
- Angiotensin II/pharmacology
- Animals
- Aorta/metabolism
- Blood Pressure/drug effects
- Blood Pressure/genetics
- Chondrogenesis/drug effects
- Chondrogenesis/genetics
- Enhancer Elements, Genetic/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism
- Humans
- Male
- Muscle Contraction/genetics
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Osteogenesis/drug effects
- Osteogenesis/genetics
- Phenotype
- Quantitative Trait Loci/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- SOX9 Transcription Factor/metabolism
- Tropomyosin/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
- src-Family Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Vishnu Amaram Samara
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Sadhan Das
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Marpadga A. Reddy
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Vinay Singh Tanwar
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Kenneth Stapleton
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Rituparna Ganguly
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Le TH. GSTM1 Gene, Diet, and Kidney Disease: Implication for Precision Medicine?: Recent Advances in Hypertension. Hypertension 2021; 78:936-945. [PMID: 34455814 DOI: 10.1161/hypertensionaha.121.16510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the United States, the prevalence of chronic kidney disease in adults is ≈14%. The mainstay of therapy for chronic kidney disease is angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, but many patients with chronic kidney disease still progress to end-stage kidney disease. Increased oxidative stress is a major molecular underpinning of chronic kidney disease progression. In humans, a common deletion variant of the glutathione-S-transferase μ-1 (GSTM1) gene, the GSTM1 null allele (GSTM1(0)), results in decreased GSTM1 enzymatic activity and is associated with higher levels of oxidative stress. GSTM1 belongs to the superfamily of GSTs that are phase II antioxidant enzymes and are regulated by Nrf2 (nuclear factor erythroid 2-related factor 2). Cruciferous vegetables in general, and broccoli in particular, are rich in glucoraphanin, a precursor of sulforaphane that has been shown to have protective effects against oxidative damage through the activation of Nrf2. This review will highlight recent human and animal studies implicating the role of GSTM1 deficiency in hypertension and kidney disease, and its impact on the effects of cruciferous vegetables on kidney injury and disease progression, illustrating the significance of gene and environment interaction and a potential for targeted precision medicine in the treatment of kidney disease.
Collapse
Affiliation(s)
- Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, NY
| |
Collapse
|
14
|
Genetically determined hypertensive phenotype affects gut microbiota composition, but not vice versa. J Hypertens 2021; 39:1790-1799. [PMID: 34397627 DOI: 10.1097/hjh.0000000000002864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Research suggests reciprocal crosstalk between the host and gut bacteria. This study evaluated the interaction between gut microbiota and arterial blood pressure (BP) in rats. METHODS Continuous telemetry recordings of BP were started in 7-week-old normotensive Wistar--Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Two weeks later, half of the WKY and SHR were subjected to cross-transplantation of fecal matter, with stools harvested from either WKY or SHR and BP measurements until the age of 14 weeks. The composition of gut bacteria was assessed through analysis of the bacterial 16S ribosomal RNA gene sequence. The concentration of microbiota-derived metabolites was evaluated using HPLC-MS. RESULTS There was a significant difference between WKY and SHR in the composition of gut bacteria at the start and end of the study. This was accompanied by significant histological differences in the colon. SHR, but not WKY, showed a gradual increase in BP throughout the experiment. For both WKY and SHR, there was no significant difference in BP or metabolic parameters between animals receiving fecal transplantation from either SHR or WKY. CONCLUSION Genetically induced hypertension in SHR is associated with alterations in the composition of gut bacteria and histological morphology of the colon. An inter-strain fecal transplant does not affect BP and does not produce long-term changes in gut bacteria composition. We propose that the impact of the host genotype and/or phenotype on the gut bacteria may be greater than the impact of the gut bacteria on the host BP.
Collapse
|
15
|
Takahashi N, Misumi M, Niwa Y, Murakami H, Ohishi W, Inaba T, Nagamachi A, Tanaka S, Braga Tanaka I, Suzuki G. Effects of Radiation on Blood Pressure and Body Weight in the Spontaneously Hypertensive Rat Model. Are Radiation Effects on Blood Pressure Affected by Genetic Background? Radiat Res 2020; 193:552-559. [PMID: 32150496 DOI: 10.1667/rr15536.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/28/2020] [Indexed: 11/03/2022]
Abstract
In this work, we utilized spontaneously hypertensive rats (SHR) and Wister Kyoto rats (WKY), from which the SHR was established, to evaluate the effects of whole-body acute radiation on the cardiovascular system at doses from 0 to 4 Gy. In the irradiated SHR, the systolic blood pressure (SBP) increased with increasing dose, while body weight gain decreased with increasing radiation dose. Furthermore, pathological observations of SHR demonstrated that the number of rats with cystic degeneration in the liver increased with increasing dose. The effects observed among SHR, such as increased SBP and retardation of body weight gain, appear very similar to those observed in Japanese atomic bomb survivors. In contrast, the SBP among WKY did not change relative to dose; the body weight, however, did change, as in the SHR. Therefore, the association between radiation exposure and SBP, but not between radiation exposure and retardation of body weight gain, may be affected by genetic background, as evident from strain difference. These results suggest that the SHR and WKY animal models may be useful for studying radiation effects on non-cancer diseases including circulatory diseases, chronic liver disease and developmental retardation.
Collapse
Affiliation(s)
- Norio Takahashi
- Consultant, Radiation Effects Research Foundation (RERF), Hiroshima, 732-0815, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation (RERF), Hiroshima, 732-0815, Japan
| | - Yasuharu Niwa
- Department of Molecular Biosciences, Radiation Effects Research Foundation (RERF), Hiroshima, 732-0815, Japan
| | - Hideko Murakami
- Department of Molecular Biosciences, Radiation Effects Research Foundation (RERF), Hiroshima, 732-0815, Japan
| | - Waka Ohishi
- Department of Clinical Studies (Hiroshima), Radiation Effects Research Foundation (RERF), Hiroshima, 732-0815, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori, 039-3212, Japan
| | - Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori, 039-3212, Japan
| | - Gen Suzuki
- International University of Health and Welfare Clinic, Tochigi, 324-8501, Japan
| |
Collapse
|
16
|
Takahashi N, Misumi M, Murakami H, Niwa Y, Ohishi W, Inaba T, Nagamachi A, Suzuki G. Association between low doses of ionizing radiation, administered acutely or chronically, and time to onset of stroke in a rat model. JOURNAL OF RADIATION RESEARCH 2020; 61:666-673. [PMID: 32748938 PMCID: PMC7482173 DOI: 10.1093/jrr/rraa050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/10/2020] [Indexed: 06/10/2023]
Abstract
Exposure to high-doses of ionizing radiation has been reported to be associated with the risk of stroke. However, risks associated with lower dose exposures remain unclear, and there is little information available for the risk modification according to the dose-rate. There are few studies using animal models which might be able to provide complementary information on this association. In this study, the male stroke-prone spontaneously hypertensive rat (SHRSP) was used as a model animal. The rats were acutely irradiated with doses between 0 and 1.0 Gy or chronically irradiated with a cumulative dose of 0.5 or 1.0 Gy (at a dose rate of 0.05 or 0.1 Gy/day, respectively). The onset time of stroke related symptoms in SHRSP was used as an endpoint for evaluating the effects of low dose and the low dose-rate gamma-ray exposures. With respect to acute exposure, the time to the onset of stroke in the irradiated rats suggested the presence of a threshold around 0.1 Gy. For the low dose-rate chronically exposed, no significant increase in stroke symptom was observed. These findings are novel and demonstrate that the SHRSP system can be used to determine the association between the risk of stroke and radiation exposure with high sensitivity. Moreover, these studies provide important information regarding the association between the low dose and low dose-rate radiation exposure and circulatory diseases, especially stroke.
Collapse
Affiliation(s)
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Hideko Murakami
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yasuharu Niwa
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Waka Ohishi
- Clinical Studies (Hiroshima), Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Gen Suzuki
- International University of Health and Welfare Clinic, Otawara, Tochigi, Japan
| |
Collapse
|
17
|
Ozoux ML, Briand V, Pelat M, Barbe F, Schaeffer P, Beauverger P, Poirier B, Guillon JM, Petit F, Altenburger JM, Bidouard JP, Janiak P. Potential Therapeutic Value of Urotensin II Receptor Antagonist in Chronic Kidney Disease and Associated Comorbidities. J Pharmacol Exp Ther 2020; 374:24-37. [PMID: 32332113 DOI: 10.1124/jpet.120.265496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022] Open
Abstract
Chronic kidney disease (CKD) remains a common disorder, leading to growing health and economic burden without curative treatment. In diabetic patients, CKD may result from a combination of metabolic and nonmetabolic-related factors, with mortality mainly driven by cardiovascular events. The marked overactivity of the urotensinergic system in diabetic patients implicates this vasoactive peptide as a possible contributor to the pathogenesis of renal as well as heart failure. Previous preclinical studies with urotensin II (UII) antagonists in chronic kidney disease were based on simple end points that did not reflect the complex etiology of the disease. Given this, our studies revisited the therapeutic value of UII antagonism in CKD and extensively characterized 1-({[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-methylphenyl)pyridin-2-yl]carbonyl}amino) cyclohexanecarboxylic acid hydrochloride (SAR101099), a potent, selective, and orally long-acting UII receptor competitive antagonist, inhibiting not only UII but also urotensin-related peptide activities. SR101099 treatment more than halved proteinurea and albumin/creatinine ratio in spontaneously hypertensive stroke-prone (SHR-SP) rats fed with salt/fat diet and Dahl-salt-sensitive rats, respectively, and it halved albuminuria in streptozotocin-induced diabetes rats. Importantly, these effects were accompanied by a decrease in mortality of 50% in SHR-SP and of 35% in the Dahl salt-sensitive rats. SAR101099 was also active on CKD-related cardiovascular pathologies and partly preserved contractile reserve in models of heart failure induced by myocardial infarction or ischemia/reperfusion in rats and pigs, respectively. SAR101099 exhibited a good safety/tolerability profile at all tested doses in clinical phase-I studies. Together, these data suggest that CKD patient selection considering comorbidities together with new stratification modalities should unveil the urotensin antagonists' therapeutic potential. SIGNIFICANCE STATEMENT: Chronic kidney disease (CKD) is a pathology with growing health and economic burden, without curative treatment. For years, the impact of urotensin II receptor (UT) antagonism to treat CKD may have been compromised by available tools or models to deeper characterize the urotensinergic system. New potent, selective, orally long-acting cross-species UT antagonist such as SAR101099 exerting reno- and cardioprotective effects could offer novel therapeutic opportunities. Its preclinical and clinical results suggest that UT antagonism remains an attractive target in CKD on top of current standard of care.
Collapse
Affiliation(s)
- Marie-Laure Ozoux
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Véronique Briand
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Michel Pelat
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Fabrice Barbe
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Paul Schaeffer
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Philippe Beauverger
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Bruno Poirier
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Jean-Michel Guillon
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Frédéric Petit
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Jean-Michel Altenburger
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Jean-Pierre Bidouard
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Philip Janiak
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| |
Collapse
|
18
|
Cheng Y, Wang D, Wang F, Liu J, Huang B, Baker MA, Yin J, Wu R, Liu X, Regner KR, Usa K, Liu Y, Zhang C, Dong L, Geurts AM, Wang N, Miller SS, He Y, Liang M. Endogenous miR-204 Protects the Kidney against Chronic Injury in Hypertension and Diabetes. J Am Soc Nephrol 2020; 31:1539-1554. [PMID: 32487559 DOI: 10.1681/asn.2019101100] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/09/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Aberrant microRNA (miRNA) expression affects biologic processes and downstream genes that are crucial to CKD initiation or progression. The miRNA miR-204-5p is highly expressed in the kidney but whether miR-204-5p plays any role in the development of chronic renal injury is unknown. METHODS We used real-time PCR to determine levels of miR-204 in human kidney biopsies and animal models. We generated Mir204 knockout mice and used locked nucleic acid-modified anti-miR to knock down miR-204-5p in mice and rats. We used a number of physiologic, histologic, and molecular techniques to analyze the potential role of miR-204-5p in three models of renal injury. RESULTS Kidneys of patients with hypertension, hypertensive nephrosclerosis, or diabetic nephropathy exhibited a significant decrease in miR-204-5p compared with controls. Dahl salt-sensitive rats displayed lower levels of renal miR-204-5p compared with partially protected congenic SS.13BN26 rats. Administering anti-miR-204-5p to SS.13BN26 rats exacerbated interlobular artery thickening and renal interstitial fibrosis. In a mouse model of hypertensive renal injury induced by uninephrectomy, angiotensin II, and a high-salt diet, Mir204 gene knockout significantly exacerbated albuminuria, renal interstitial fibrosis, and interlobular artery thickening, despite attenuation of hypertension. In diabetic db/db mice, administering anti-miR-204-5p exacerbated albuminuria and cortical fibrosis without influencing blood glucose levels. In all three models, inhibiting miR-204-5p or deleting Mir204 led to upregulation of protein tyrosine phosphatase SHP2, a target gene of miR-204-5p, and increased phosphorylation of signal transducer and activator of transcription 3, or STAT3, which is an injury-promoting effector of SHP2. CONCLUSIONS These findings indicate that the highly expressed miR-204-5p plays a prominent role in safeguarding the kidneys against common causes of chronic renal injury.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Clinical Institute of Anhui Medical University, Shenzhen, People's Republic of China.,The Center for Nephrology and Urology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dandan Wang
- The Center for Nephrology and Urology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jing Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Baorui Huang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xuanchen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Congxiao Zhang
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lijin Dong
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Sheldon S Miller
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
19
|
Redina OE, Devyatkin VA, Ershov NI, Markel AL. Genetic Polymorphism of Experimentally Produced Forms of Arterial Hypertension. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Kumar V, Yang C, Cowley AW. Temporal Expression and Cellular Localization of PAPPA2 in the Developing Kidney of Rat. J Histochem Cytochem 2020; 68:209-222. [PMID: 31989854 DOI: 10.1369/0022155420904478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PAPPA2 is a metalloproteinase which cleaves insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5, and its role in pregnancy and postnatal growth is primarily studied. Using exclusion mapping, we reported a subcongenic (26-P) rat where a 0.71-Mbp region containing the pregnancy-associated plasma protein a2 (Pappa2) allele of salt-insensitive Brown Norway (BN) was introgressed into Dahl saltsensitive (SS) genetic background, resulting in the reduction of salt sensitivity. Pappa2 was differentially expressed in the adult kidney of 26-P and SS rats. Here, the expression and cellular localization of Pappa2 in embryonic and postnatal kidneys of 26-P and SS rats were examined. Pappa2 mRNA expression was 5-fold higher in the embryonic kidney (day 20.5) of the 26-P rat compared with the SS rat. Pappa2 mRNA expression progressively increased with the development of kidney, reaching a peak at postnatal day 5 before trending downward in subsequent stages of development in both strains. At all tested time points, Pappa2 remained higher in the 26-P compared with the SS rat kidney. Immunohistochemistry studies localized PAPPA2 in the ureteric bud (UB) and distal part of S-shaped body. PAPPA2 was colocalized with IGFBP-5 in the UB and Na+/K+/2Cl- cotransporter-stained tubules, respectively. Future studies are needed to determine the role of Pappa2 in kidney development and mechanistic pathways involved in this process.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
21
|
Baker MA, Wang F, Liu Y, Kriegel AJ, Geurts AM, Usa K, Xue H, Wang D, Kong Y, Liang M. MiR-192-5p in the Kidney Protects Against the Development of Hypertension. Hypertension 2019; 73:399-406. [PMID: 30595117 DOI: 10.1161/hypertensionaha.118.11875] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MicroRNA miR-192-5p is one of the most abundant microRNAs in the kidney and targets the mRNA for ATP1B1 (β1 subunit of Na+/K+-ATPase). Na+/K+-ATPase drives renal tubular reabsorption. We hypothesized that miR-192-5p in the kidney would protect against the development of hypertension. We found miR-192-5p levels were significantly lower in kidney biopsy specimens from patients with hypertension (n=8) or hypertensive nephrosclerosis (n=32) compared with levels in controls (n=10). Similarly, Dahl salt-sensitive (SS) rats showed a reduced abundance of miR-192-5p in the renal cortex compared with congenic SS.13BN26 rats that had reduced salt sensitivity (n=9; P<0.05). Treatment with anti-miR-192-5p delivered through renal artery injection in uninephrectomized SS.13BN26 rats exacerbated hypertension significantly. Mean arterial pressure on a 4% NaCl high-salt diet at day 14 post anti-miR-192-5p treatment was 16 mm Hg higher than in rats treated with scrambled anti-miR (n=8 and 6; P<0.05). Similarly, Mir192 knockout mice on the high-salt diet treated with Ang II (angiotensin II) for 14 days exhibited a mean arterial pressure 22 mm Hg higher than wild-type mice (n=9 and 5; P<0.05). Furthermore, protein levels of ATP1B1 were higher in Dahl SS rats than in SS.13BN26 rats. Na+/K+-ATPase activity increased in the renal cortex of SS.13BN26 rats 9 days posttreatment with anti-miR-192-5p compared with that of control anti-miR treated rats. Intrarenal knockdown of ATP1B1 attenuated hypertension in SS.13BN26 rats with intrarenal knockdown of miR-192-5p. In conclusion, miR-192-5p in the kidney protects against the development of hypertension, which is mediated, at least in part, by targeting Atp1b1.
Collapse
Affiliation(s)
- Maria Angeles Baker
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Feng Wang
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.W., Y.K.)
| | - Yong Liu
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Alison J Kriegel
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Aron M Geurts
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Kristie Usa
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Hong Xue
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Dandan Wang
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Yiwei Kong
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.W., Y.K.)
| | - Mingyu Liang
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| |
Collapse
|
22
|
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019; 73:e87-e120. [PMID: 30866654 DOI: 10.1161/hyp.0000000000000090] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Collapse
|
23
|
Rapp JP, Garrett MR. Will the real Dahl S rat please stand up? Am J Physiol Renal Physiol 2019; 317:F1231-F1240. [PMID: 31545925 PMCID: PMC6879929 DOI: 10.1152/ajprenal.00359.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022] Open
Affiliation(s)
- John P Rapp
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
24
|
Rapp JP, Joe B. Dissecting Epistatic QTL for Blood Pressure in Rats: Congenic Strains versus Heterogeneous Stocks, a Reality Check. Compr Physiol 2019; 9:1305-1337. [PMID: 31688958 DOI: 10.1002/cphy.c180038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in molecular genetics have provided well-defined physical genetic maps and large numbers of genetic markers for both model organisms and humans. It is now possible to gain a fundamental understanding of the genetic architecture underlying quantitative traits, of which blood pressure (BP) is an important example. This review emphasizes analytical techniques and results obtained using the Dahl salt-sensitive (S) rat as a model of hypertension by presenting results in detail for three specific chromosomal regions harboring genetic elements of increasing complexity controlling BP. These results highlight the critical importance of genetic interactions (epistasis) on BP at all levels of structure, intragenic, intergenic, intrachromosomal, interchromosomal, and across whole genomes. In two of the three examples presented, specific DNA structural variations leading to biochemical, physiological, and pathological mechanisms are well defined. This proves the usefulness of the techniques involving interval mapping followed by substitution mapping using congenic strains. These classic techniques are compared to newer approaches using sophisticated statistical analysis on various segregating or outbred model-organism populations, which in some cases are uniquely useful in demonstrating the existence of higher-order interactions. It is speculated that hypertension as an outlier quantitative phenotype is dependent on higher-order genetic interactions. The obstacle to the identification of genetic elements and the biochemical/physiological mechanisms involved in higher-order interactions is not theoretical or technical but the lack of future resources to finish the job of identifying the individual genetic elements underlying the quantitative trait loci for BP and ascertaining their molecular functions. © 2019 American Physiological Society. Compr Physiol 9:1305-1337, 2019.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
25
|
CaSR participates in the regulation of vascular tension in the mesentery of hypertensive rats via the PLC‑IP3/AC‑V/cAMP/RAS pathway. Mol Med Rep 2019; 20:4433-4448. [PMID: 31485595 PMCID: PMC6797953 DOI: 10.3892/mmr.2019.10620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hypertension is a cardiovascular disease that severely impairs human health; however, its specific etiology and pathogenesis are complex. The present study investigated the effects of the calcium sensing receptor (CaSR) on vascular tone in spontaneously hypertensive rats (SHRs), and clarified the role and mechanism of CaSR in regulating this property with respect to the phospholipase C (PLC)-inositol 1,4,5-triphosphate (IP3)/adenylate cyclase-V(AC-V)/cyclic adenosine monophosphate (cAMP)/renin-angiotensin system (RAS) pathway in these animals. CaSR protein expression in the mesenteric artery (MA) of rats and CaSR protein expression in SHRs were significantly reduced. Based on wire myography studies, vasoconstriction was significantly augmented and vasodilatation was attenuated in SHRs, and this effect was endothelium-independent. The CaSR calcimimetic NPSR568 and inhibitor NPS2143 reduced vasoconstriction and enhanced vasodilation in SHRs. Furthermore, pretreatment with PLC-IP3/AC-V/cAMP/RAS pathway blockers significantly reduced the vasoconstriction response and enhanced the vasodilator response in SHRs and Wistar-Kyoto rats (WKY), and these effects were partially dependent on the endothelium. Additionally, pretreatment with CaSR inhibitors were determined to cooperate with the PLC-IP3/AC-V/cAMP/RAS pathway inhibitors to significantly reduce vasoconstriction and enhance vasodilation in SHRs and WKY. Our results demonstrated that CaSR is functionally expressed in the MA of SHRs, and that CaSR expression is decreased in SHRs. Additionally, vasoconstriction was enhanced while vasodilatation was attenuated in SHRs; these processes were determined to be endothelium-independent. CaSR is involved in the regulation of blood pressure and vascular tension in SHRs and WKYs. In association with mechanistic differences, this effect was proposed to be partially endothelium-dependent and mediated by the PLC-IP3/AC-V/cAMP/RAS pathway.
Collapse
|
26
|
Deng AY, deBlois D, Laporte SA, Gelinas D, Tardif JC, Thorin E, Shi Y, Raignault A, Ménard A. Novel Pathogenesis of Hypertension and Diastolic Dysfunction Caused by M3R (Muscarinic Cholinergic 3 Receptor) Signaling. Hypertension 2019; 72:755-764. [PMID: 30354759 DOI: 10.1161/hypertensionaha.118.11385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Multiple quantitative trait loci for blood pressure (BP) are localized in humans and rodent models. Model studies have not only produced human quantitative trait loci homologues but also provided unforeseen mechanistic insights into the function modality of quantitative trait loci actions. Presently, congenic knockins, gene-specific knockout, and in vitro and in vivo function studies were used in a rat model of polygenic hypertension, DSS (Dahl salt sensitive) rats. One gene previously unknown in regulating BP was detected with 1 structural mutation(s) for each of 2 quantitative trait loci classified into 2 separate epistatic modules 1 and 3. C17QTL1 in epistatic module 2 was identified to be the gene Chrm3 encoding the M3R (muscarinic cholinergic 3 receptor), since a single function-enhancing M3RT556M conversion correlated with elevated BP. To definitively prove that the enhanced M3R function is responsible for BP changes by the DSS alleles of C17QTL1, we generated a Chrm3 gene-specific rat knockout. We observed a reduction in BP without tachycardia in both sexes, regardless of the amount of dietary salt, and an improvement in diastolic and kidney dysfunctions. All occurred in spite of a significant reduction in M3R-dependent vasodilation. The previously seen sexual dimorphism for C17QTL1 on BP disappeared in the absence of M3R. A Chrm3-coding variation increased M3R signaling, correlating with higher BP. Removing the M3R signaling led to a decrease in BP and improvements in cardiac and renal malfunctions. A novel pathogenic pathway accounted for a portion of polygenic hypertension and has implications in applying new diagnostic and therapeutic uses against hypertension and diastolic dysfunction.
Collapse
Affiliation(s)
- Alan Y Deng
- From the Department de Medicine, Research Center-Centre hospitalier de l'Université de Montréal (A.Y.D., A.M.)
| | - Denis deBlois
- Department of Pharmacology, Université de Montréal, Québec, Canada (D.d.)
| | - Stéphane A Laporte
- Department of Medicine (S.A.L.).,Department of Pharmacology and Therapeutics (S.A.L.), McGill University Health Center Research Institute, McGill University, Montréal, Québec, Canada
| | - Danielle Gelinas
- Montreal Heart Institute Research Center (D.G., J.-C.T., E.T., Y.S., A.R.), Université de Montréal, Québec, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute Research Center (D.G., J.-C.T., E.T., Y.S., A.R.), Université de Montréal, Québec, Canada
| | - Eric Thorin
- Montreal Heart Institute Research Center (D.G., J.-C.T., E.T., Y.S., A.R.), Université de Montréal, Québec, Canada
| | - Yanfen Shi
- Montreal Heart Institute Research Center (D.G., J.-C.T., E.T., Y.S., A.R.), Université de Montréal, Québec, Canada
| | - Adeline Raignault
- Montreal Heart Institute Research Center (D.G., J.-C.T., E.T., Y.S., A.R.), Université de Montréal, Québec, Canada
| | - Annie Ménard
- From the Department de Medicine, Research Center-Centre hospitalier de l'Université de Montréal (A.Y.D., A.M.)
| |
Collapse
|
27
|
Morris DJ, Brem AS. Role of gut metabolism of adrenal corticosteroids and hypertension: clues gut-cleansing antibiotics give us. Physiol Genomics 2019; 51:83-89. [PMID: 30681907 DOI: 10.1152/physiolgenomics.00115.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intestinal bacteria can metabolize sterols, bile acids, steroid hormones, dietary proteins, fiber, foodstuffs, and short chain fatty acids. The metabolic products generated by some of these intestinal bacteria have been linked to a number of systemic diseases including obesity with Type 2 diabetes mellitus, some forms of inflammation, and more recently, systemic hypertension. In this review, we primarily focus on the potential role selected gut bacteria play in metabolizing the endogenous glucocorticoids corticosterone and cortisol. Those generated steroid metabolites, when reabsorbed in the intestine back into the circulation, produce biological effects most notably as inhibitors of 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2. Inhibition of the dehydrogenase actions of 11β-HSD, particularly in kidney and vascular tissue, allows both corticosterone and cortisol the ability to bind to and activate mineralocorticoid receptors with attended changes in sodium handling and vascular resistance leading to increases in blood pressure. In several animal models of hypertension, administration of gut-cleansing antibiotics results in transient resolution of hypertension and transfer of intestinal contents from a hypertensive animal to a normotensive animal produces hypertension in the recipient. Moreover, fecal samples from hypertensive humans transplanted into germ-free mice resulted in hypertension in the recipient mice. Thus, it appears that the intestinal microbiome may not just be an innocent bystander but certain perturbations in the type and number of bacteria may directly or indirectly affect hypertension and other diseases.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University , Providence, Rhode Island
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Rhode Island Hospital, Warren Alpert Medical School of Brown University , Providence, Rhode Island
| |
Collapse
|
28
|
Abstract
Metabolic syndrome is a complex disorder that comprises several other complex disorders, including obesity, hypertension, dyslipidemia, and diabetes. There are several rat models that encompass component features of MetS. Some models are inbred strains selected for one or more traits underlying MetS; others are population models with genetic risk for MetS traits, are induced by environmental stressors such as diet, are spontaneous monogenic mutant models, or are congenic strains derived from a combination of these models. Together they can be studied to identify the genetic and physiological underpinnings of MetS to identify candidate genes or mechanisms for study in human MetS subjects.
Collapse
Affiliation(s)
- Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
29
|
Liu Y, Usa K, Wang F, Liu P, Geurts AM, Li J, Williams AM, Regner KR, Kong Y, Liu H, Nie J, Liang M. MicroRNA-214-3p in the Kidney Contributes to the Development of Hypertension. J Am Soc Nephrol 2018; 29:2518-2528. [PMID: 30049682 PMCID: PMC6171279 DOI: 10.1681/asn.2018020117] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In spite of extensive study, the mechanisms for salt sensitivity of BP in humans and rodent models remain poorly understood. Several microRNAs (miRNAs) have been associated with hypertension, but few have been shown to contribute to its development. METHODS We examined miRNA expression profiles in human kidney biopsy samples and rat models using small RNA deep sequencing. To inhibit an miRNA specifically in the kidney in conscious, freely moving rats, we placed indwelling catheters to allow both renal interstitial administration of a specific anti-miR and measurement of BP. A rat with heterozygous disruption of the gene encoding endothelial nitric oxide synthase (eNOS) was developed. We used bioinformatic analysis to evaluate the relationship between 283 BP-associated human single-nucleotide polymorphisms (SNPs) and 1870 human miRNA precursors, as well as other molecular and cellular methods. RESULTS Compared with salt-insensitive SS.13BN26 rats, Dahl salt-sensitive (SS) rats showed an upregulation of miR-214-3p, encoded by a gene in the SS.13BN26 congenic region. Kidney-specific inhibition of miR-214-3p significantly attenuated salt-induced hypertension and albuminuria in SS rats. miR-214-3p directly targeted eNOS. The effect of miR-214-3p inhibition on hypertension and albuminuria was abrogated in SS rats with heterozygous loss of eNOS. Human kidney biopsy specimens from patients with hypertension or hypertensive nephrosclerosis showed upregulation of miR-214-3p; the gene encoding miR-214-3p was one of several differentially expressed miRNA genes located in proximity to human BP-associated SNPs. CONCLUSIONS Renal miR-214-3p plays a functional and potentially genetic role in the development of hypertension, which might be mediated in part by targeting eNOS.
Collapse
Affiliation(s)
- Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology
- Cancer Center
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology
- Human and Molecular Genetics Center, and
| | - Junhui Li
- Center of Systems Molecular Medicine, Department of Physiology
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | | | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yiwei Kong
- Center of Systems Molecular Medicine, Department of Physiology
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | - Han Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology,
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| |
Collapse
|
30
|
Howe DG, Blake JA, Bradford YM, Bult CJ, Calvi BR, Engel SR, Kadin JA, Kaufman TC, Kishore R, Laulederkind SJF, Lewis SE, Moxon SAT, Richardson JE, Smith C. Model organism data evolving in support of translational medicine. Lab Anim (NY) 2018; 47:277-289. [PMID: 30224793 PMCID: PMC6322546 DOI: 10.1038/s41684-018-0150-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.
Collapse
Affiliation(s)
- Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | | | - Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | | | | | - Ranjana Kishore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stanley J F Laulederkind
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| | - Suzanna E Lewis
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sierra A T Moxon
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|
31
|
Pai AV, West CA, A de Souza AM, Cheng X, West DA, Ji H, Wu X, Baylis C, Sandberg K. Salt-sensitive (Rapp) rats from Envigo spontaneously develop accelerated hypertension independent of ovariectomy on a low-sodium diet. Am J Physiol Regul Integr Comp Physiol 2018; 315:R915-R924. [PMID: 30024774 DOI: 10.1152/ajpregu.00449.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inbred salt-sensitive (SS) rats developed by John Rapp and distributed by Harlan (SS/JrHsd) were shown to model ovariectomy-induced hypertension because on a low-sodium (LS) diet, ovariectomized SS (SS-OVX) animals became hypertensive in contrast to their sham-operated (SS-SHAM) normotensive littermates. After Harlan merged with Envigo in 2015, inconsistencies in the LS normotensive phenotype were reported. To further investigate these inconsistencies, we studied the effects of ovariectomy on SS and salt-resistant (SR) rats purchased from Envigo (SS/JrHsd/Env) between 2015 and 2017. The mean arterial pressure (MAP) in SS rats on a LS diet exceeded 160 mmHg at 7 mo old. Ovariectomy at 3 mo had no detectable effect on MAP from 4 to 7 mo, nor did ovariectomy at 1.5 mo significantly affect MAP at 10 mo in either strain; only strain differences in MAP were observed [MAP: SR-SHAM ( n = 7 rats), 102 ± 3 mmHg; SR-OVX ( n = 6 rats), 114 ± 1 mmHg; SS-SHAM ( n = 7 rats), 177 ± 6 mmHg; SS-OVX ( n = 5 rats), 190 ± 12 mmHg; where P < 0.0001 vs. SR, same ovarian-status for SS-SHAM and SS-OVX, respectively]. Whole genome sequencing revealed more genomic variants of SS/JrHsd/Env, including single nucleotide and insertion deletion polymorphisms and higher heterozygous/homozygous ratios compared with the reference genome, than for SS/JrHsd/Mcwi and SS/Jr rats maintained in Milwaukee, WI and Toledo, OH, respectively, and which still exhibit normal blood pressure on a LS diet. These findings demonstrate that the female SS/JrHsd/Env rat has genetically diverged from the original phenotype, which was normotensive on a LS diet when the ovaries were intact but rapidly developed hypertension when the ovaries were removed. Nonetheless, the SS/JrHsd/Env rat could be a valuable model that complements other animal models of spontaneous hypertension used to investigate mechanisms of essential hypertension.
Collapse
Affiliation(s)
- Amrita V Pai
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University , Washington, District of Columbia
| | - Crystal A West
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Aline M A de Souza
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Xi Cheng
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - David A West
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Hong Ji
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Xie Wu
- Department of Medicine, Georgetown University , Washington, District of Columbia
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Kathryn Sandberg
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University , Washington, District of Columbia.,Department of Medicine, Georgetown University , Washington, District of Columbia
| |
Collapse
|
32
|
Abstract
It is difficult to study the genetics and molecular mechanisms of anesthesia in humans. Fortunately, the genetic approaches in model organisms can, and have, led to profound insights as to the targets of anesthetics. In turn, the organization of these putative targets into meaningful pathways has begun to elucidate the mechanisms of action of these agents. However, it is important to first appreciate the strengths, and limitations, of genetic approaches to understand the anesthetic action. Here we compare the commonly used genetic model organisms, various anesthetic endpoints, and different modes of genetic screens. Coupled with the more specific data presented in subsequent chapters, this chapter places those results in a framework with which to analyze the discoveries across organisms and eventually extend the resulting models to humans.
Collapse
|
33
|
Koch LG, Britton SL. Theoretical and Biological Evaluation of the Link between Low Exercise Capacity and Disease Risk. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029868. [PMID: 28389512 DOI: 10.1101/cshperspect.a029868] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Large-scale epidemiological studies show that low exercise capacity is the highest risk factor for all-cause morbidity and mortality relative to other conditions including diabetes, hypertension, and obesity. This led us to formulate the energy transfer hypothesis (ETH): Variation in capacity for energy transfer is the central mechanistic determinant of the divide between disease and health. As a test of this hypothesis, we predicted that two-way selective breeding of genetically heterogeneous rats for low and high intrinsic treadmill running capacity (a surrogate for energy transfer) would also produce rats that differ for disease risks. The lines are termed low-capacity runners (LCRs) and high-capacity runners (HCRs) and, after 36 generations of selection, they differ by more than eightfold in running capacity. Consistent with the ETH, the LCRs score high for developing disease risks, including metabolic syndrome, neurodegeneration, cognitive impairment, fatty liver disease, susceptibility to cancer, and reduced longevity. The HCRs are resistant to the development of these disease risks. Here we synthesize ideas on nonequilibrium thermodynamics and evolution from Ilya Prigogine, Hans Krebs, and Peter Mitchell to formulate theoretic explanations for the ETH. First, at every moment in time, the atoms and molecules of organisms are reorganizing to pursue avenues for energy transfer. Second, this continuous organization is navigating in a constantly changing environment such that "strategies" are perpetually in flux and do not leave a simple footprint (evolution). Third, as a consequence, human populations demonstrate a wide variation in capacity for energy transfer that mirrors mechanistically the divide between disease and health.
Collapse
Affiliation(s)
- Lauren Gerard Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan 48130
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan 48130.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48130
| |
Collapse
|
34
|
Bihoreau MT, Dumas ME, Lathrop M, Gauguier D. Genomic regulation of type 2 diabetes endophenotypes: Contribution from genetic studies in the Goto-Kakizaki rat. Biochimie 2017; 143:56-65. [DOI: 10.1016/j.biochi.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
|
35
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
36
|
Redina OE, Abramova TO, Klimov LO, Ryazanova MA, Fedoseeva LA, Smolenskaya SE, Ershov NI, Dubinina AD, Markel AL. Soluble epoxide hydrolase (sEH) as a potential target for arterial hypertension therapy. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417080063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Cheng X, Waghulde H, Mell B, Morgan EE, Pruett-Miller SM, Joe B. Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genet 2017; 13:e1006961. [PMID: 28827789 PMCID: PMC5578691 DOI: 10.1371/journal.pgen.1006961] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/31/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Multiple GWAS studies have reported strong association of cardiac QT-interval to a region on HSA17. Interestingly, a rat locus homologous to this region is also linked to QT-intervals. The high resolution positional mapping study located the rat QT-interval locus to a <42.5kb region on RNO10. This region contained no variants in protein-coding sequences, but a prominent contiguous 19bp indel polymorphism was noted within a novel predicted long non-coding RNA (lncRNA), which we named as Rffl-lnc1. To assess the candidacy of this novel lncRNA on QT-interval, targeted CRISPR/Cas9 based genome-engineering approaches were applied on the rat strains used to map this locus. Targeted disruption of the rat Rffl-lnc1 locus caused aberrant, short QT-intervals and elevated blood pressure. Further, to specifically examine the significance of the 19bp polymorphism within the Rffl-lnc1 locus, a CRISPR/Cas9 based targeted knock-in rescue model was constructed by inserting the 19bp into the strain which contained the deletion polymorphism. The knock-in alleles successfully rescued the aberrant QT-interval and blood pressure phenotypes. Further studies revealed that the 19bp polymorphism was necessary and sufficient to recapitulate the phenotypic effect of the previously mapped <42.5kb rat locus. To our knowledge, this study is the first demonstration of a combination of both CRISPR/Cas9 based targeted disruption as well as CRISPR/Cas9 based targeted knock-in rescue approaches applied for a mammalian positional cloning study, which defines the quantitative trait nucleotides (QTNs) within a rat long non-coding RNA as being important for the pleiotropic regulation of both cardiac QT-intervals and blood pressure. Diseases of the cardiovascular system such as essential hypertension do not have a clear cause, but are known to run in families. The inheritance patterns of essential hypertension and other cardiac diseases suggest that they are not due to a single defective gene but instead are caused by multiple genetic defects that are inherited together in a patient. This complex inheritance makes it difficult to pinpoint the underlying defects. Here, we describe a panel of genetically-engineered rats, using which we have discovered a novel gene, which does not code for any protein, as a gene required for maintenance of normal blood pressure. Structural defects within this non-coding RNA cause hypertension and cardiac short-QT interval. Further, by performing genome surgery to correct the gene defect, we demonstrate the precise error in nucleotides that was inherited and caused hypertension and cardiac short-QT interval syndrome.
Collapse
Affiliation(s)
- Xi Cheng
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Harshal Waghulde
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Blair Mell
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Eric E. Morgan
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- Department of Radiology, University of Toledo Medical Center, Toledo, OH, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Bina Joe
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
38
|
Usa K, Liu Y, Geurts AM, Cheng Y, Lazar J, Baker MA, Grzybowski M, He Y, Tian Z, Liang M. Elevation of fumarase attenuates hypertension and can result from a nonsynonymous sequence variation or increased expression depending on rat strain. Physiol Genomics 2017; 49:496-504. [PMID: 28754823 DOI: 10.1152/physiolgenomics.00063.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022] Open
Abstract
The activity of fumarase, an enzyme in the tricarboxylic acid cycle, is lower in Dahl salt-sensitive SS rats compared with SS.13BN rats. SS.13BN rats have a Brown Norway (BN) allele of fumarase and exhibit attenuated hypertension. The SS allele of fumarase differs from the BN allele by a K481E sequence variation. It remains unknown whether higher fumarase activities can attenuate hypertension and whether the mechanism is relevant without the K481E variation. We developed SS-TgFh1 transgenic rats overexpressing fumarase on the background of the SS rat. Hypertension was attenuated in SS-TgFh1 rats. Mean arterial pressure in SS-TgFh1 rats was 20 mmHg lower than transgene-negative SS littermates after 12 days on a 4% NaCl diet. Fumarase overexpression decreased H2O2, while fumarase knockdown increased H2O2 Ectopically expressed BN form of fumarase had higher specific activity than the SS form. However, sequencing of more than a dozen rat strains indicated most rat strains including salt-insensitive Sprague-Dawley (SD) rats had the SS allele of fumarase. Despite that, total fumarase enzyme activity in the renal medulla was still higher in SD rats than in SS rats, which was associated with higher expression of fumarase in SD. H2O2 can suppress the expression of fumarase. Renal medullary interstitial administration of fumarase siRNA in SD rats resulted in higher blood pressure on the high-salt diet. These findings indicate elevation of total fumarase activity attenuates the development of hypertension and can result from a nonsynonymous sequence variation in some rat strains and higher expression in other rat strains.
Collapse
Affiliation(s)
- Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yuan Cheng
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shenzhen Second People's Hospital and the First Affiliated Hospital of Shenzhen University, Shenzhen, China; and
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Grzybowski
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yongcheng He
- Department of Nephrology, Shenzhen Second People's Hospital and the First Affiliated Hospital of Shenzhen University, Shenzhen, China; and
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| |
Collapse
|
39
|
Ragaeva DS, Tikhonova MA, Petrova OM, Igonina TN, Rozkova IN, Brusentsev EY, Amstislavskaya TG, Amstislavsky SY. Neonatal reflexes and behavior in hypertensive rats of ISIAH strain. Physiol Behav 2017; 175:22-30. [PMID: 28341233 DOI: 10.1016/j.physbeh.2017.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/10/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is one of the most common diseases in humans, and there is a special concern on the consequences of maternal hypertensive conditions for the health of newborns. An inherited stress-induced arterial hypertension (ISIAH) rat strain has been selected but only a few studies have addressed behavior in these rats. Body weight, neurodevelopmental reflexes, and neuronal density in the hippocampus were compared in ISIAH and normotensive WAG rats during their suckling period. Systolic and diastolic blood pressure (SBP, DBP), adult rat performance in the open field (OF), elevated plus maze (EPM), and novel object recognition (NOR) tests were evaluated at the age of 12-14weeks old. Body weight in pups did not differ significantly during the suckling period, while adult ISIAH rats were heavier than age-matched WAG rats and possessed the increased SBP and DBP. ISIAH pups were developmentally more advanced than WAG as indicated by grasp reflex and negative geotaxis reaction scores. This was associated with higher neuronal density in CA1 and CA3 hippocampal areas in ISIAH pups on postnatal day 6 as compared to WAG rats. Adult ISIAH rats demonstrated an increased locomotor and exploratory activity in the OF and EPM tests as well as low levels of anxiety. The NOR test revealed no significant difference in recognition but confirmed higher exploratory activity in ISIAH rats compared to WAG rats. The results indicate that hypertensive ISIAH rats feature accelerated development during their suckling period, and as adults, they are more active and less anxious than normotensive WAG rats.
Collapse
Affiliation(s)
- Diana S Ragaeva
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Maria A Tikhonova
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia; Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga M Petrova
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatjana N Igonina
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Irina N Rozkova
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Eugeny Yu Brusentsev
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia; Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey Ya Amstislavsky
- Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics", Novosibirsk 630090, Russia.
| |
Collapse
|
40
|
Wang Y, Zhou Q, Wu B, Zhou H, Zhang X, Jiang W, Wang L, Wang A. Propofol induces excessive vasodilation of aortic rings by inhibiting protein kinase Cβ2 and θ in spontaneously hypertensive rats. Br J Pharmacol 2017; 174:1984-2000. [PMID: 28369981 DOI: 10.1111/bph.13797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/21/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Exaggerated hypotension following administration of propofol is strongly predicted in patients with hypertension. Increased PKCs play a crucial role in regulating vascular tone. We studied whether propofol induces vasodilation by inhibiting increased PKC activity in spontaneously hypertensive rats (SHRs) and, if so, whether contractile Ca2+ sensitization pathways and filamentous-globular (F/G) actin dynamics were involved. EXPERIMENTAL APPROACH Rings of thoracic aorta, denuded of endothelium, from normotensive Wistar-Kyoto (WKY) rats and SHR were prepared for functional studies. Expression and activity of PKCs in vascular smooth muscle (VSM) cells were determined by Western blot analysis and elisa respectively. Phosphorylation of the key proteins in PKC Ca2+ sensitization pathways was also examined. Actin polymerization was evaluated by differential centrifugation to probe G- and F-actin content. KEY RESULTS Basal expression and activity of PKCβ2 and PKCθ were increased in aortic VSMs of SHR, compared with those from WKY rats. Vasorelaxation of SHR aortas by propofol was markedly attenuated by LY333531 (a specific PKCβ inhibitor) or the PKCθ pseudo-substrate inhibitor. Furthermore, noradrenaline-enhanced phosphorylation, and the translocation of PKCβ2 and PKCθ, was inhibited by propofol, with decreased actin polymerization and PKCβ2-mediated Ca2+ sensitization pathway in SHR aortas. CONCLUSION AND IMPLICATIONS Propofol suppressed increased PKCβ2 and PKCθ activity, which was partly responsible for exaggerated vasodilation in SHR. This suppression results in inhibition of actin polymerization, as well as that of the PKCβ2- but not PKCθ-mediated, Ca2+ sensitization pathway. These data provide a novel explanation for the unwanted side effects of propofol.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Quanhong Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bin Wu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huixuan Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Li Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
41
|
Galla S, Chakraborty S, Mell B, Vijay-Kumar M, Joe B. Microbiotal-Host Interactions and Hypertension. Physiology (Bethesda) 2017; 32:224-233. [PMID: 28404738 DOI: 10.1152/physiol.00003.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Hypertension, or elevated blood pressure (BP), has been extensively researched over decades and clearly demonstrated to be caused due to a combination of host genetic and environmental factors. Although much research remains to be conducted to pin-point the precise genetic elements on the host genome that control BP, new lines of evidence are emerging to indicate that, besides the host genome, the genomes of all indigenous commensal micro-organisms, collectively referred to as the microbial metagenome or microbiome, are important, but largely understudied, determinants of BP. Unlike the rigid host genome, the microbiome or the "second genome" can be altered by diet or microbiotal transplantation in the host. This possibility is attractive from the perspective of exploiting the microbiotal composition for clinical management of inherited hypertension. Thus, focusing on the limited current literature supporting a role for the microbiome in BP regulation, this review highlights the need to further explore the role of the co-existence of host and the microbiota as an organized biological unit called the "holobiont" in the context of BP regulation.
Collapse
Affiliation(s)
- Sarah Galla
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Saroj Chakraborty
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Blair Mell
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences and Medicine, The Pennsylvania State University, University Park, Pennsylvania
| | - Bina Joe
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| |
Collapse
|
42
|
Haller ST, Kumarasamy S, Folt DA, Wuescher LM, Stepkowski S, Karamchandani M, Waghulde H, Mell B, Chaudhry M, Maxwell K, Upadhyaya S, Drummond CA, Tian J, Filipiak WE, Saunders TL, Shapiro JI, Joe B, Cooper CJ. Targeted disruption of Cd40 in a genetically hypertensive rat model attenuates renal fibrosis and proteinuria, independent of blood pressure. Kidney Int 2017; 91:365-374. [PMID: 27692815 PMCID: PMC5237403 DOI: 10.1016/j.kint.2016.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
Abstract
High blood pressure is a common cause of chronic kidney disease. Because CD40, a member of the tumor necrosis factor receptor family, has been linked to the progression of kidney disease in ischemic nephropathy, we studied the role of Cd40 in the development of hypertensive renal disease. The Cd40 gene was mutated in the Dahl S genetically hypertensive rat with renal disease by targeted-gene disruption using zinc-finger nuclease technology. These rats were then given low (0.3%) and high (2%) salt diets and compared. The resultant Cd40 mutants had significantly reduced levels of both urinary protein excretion (41.8 ± 3.1 mg/24 h vs. 103.7 ± 4.3 mg/24 h) and plasma creatinine (0.36 ± 0.05 mg/dl vs. 1.15 ± 0.19 mg/dl), with significantly higher creatinine clearance compared with the control S rats (3.04 ± 0.48 ml/min vs. 0.93 ± 0.15 ml/min), indicating renoprotection was conferred by mutation of the Cd40 locus. Furthermore, the Cd40 mutants had a significant attenuation in renal fibrosis, which persisted on the high salt diet. However, there was no difference in systolic blood pressure between the control and Cd40 mutant rats. Thus, these data serve as the first evidence for a direct link between Cd40 and hypertensive nephropathy. Hence, renal fibrosis is one of the underlying mechanisms by which Cd40 plays a crucial role in the development of hypertensive renal disease.
Collapse
Affiliation(s)
- Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| | - Sivarajan Kumarasamy
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - David A Folt
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Leah M Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Manish Karamchandani
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Blair Mell
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Muhammad Chaudhry
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Kyle Maxwell
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Siddhi Upadhyaya
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher A Drummond
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Wanda E Filipiak
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joseph I Shapiro
- Department of Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher J Cooper
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
43
|
Redina OE, Smolenskaya SE, Fedoseeva LA, Markel AL. Differentially expressed genes in the locus associated with relative kidney weight and resting blood pressure in hypertensive rats of the ISIAH strain. Mol Biol 2016. [DOI: 10.1134/s0026893316050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Bencze M, Behuliak M, Vavřínová A, Zicha J. Altered contractile responses of arteries from spontaneously hypertensive rat: The role of endogenous mediators and membrane depolarization. Life Sci 2016; 166:46-53. [DOI: 10.1016/j.lfs.2016.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 11/25/2022]
|
45
|
Dordea AC, Vandenwijngaert S, Garcia V, Tainsh RET, Nathan DI, Allen K, Raher MJ, Tainsh LT, Zhang F, Lieb WS, Mikelman S, Kirby A, Stevens C, Thoonen R, Hindle AG, Sips PY, Falck JR, Daly MJ, Brouckaert P, Bloch KD, Bloch DB, Malhotra R, Schwartzman ML, Buys ES. Androgen-sensitive hypertension associated with soluble guanylate cyclase-α1 deficiency is mediated by 20-HETE. Am J Physiol Heart Circ Physiol 2016; 310:H1790-800. [PMID: 27199131 DOI: 10.1152/ajpheart.00877.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/11/2016] [Indexed: 01/10/2023]
Abstract
Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female sGCα1 (-/-) mice are hypertensive on an 129S6 (S6) but not a C57BL6/J (B6) background. We aimed to uncover the genetic and molecular basis of the observed sex- and strain-specific blood pressure phenotype. Via linkage analysis, we identified a suggestive quantitative trait locus associated with elevated blood pressure in male sGCα1 (-/-)S6 mice. This locus encompasses Cyp4a12a, encoding the predominant murine synthase of the vasoconstrictor 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE). Renal expression of Cyp4a12a in mice was associated with genetic background, sex, and testosterone levels. In addition, 20-HETE levels were higher in renal preglomerular microvessels of male sGCα1 (-/-)S6 than of male sGCα1 (-/-)B6 mice. Furthermore, treating male sGCα1 (-/-)S6 mice with the 20-HETE antagonist 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) lowered blood pressure. Finally, 20-HEDE rescued the genetic background- and testosterone-dependent impairment of acetylcholine-induced relaxation in renal interlobar arteries associated with sGCα1 deficiency. Elevated Cyp4a12a expression and 20-HETE levels render mice susceptible to hypertension and vascular dysfunction in a setting of sGCα1 deficiency. Our data identify Cyp4a12a as a candidate sex-specific blood pressure-modifying gene in the context of deficient NO-sGC signaling.
Collapse
Affiliation(s)
- Ana C Dordea
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Sara Vandenwijngaert
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Robert E T Tainsh
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Daniel I Nathan
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Kaitlin Allen
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Michael J Raher
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Laurel T Tainsh
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Fan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wolfgang S Lieb
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Sarah Mikelman
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Andrew Kirby
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christine Stevens
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Techonology, Cambridge, Massachusetts
| | - Robrecht Thoonen
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Sips
- Division of Cardiovascular Medicine, Department of Medicine Brigham and Women's Hospital, Boston, Massachusetts
| | - John R Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Techonology, Cambridge, Massachusetts
| | - Peter Brouckaert
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium; and
| | - Kenneth D Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts; Cardiology Division, Department of Medicine, Massachusetts General, Harvard Medical School, Boston, Massachusetts
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts; Cardiology Division, Department of Medicine, Massachusetts General, Harvard Medical School, Boston, Massachusetts
| | - Rajeev Malhotra
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts; Cardiology Division, Department of Medicine, Massachusetts General, Harvard Medical School, Boston, Massachusetts
| | | | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
46
|
|
47
|
Chaudhury A. Raised Cecal Veillonella (Firmicutes)/S 24-7 (Bacteriodetes) May Not Cause Salt-Sensitive Hypertension. Front Physiol 2016; 7:118. [PMID: 27065886 PMCID: PMC4814461 DOI: 10.3389/fphys.2016.00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
|
48
|
Cowley AW, Yang C, Kumar V, Lazar J, Jacob H, Geurts AM, Liu P, Dayton A, Kurth T, Liang M. Pappa2 is linked to salt-sensitive hypertension in Dahl S rats. Physiol Genomics 2015; 48:62-72. [PMID: 26534937 DOI: 10.1152/physiolgenomics.00097.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023] Open
Abstract
A 1.37 Mbp region of chromosome 13 previously identified by exclusion mapping was consistently associated with a reduction of salt-induced hypertension in the Dahl salt-sensitive (SS) rat. This region contained five genes that were introgressed from the salt-insensitive Brown Norway (BN) rat. The goal of the present study was to further narrow that region to identify the gene(s) most likely to protect from salt-induced hypertension. The studies yielded a subcongenic SS rat strain containing a 0.71 Mbp insert from BN (26-P strain) in which salt-induced hypertension was reduced by 24 mmHg. The region contained two protein-coding genes (Astn1 and Pappa2) and a microRNA (miR-488). Pappa2 mRNA in the renal cortex of the protected 26-P was 6- to 10-fold greater than in SS fed a 0.4% NaCl diet but was reduced to levels observed in SS when fed 8.0% NaCl diet for 7 days. Compared with brain nuclei (NTS, RVLM, CVLM) and the adrenal gland, Pappa2 in the renal cortex was the only gene found to be differentially expressed between SS and 26-P and that responded to changes of salt diet. Immunohistochemistry studies found Pappa2 localized in the cytosol of the epithelial cells of the cortical thick ascending limbs. In more distal segments of the renal tubules, it was observed within tubular lumens and most notably bound to the apical membranes of the intercalated cells of collecting ducts. We conclude that we have identified a variant form of Pappa2 that can protect against salt-induced hypertension in the Dahl S rat.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vikash Kumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Howard Jacob
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Pengyuan Liu
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alex Dayton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
49
|
Joe B. Dr Lewis Kitchener Dahl, the Dahl rats, and the "inconvenient truth" about the genetics of hypertension. Hypertension 2015; 65:963-9. [PMID: 25646295 PMCID: PMC4393342 DOI: 10.1161/hypertensionaha.114.04368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/29/2014] [Indexed: 12/28/2022]
Abstract
Lewis K. Dahl is regarded as an iconic figure in the field of hypertension research. During the 1960s and 1970s he published several seminal articles in the field that shed light on the relationship between salt and hypertension. Further, the Dahl rat models of hypertension that he developed by a selective breeding strategy are among the most widely used models for hypertension research. To this day, genetic studies using this model are ongoing in our laboratory. While Dr. Dahl is known for his contributions to the field of hypertension, very little, if any, of his personal history is documented. This article details a short biography of Dr. Lewis Dahl, the history behind the development of the Dahl rats and presents an overview of the results obtained through the genetic analysis of the Dahl rat as an experimental model to study the inheritance of hypertension.
Collapse
Affiliation(s)
- Bina Joe
- From the Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine and Program in Physiological Genomics, University of Toledo College of Medicine and Life Sciences, OH.
| |
Collapse
|
50
|
|