1
|
Duan H, Gao L, Asikaer A, Liu L, Huang K, Shen Y. Prognostic Model Construction of Disulfidptosis-Related Genes and Targeted Anticancer Drug Research in Pancreatic Cancer. Mol Biotechnol 2025; 67:1463-1482. [PMID: 38575817 DOI: 10.1007/s12033-024-01131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Pancreatic cancer stands as one of the most lethal malignancies, characterized by delayed diagnosis, high mortality rates, limited treatment efficacy, and poor prognosis. Disulfidptosis, a recently unveiled modality of cell demise induced by disulfide stress, has emerged as a critical player intricately associated with the onset and progression of various cancer types. It has emerged as a promising candidate biomarker for cancer diagnosis, prognosis assessment, and treatment strategies. In this study, we have effectively established a prognostic risk model for pancreatic cancer by incorporating multiple differentially expressed long non-coding RNAs (DElncRNAs) closely linked to disulfide-driven cell death. Our investigation delved into the nuanced relationship between the DElncRNA-based predictive model for disulfide-driven cell death and the therapeutic responses to anticancer agents. Our findings illuminate that the high-risk subgroup exhibits heightened susceptibility to the small molecule compound AZD1208, positioning it as a prospective therapeutic agent for pancreatic cancer. Finally, we have elucidated the underlying mechanistic potential of AZD1208 in ameliorating pancreatic cancer through its targeted inhibition of the peroxisome proliferator-activated receptor-γ (PPARG) protein, employing an array of comprehensive analytical methods, including molecular docking and molecular dynamics (MD) simulations. This study explores disulfidptosis-related genes, paving the way for the development of targeted therapies for pancreatic cancer and emphasizing their significance in the field of oncology. Furthermore, through computational biology approaches, the drug AZD1208 was identified as a potential treatment targeting the PPARG protein for pancreatic cancer. This discovery opens new avenues for exploring targets and screening drugs for pancreatic cancer.
Collapse
Affiliation(s)
- Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Lingzhi Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China.
| |
Collapse
|
2
|
4,5-diazafenylfluorene-rhodanine conjugates promote anoikis in A375 cells via inhibiting PPAR-γ expression. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Sivamani Y, Shanmugarajan D, Durai Ananda Kumar T, Faizan S, Channappa B, Naishima NL, Prashantha Kumar BR. A promising in silico protocol to develop novel PPARγ antagonists as potential anticancer agents: Design, synthesis and experimental validation via PPARγ protein activity and competitive binding assay. Comput Biol Chem 2021; 95:107600. [PMID: 34794076 DOI: 10.1016/j.compbiolchem.2021.107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear receptor superfamily is an excellent example of targets that orchestrates cancer, inflammation, lipid and glucose metabolism. We report a protocol for the development of novel PPARγ antagonists by employing 3D QSAR based virtual screening for the identification of ligands with anticancer properties. The models are generated based on a large and diverse set of PPARγ antagonist ligands by the HYPOGEN algorithm using Discovery Studio 2019 drug design software. Among the 10 hypotheses generated, Hypotheses 2 showed the highest correlation coefficient values of 0.95 with less RMS deviation of 1.193. Validation of the developed pharmacophore model was performed by Fischer's randomization and screening against test and decoy set. The GH score or goodness score was found to be 0.81 indicating moderate to a good model. The selected pharmacophore model Hypo 2 was used as a query model for further screening of 11,145 compounds from the PubChem, sc-PDB structure database, and designed novel ligands. Based on fit values and ADMET filter, the final 10 compounds with the predicated activity of ≤ 3 nM were subjected for docking analysis. Docking analysis revealed the unique binding mode with hydrophobic amino acid that can cause destabilization of the H12 which is an important molecular mechanism to prove its antagonist action. Based on high CDocker scores, Cpd31 was synthesized, purified, analyzed and screened for PPARγ competitive binding by TR-FRET assay. The biochemical protein binding results matched the predicted results. Further, Cpd31 was screened against cancer cells and validated the results.
Collapse
Affiliation(s)
- Yuvaraj Sivamani
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - T Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - Bhavya Channappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - Namburu Lalitha Naishima
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India.
| |
Collapse
|
4
|
Mielczarek-Puta M, Otto-Ślusarczyk D, Chrzanowska A, Filipek A, Graboń W. Telmisartan Influences the Antiproliferative Activity of Linoleic Acid in Human Colon Cancer Cells. Nutr Cancer 2019; 72:98-109. [PMID: 31094234 DOI: 10.1080/01635581.2019.1613552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aim: Linoleic acid (LA) and telmisartan as PPARgamma agonists exhibit anticancer activity. The LA effect is observed for high non-achievable in vivo concentrations and in short treatment period, therefore we evaluate the effect of supplemental LA and pharmacological telmisartan plasma concentrations on human primary (SW480) and metastatic (SW620) colon cancer cells and immortal keratinocytes (HaCaT) cells in long-term treatment. Methods: Cell viability and proliferation were determined by TB and MTT and pro-apoptotic effect was measured by Annexin V binding assays, respectively.Results: LA decreased cancer cell viability and proliferation in a concentration-dependent manner, whereas no significant effect was found for HaCaT cells. Telmisartan (0.2 µM) suppresses antiproliferative effect of 60 µM LA on cancer cells in short-term treatment. Long-term administration of 60 µM LA reduced cancer cells viability after one week, while telmisartan delayed this effect by two weeks. Growth of all cell lines with 20 µM LA was unchanged during all treatment time. Telmisartan decreased late apoptosis of cancer and normal cells with 60 and 120 µM LA. Conclusion: The cytotoxic LA action depends not only on its concentration but also duration of treatment. Telmisartan exhibits biphasic but not synergistic effect on LA cytotoxicity in cancer cells.
Collapse
Affiliation(s)
- Magdalena Mielczarek-Puta
- Faculty of Medicine, Chair and Department of Biochemistry, Medical University of Warsaw, Banacha, Warsaw, Poland
| | - Dagmara Otto-Ślusarczyk
- Faculty of Medicine, Chair and Department of Biochemistry, Medical University of Warsaw, Banacha, Warsaw, Poland
| | - Alicja Chrzanowska
- Faculty of Medicine, Chair and Department of Biochemistry, Medical University of Warsaw, Banacha, Warsaw, Poland
| | - Agnieszka Filipek
- Faculty of Pharmacy, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha, Warsaw, Poland
| | - Wojciech Graboń
- Faculty of Medicine, Chair and Department of Biochemistry, Medical University of Warsaw, Banacha, Warsaw, Poland
| |
Collapse
|
5
|
LIU Q, YAN Q, WU S, WANG J, LIU H. Ultrathin Porous NiO Nanoflake Arrays on Nickel Foam as Binder-free Electrodes for Supercapacitors. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Qing LIU
- School of Materials Science and Engineering, University of Jinan
| | - Qinglong YAN
- School of Materials Science and Engineering, University of Jinan
| | - Shuang WU
- School of Materials Science and Engineering, University of Jinan
| | - Jieqiang WANG
- School of Materials Science and Engineering, University of Jinan
| | - Huakun LIU
- Institute for Superconducting and Electronic Materials, University of Wollongong
| |
Collapse
|
6
|
Cho SJ, Kook MC, Lee JH, Shin JY, Park J, Bae YK, Choi IJ, Ryu KW, Kim YW. Peroxisome proliferator-activated receptor γ upregulates galectin-9 and predicts prognosis in intestinal-type gastric cancer. Int J Cancer 2014; 136:810-20. [PMID: 24976296 DOI: 10.1002/ijc.29056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/13/2014] [Indexed: 12/23/2022]
Abstract
The importance of PPARγ (peroxisome proliferator-activated receptor γ) in gastric cancer (GC) is unclear. We investigated the role of PPARγ in GC cell lines and an animal model, and its prognostic significance of PPARγ in GC patients. We controlled PPARγ and galectin-9 expression by using siRNAs and lentiviral constructs. Interaction between PPARγ and galectin-9 was evaluated using luciferase and chromatin immunoprecipitation assays. PPARγ expression in GCs was determined by immunohistochemical staining of tissue microarrays and survival analysis was done. Overexpression of PPARγ was accompanied by increased galectin-9. Enhanced PPARγ or galectin-9 expression increased E-cadherin expression; decreased expression of N-cadherin, fibronectin, snail, twist and slug and reduced cell invasion and migration. PPARγ bound to the galectin-9 promoter region. Galectin-9 activity increased in PPARγ-overexpressing cells but decreased in PPARγ siRNA-treated cells. In a zebrafish xenograft model, the number of migrated cancer cells and number of fish with AGS cells in the tail vein were reduced in PPARγ-overexpressing GC cells. PPARγ was expressed in 462 of the 688 patients (69.2%) with GC. In 306 patients with intestinal-type GC, those with PPARγ-positive tumors had lower overall and cancer-specific mortalities than those with PPARγ-negative tumors. PPARγ expression was an independent prognostic factor for overall and GC-specific mortality in patients with intestinal-type GC (adjusted hazard ratio, 0.42; 95% CI, 0.22-0.81). PPARγ inhibits cell invasion, migration and epithelial-mesenchymal transition through upregulation of galectin-9 in vitro and in vivo.
Collapse
Affiliation(s)
- Soo-Jeong Cho
- Center for Gastric Cancer, National Cancer Center, Gyeonggi, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dicitore A, Caraglia M, Gaudenzi G, Manfredi G, Amato B, Mari D, Persani L, Arra C, Vitale G. Type I interferon-mediated pathway interacts with peroxisome proliferator activated receptor-γ (PPAR-γ): at the cross-road of pancreatic cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2013; 1845:42-52. [PMID: 24295567 DOI: 10.1016/j.bbcan.2013.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 12/12/2022]
Abstract
Pancreatic adenocarcinoma remains an unresolved therapeutic challenge because of its intrinsically refractoriness to both chemo- and radiotherapy due to the complexity of signaling and the activation of survival pathways in cancer cells. Recent studies have demonstrated that the combination of some drugs, targeting most of aberrant pathways crucial for the survival of pancreatic cancer cells may be a valid antitumor strategy for this cancer. Type I interferons (IFNs) may have a role in the pathogenesis and progression of pancreatic adenocarcinoma, but the limit of their clinical use is due to the activation of tumor resistance mechanisms, including JAK-2/STAT-3 pathway. Moreover, aberrant constitutive activation of STAT-3 proteins has been frequently detected in pancreatic adenocarcinoma. The selective targeting of these cell survival cascades could be a promising strategy in order to enhance the antitumor effects of type I IFNs. The activation of peroxisome proliferator-activated receptor γ (PPAR-γ), on the other hand, has a suppressive activity on STAT-3. In fact, PPAR-γ agonists negatively modulate STAT-3 through direct and/or indirect mechanisms in several normal and cancer models. This review provides an overview on the current knowledge about the molecular mechanisms and antitumor activity of these two promising classes of drugs for pancreatic cancer therapy. Finally, the synergistic antiproliferative activity of combined IFN-β and troglitazone treatment on pancreatic cancer cell lines, evaluated in vitro, and the consequent potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gloria Manfredi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Bruno Amato
- Department of Clinical Medicine and Surgery, University "Federico II" of Naples, Italy
| | - Daniela Mari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Geriatric Unit IRCCS Ca' Grande Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Luca Persani
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Claudio Arra
- Animal Facility, National Cancer Institute of Naples Fondazione "G. Pascale", Naples, Italy
| | - Giovanni Vitale
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
8
|
Vamecq J, Colet JM, Vanden Eynde JJ, Briand G, Porchet N, Rocchi S. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials. PPAR Res 2012; 2012:304760. [PMID: 22654896 PMCID: PMC3357561 DOI: 10.1155/2012/304760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/15/2012] [Accepted: 02/19/2012] [Indexed: 02/07/2023] Open
Abstract
The metabolic/cell signaling basis of Warburg's effect ("aerobic glycolysis") and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, HMNO, CBP, CHRU Lille, 59037 Lille, France
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Jean-Marie Colet
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, UMons, 7000 Mons, Belgium
| | | | - Gilbert Briand
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Nicole Porchet
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Stéphane Rocchi
- Inserm U1065, IFR 50, Mediterranean Center of Molecular Medicine, 06204 Nice, France
| |
Collapse
|
9
|
Guan F, Li G, Liu AB, Lee MJ, Yang Z, Chen YK, Lin Y, Shih W, Yang CS. δ- and γ-tocopherols, but not α-tocopherol, inhibit colon carcinogenesis in azoxymethane-treated F344 rats. Cancer Prev Res (Phila) 2012; 5:644-54. [PMID: 22366914 DOI: 10.1158/1940-6207.capr-11-0521] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cancer preventive activity of vitamin E has been extensively discussed, but the activities of specific forms of tocopherols have not received sufficient attention. Herein, we compared the activities of δ-tocopherol (δ-T), γ-T, and α-T in a colon carcinogenesis model. Male F344 rats, seven weeks old, were given two weekly subcutaneous injections of azoxymethane (AOM) each at a dose of 15 mg/kg body weight. Starting 1 week before the AOM injection, the animals were maintained on a modified AIN76A diet, or the same diet containing 0.2% of δ-T, γ-T, α-T, or a γ-T-rich mixture of tocopherols (γ-TmT), until the termination of the experiment at 8 weeks after the second AOM injection. δ-T treatment showed the strongest inhibitory effect, decreasing the numbers of aberrant crypt foci by 62%. γ-T and γ-TmT were also effective, but α-T was not. Immunohistochemical analysis showed that δ-T and γ-T treatments reduced the levels of 4-hydroxynonenal and nitrotyrosine and the expression of cyclin D1 in the colon, preserved the expression of PPAR-γ, and decreased the serum levels of prostaglandin E2 and 8-isoprostane. Supplementation with 0.2% δ-T, γ-T, or α-T increased the respective levels of tocopherols and their side-chain degradation metabolites in the serum and colon tissues. Rather high concentrations of δ-T and γ-T and their metabolites were found in colon tissues. Our study provides the first evidence for the much higher cancer preventive activity of δ-T and γ-T than α-T in a chemically induced colon carcinogenesis model. It further suggests that δ-T is more effective than γ-T.
Collapse
Affiliation(s)
- Fei Guan
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nowak D, Stewart D, Koeffler HP. Differentiation therapy of leukemia: 3 decades of development. Blood 2009; 113:3655-65. [PMID: 19221035 PMCID: PMC2943835 DOI: 10.1182/blood-2009-01-198911] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/09/2009] [Indexed: 12/27/2022] Open
Abstract
A characteristic feature of leukemia cells is a blockade of differentiation at a distinct stage in cellular maturation. In the 1970s and 1980s, studies demonstrating the capabilities of certain chemicals to induce differentiation of hematopoietic cell lines fostered the concept of treating leukemia by forcing malignant cells to undergo terminal differentiation instead of killing them through cytotoxicity. The first promising reports on this notion prompted a review article on this subject by us 25 years ago. In this review, we revisit this interesting field of study and report the progress achieved in the course of nearly 3 decades. The best proof of principle for differentiation therapy has been the treatment of acute promyelocytic leukemia with all-trans retinoic acid. Attempts to emulate this success with other nuclear hormone ligands such as vitamin D compounds and PPARgamma agonists or different classes of substances such as hematopoietic cytokines or compounds affecting the epigenetic landscape have not been successful on a broad scale. However, a multitude of studies demonstrating partial progress and improvements and, finally, the new powerful possibilities of forward and reverse engineering of differentiation pathways by manipulation of transcription factors support the continued enthusiasm for differentiation therapy of leukemia in the future.
Collapse
Affiliation(s)
- Daniel Nowak
- Division of Hematology and Oncology, Cedars Sinai Medical Center, University of California Los Angeles (UCLA) School of Medicine, CA 90048, USA.
| | | | | |
Collapse
|
11
|
Ogino S, Shima K, Baba Y, Nosho K, Irahara N, Kure S, Chen L, Toyoda S, Kirkner GJ, Wang YL, Giovannucci EL, Fuchs CS. Colorectal cancer expression of peroxisome proliferator-activated receptor gamma (PPARG, PPARgamma) is associated with good prognosis. Gastroenterology 2009. [PMID: 19186181 DOI: 10.1053/j.gastro.2008.12048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The peroxisome proliferator-activated receptor gamma (PPARG, PPARgamma) is a nuclear receptor that regulates expression of mediators of lipid metabolism and the inflammatory response. There is controversy over the pro-oncogenic or antioncogenic effects of PPARG, and little is known about its prognostic significance in colon cancer. METHODS Among 470 patients with colorectal cancer (stages I-IV) identified in 2 independent prospective cohorts, PPARG expression was detected in 102 tumors (22%) by immunohistochemistry. Cox proportional hazards models were used to compute hazard ratios (HRs) of colorectal cancer-specific and overall mortalities, adjusted for patient characteristics and molecular features including cyclooxygenase 2, fatty acid synthase, KRAS, BRAF, PIK3CA, p53, p21, beta-catenin, LINE-1 hypomethylation, microsatellite instability (MSI), and the CpG island methylation phenotype (CIMP). RESULTS Compared with patients with PPARG-negative tumors, patients with PPARG-positive tumors had significantly lower overall mortality, determined by Kaplan-Meier analysis (P=.0047), univariate Cox regression (HR, 0.55; 95% confidence interval [CI], 0.37-0.84; P=.0053), and multivariate analysis (adjusted HR, 0.43; 95% CI, 0.27-0.69; P=.0004). Patients with PPARG-positive tumors experienced lower colorectal cancer-specific mortality (adjusted HR, 0.44; 95% CI, 0.25-0.79; P=.0054). The relationship between PPARG and lower mortality did not appear to be significantly modified by MSI, CIMP, LINE-1, or the other clinical and molecular variables examined (all P(interaction)>.05). CONCLUSIONS Tumor expression of PPARG is independently associated with longer survival of patients. PPARG expression appears to mark an indolent subset of colorectal cancers.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ogino S, Shima K, Baba Y, Nosho K, Irahara N, Kure S, Chen L, Toyoda S, Kirkner GJ, Wang YL, Giovannucci EL, Fuchs CS. Colorectal cancer expression of peroxisome proliferator-activated receptor gamma (PPARG, PPARgamma) is associated with good prognosis. Gastroenterology 2009; 136:1242-50. [PMID: 19186181 PMCID: PMC2663601 DOI: 10.1053/j.gastro.2008.12.048] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/03/2008] [Accepted: 12/18/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The peroxisome proliferator-activated receptor gamma (PPARG, PPARgamma) is a nuclear receptor that regulates expression of mediators of lipid metabolism and the inflammatory response. There is controversy over the pro-oncogenic or antioncogenic effects of PPARG, and little is known about its prognostic significance in colon cancer. METHODS Among 470 patients with colorectal cancer (stages I-IV) identified in 2 independent prospective cohorts, PPARG expression was detected in 102 tumors (22%) by immunohistochemistry. Cox proportional hazards models were used to compute hazard ratios (HRs) of colorectal cancer-specific and overall mortalities, adjusted for patient characteristics and molecular features including cyclooxygenase 2, fatty acid synthase, KRAS, BRAF, PIK3CA, p53, p21, beta-catenin, LINE-1 hypomethylation, microsatellite instability (MSI), and the CpG island methylation phenotype (CIMP). RESULTS Compared with patients with PPARG-negative tumors, patients with PPARG-positive tumors had significantly lower overall mortality, determined by Kaplan-Meier analysis (P=.0047), univariate Cox regression (HR, 0.55; 95% confidence interval [CI], 0.37-0.84; P=.0053), and multivariate analysis (adjusted HR, 0.43; 95% CI, 0.27-0.69; P=.0004). Patients with PPARG-positive tumors experienced lower colorectal cancer-specific mortality (adjusted HR, 0.44; 95% CI, 0.25-0.79; P=.0054). The relationship between PPARG and lower mortality did not appear to be significantly modified by MSI, CIMP, LINE-1, or the other clinical and molecular variables examined (all P(interaction)>.05). CONCLUSIONS Tumor expression of PPARG is independently associated with longer survival of patients. PPARG expression appears to mark an indolent subset of colorectal cancers.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|