1
|
Damasceno JL, Santiago MB, Menezes RDP, Esperandim TR, Ozelin SD, Silva MVFD, Landaeta UR, Tavares DC, Cunha LCS, Ferro EAV, Fernandes TADM, Martins CHG. Determining the Antimycobacterial Action of Rottlerin Against Mycobacterium Species and Toxicity, Antioxidant Properties, and Therapeutic Target Affinity of Rottlerin. Curr Microbiol 2025; 82:147. [PMID: 39982530 DOI: 10.1007/s00284-025-04117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Infections by Mycobacterium spp. are responsible for thousands of deaths every year worldwide. Microbial resistance, toxic effects, and adverse consequences of conventional therapies bring forth the need to search for new therapeutic agents. The aim of this study was to determine the antimicrobial action of the molecule Rottlerin against Mycobacterium spp. The broth microdilution assay showed that Rottlerin inhibited the mycobacterial growth at concentrations ≤ 50 µg/mL (≤ 96.81 µM), and the lowest bactericidal concentration was observed against M. tuberculosis (25 µg/mL-48.40 µM). The cytotoxicity of Rottlerin was conducted in a epithelial cell culture and evaluated through 2,3-Bis-(2-Methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay, revealing an IC50 equivalent to 81.89 ± 4.64 µM. The antioxidant action determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrated that Rottlerin reduced at least 50% of free radicals at 109.2 µM. To gain insights into the antimycobacterial activity of Rottlerin, we performed molecular docking simulations with therapeutic targets of M. tuberculosis and observed that Rottlerin binds into the inhibitory site of the anti-infective target diterpene synthase (Rv3378c). Our findings indicate that Rottlerin presents antimicrobial effects with antioxidant action and prominent therapeutic targets, showing its biotechnological potential for the development of new agent against Mycobacterium spp. infection.
Collapse
Affiliation(s)
- Jaqueline Lopes Damasceno
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | - Eloísa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Thales Alves de Melo Fernandes
- Laboratory of Applied Toxinology, Butantan Institute, Av. Vital Brasil 1500, Butantã, São Paulo, SP, CEP 05503-900, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Cervellati F, Benedusi M, Casoni A, Trinchera G, Vallese A, Ferrara F, Pietrogrande MC, Valacchi G. Effect of Cu- and Fe- Isolated from Environmental Particulate Matter on Mitochondrial Dynamics in Human Colon CaCo-2 Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04497-7. [PMID: 39738852 DOI: 10.1007/s12011-024-04497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Atmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract. In the present study, we analyzed the effect of specific redox-active PM components, such as copper (Cu) and iron (Fe), in human intestinal cells focusing on ultrastructural integrity, redox homeostasis, and modulation of some mitochondrial-related markers. According to our results, exposure to Cu- and Fe-PM components and their combination induced ultrastructural alterations in the endoplasmic reticulum and in the mitochondria with an additive effect when combined. The increase in ROS and the loss of the mitochondrial mass in the cells exposed to PM indicates that mitochondria are a target of acute metal exposure. Furthermore, the gene expression and the protein levels of mitochondria dynamics markers were affected by the PM exposure. In particular, OPA1 increases at both gene and protein levels in all conditions while Mitofusin1 decreases significantly only in the presence of Fe. The increase in PINK expression is modulated by Fe, while Cu seems to affect mainly Parkin. Finally, a significant decrease in trans-epithelial resistance was also observed. In general, our study can confirm the correlation observed between pollution exposure areas and increased incidence of GI tract conditions.
Collapse
Affiliation(s)
- Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alice Casoni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giulia Trinchera
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Andrea Vallese
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Animal Science, North Carolina State University, Plants for Human Health Institute, NC Research Campus, Kannapolis, NC, USA.
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
3
|
Silva NBS, Menezes RP, Gonçalves DS, Santiago MB, Conejo NC, Souza SL, Santos ALO, da Silva RS, Ramos SB, Ferro EAV, Martins CHG. Exploring the antifungal, antibiofilm and antienzymatic potential of Rottlerin in an in vitro and in vivo approach. Sci Rep 2024; 14:11132. [PMID: 38750088 PMCID: PMC11096346 DOI: 10.1038/s41598-024-61179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Candida species have been responsible for a high number of invasive infections worldwide. In this sense, Rottlerin has demonstrated a wide range of pharmacological activities. Therefore, this study aimed to evaluate the antifungal, antibiofilm and antivirulence activity of Rottlerin in vitro against Candida spp. and its toxicity and antifungal activity in vivo. Rottlerin showed antifungal activity against all yeasts evaluated, presenting Minimum Inhibitory and Fungicidal Concentration (MIC and MFC) values of 7.81 to > 1000 µg/mL. Futhermore, it was able to significantly inhibit biofilm production, presenting Biofilm Inhibitory Concentration (MICB50) values that ranged from 15.62 to 250 µg/mL and inhibition of the cell viability of the biofilm by 50% (IC50) from 2.24 to 12.76 µg/mL. There was a considerable reduction in all hydrolytic enzymes evaluated, with emphasis on hemolysin where Rottlerin showed a reduction of up to 20%. In the scanning electron microscopy (SEM) analysis, Rottlerin was able to completely inhibit filamentation by C. albicans. Regarding in vivo tests, Rottlerin did not demonstrate toxicity at the therapeutic concentrations demonstrated here and was able to increase the survival of C. elegans larvae infected. The results herein presented are innovative and pioneering in terms of Rottlerin's multipotentiality against these fungal infections.
Collapse
Affiliation(s)
- Nagela Bernadelli Sousa Silva
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Ralciane Paula Menezes
- Technical School of Health (ESTES), Federal University of Uberlândia (UFU), Uberlândia, Brazil
| | - Daniela Silva Gonçalves
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Noemi Chagas Conejo
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Sara Lemes Souza
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Anna Lívia Oliveira Santos
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Robinson Sabino da Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Uberlândia, Brazil
| | - Salvador Boccaletti Ramos
- Department of Engineering and Exact Sciences, Faculty of Agricultural and Veterinary Sciences - Jaboticabal (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia, Uberlândia, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil.
| |
Collapse
|
4
|
Teixeira SC, Paschoalino M, de Souza G, Rosini AM, de Lima Junior JP, Luz LC, Fajardo Martínez AF, Alves RN, Almeida MPO, Damasceno JL, Silva MJB, Ietta F, Barbosa BF, Ferro EAV, Gomes Martins CH. Rottlerin impairs early and late steps of Toxoplasma gondii infection in human trophoblast cells and villous explants. Chem Biol Interact 2023; 384:110716. [PMID: 37722575 DOI: 10.1016/j.cbi.2023.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Congenital toxoplasmosis, caused by the opportunistic protozoan parasite T. gondii, can cause stillbirths, miscarriages and fetal abnormalities, as well as encephalitis and chorioretinitis in newborns. Available treatment options rely on antiparasitic drugs that have been linked to serious side effects, high toxicity and the development of drug-resistant parasites. The search for alternative therapeutics to treat this disease without acute toxicity for the mother and child is essential for the advancement of current therapeutic procedures. The present study aimed to unravel the mode of the anti-T. gondii action of Rottlerin, a natural polyphenol with multiple pharmacological properties described. Herein, we further assessed the antiparasitic activity of Rottlerin against T. gondii infection on the human trophoblastic cells (BeWo cells) and, for the first time, on human villous explants. We found that non-cytotoxic doses of Rottlerin impaired early and late steps of parasite infection with an irreversible manner in BeWo cells. Rottlerin caused parasite cell cycle arrest in G1 phase and compromised the ability of tachyzoites to infect new cells, thus highlighting the possible direct action on parasites. An additional and non-exclusive mechanism of action of Rottlerin involves the modulation of host cell components, by affecting lipid droplet formation, mitochondrial function and upregulation of the IL-6 and MIF levels in BeWo cells. Supporting our findings, Rottlerin also controlled T. gondii proliferation in villous explants with low toxicity and reduced the IL-10 levels, a cytokine associated with parasite susceptibility. Collectively, our results highlighted the potential use of Rottlerin as a promising tool to prevent and/or treat congenital toxoplasmosis.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina Paschoalino
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Joed Pires de Lima Junior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Sciences, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Jaqueline Lopes Damasceno
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Paccetti-Alves I, Batista MSP, Pimpão C, Victor BL, Soveral G. Unraveling the Aquaporin-3 Inhibitory Effect of Rottlerin by Experimental and Computational Approaches. Int J Mol Sci 2023; 24:ijms24066004. [PMID: 36983077 PMCID: PMC10057066 DOI: 10.3390/ijms24066004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.
Collapse
Affiliation(s)
- Inês Paccetti-Alves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta S P Batista
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Bruno L Victor
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
6
|
Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179943. [PMID: 36077338 PMCID: PMC9456420 DOI: 10.3390/ijms23179943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the great advancements made in cancer treatment, there are still many unsatisfied aspects, such as the wide palette of side effects and the drug resistance. There is an obvious increasing scientific attention towards nature and what it can offer the human race. Natural products can be used to treat many diseases, of which some plant products are currently used to treat cancer. Plants produce secondary metabolites for their signaling mechanisms and natural defense. A variety of plant-derived products have shown promising anticancer properties in vitro and in vivo. Rather than recreating the natural production environment, ongoing studies are currently setting various strategies to significantly manipulate the quantity of anticancer molecules in plants. This review focuses on the recently studied secondary metabolite agents that have shown promising anticancer activity, outlining their potential mechanisms of action and pathways.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Elena Victoria Manea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Oana Stefana Popescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-334-30-25
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| |
Collapse
|
7
|
Zhou S, Lin Q, Huang C, Luo X, Tian X, Liu C, Zhang P. Rottlerin plays an antiviral role at early and late steps of Zika virus infection. Virol Sin 2022; 37:685-694. [PMID: 35934227 PMCID: PMC9583117 DOI: 10.1016/j.virs.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
Infection of Zika virus (ZIKV) may cause microcephaly and other neurological disorders, while no vaccines and drugs are available. Our study revealed that rottlerin confers a broad antiviral activity against several enveloped viruses, including ZIKV, vesicular stomatitis virus, and herpes simplex virus, but not against two naked viruses (enterovirus 71 and encephalomyocarditis virus). Rottlerin does not have a direct virucidal effect on the virions, and its antiviral effect is independent of its regulation on PKCδ or ATP. Both pretreatment and post-treatment of rottlerin effectively reduce the viral replication of ZIKV. The pretreatment of rottlerin disturbs the endocytosis of enveloped viruses, while the post-treatment of rottlerin acts at a late stage through disturbing the maturation of ZIKV. Importantly, administration of rottlerin in neonatal mice significantly decreased the ZIKV replication in vivo, and alleviated the neurological symptoms caused by ZIKV. Our work suggests that rottlerin exerts an antiviral activity at two distinct steps of viral infection, and can be potentially developed as a prophylactic and therapeutic agent. Rottlerin confers an antiviral activity against several enveloped viruses including Zika virus. Rottlerin interferes with the endocytosis and maturation step of Zika virus. Rottlerin inhibits the ZIKV replication in vivo, and alleviates the neurological symptoms caused by Zika virus.
Collapse
|
8
|
Manhas D, Gour A, Bhardwaj N, Sharma DK, Sharma K, Vij B, Jain SK, Singh G, Nandi U. Pharmacokinetic Assessment of Rottlerin from Mallotus philippensis Using a Highly Sensitive Liquid Chromatography-Tandem Mass Spectrometry-Based Bioanalytical Method. ACS OMEGA 2021; 6:32637-32646. [PMID: 34901612 PMCID: PMC8655892 DOI: 10.1021/acsomega.1c04266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/02/2021] [Indexed: 05/16/2023]
Abstract
Rottlerin is a key bioactive phytoconstituent present in the pericarp of Mallotus philippensis. It shows promising multifaceted pharmacological actions against cancer. However, there is hardly any report for the quantification of rottlerin in the biological matrix and on its pharmacokinetic behavior. Therefore, we aimed in the present study to assess selective in vitro ADME properties and in vivo pharmacokinetics of isolated and characterized rottlerin using a newly developed and validated liquid chromatography-tandem mass spectrometry-based highly sensitive bioanalytical method. The method was found to be simple (mobile phase and analytical column), sensitive (1.9 ng/mL), and rapid (run time of 2.5 min). All the validation parameters were within the acceptable criteria of the United States Food and Drug Administration's bioanalytical method validation guideline. The method was found to be very useful to assess lipophilicity, plasma stability, metabolic stability, plasma protein binding of rottlerin, as well as its oral and intravenous pharmacokinetics in mice. Rottlerin showed a number of drug-like pharmacokinetic properties (in vitro). Moreover, it displayed an excellent half-life (>2 h) and oral bioavailability (>35%) as compared to other members of natural phenolics. The present study is the first-time report of in vitro ADME properties and in vivo preclinical pharmacokinetics of rottlerin. The generated information is very much useful for its further development as a phytotherapeutics toward cancer therapy.
Collapse
Affiliation(s)
- Diksha Manhas
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Abhishek Gour
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Nivedita Bhardwaj
- Department
of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Deepak K. Sharma
- Department
of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Kuhu Sharma
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
| | - Bhavna Vij
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
| | - Shreyans K. Jain
- Department
of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Gurdarshan Singh
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Utpal Nandi
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- ,
| |
Collapse
|
9
|
Drug-Screening Strategies for Inhibition of Virus-Induced Neuronal Cell Death. Viruses 2021; 13:v13112317. [PMID: 34835123 PMCID: PMC8619239 DOI: 10.3390/v13112317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
A number of viruses, including Herpes Simplex Virus (HSV), West Nile Virus (WNV), La Crosse Virus (LACV), Zika virus (ZIKV) and Tick-borne encephalitis virus (TBEV), have the ability to gain access to the central nervous system (CNS) and cause severe neurological disease or death. Although encephalitis cases caused by these viruses are generally rare, there are relatively few treatment options available for patients with viral encephalitis other than palliative care. Many of these viruses directly infect neurons and can cause neuronal death. Thus, there is the need for the identification of useful therapeutic compounds that can inhibit virus replication in neurons or inhibit virus-induced neuronal cell death. In this paper, we describe the methodology to test compounds for their ability to inhibit virus-induced neuronal cell death. These protocols include the isolation and culturing of primary neurons; the culturing of neuroblastoma and neuronal stem cell lines; infection of these cells with viruses; treatment of these cells with selected drugs; measuring virus-induced cell death using MTT or XTT reagents; analysis of virus production from these cells; as well as the basic understanding in mode of action. We further show direct evidence of the effectiveness of these protocols by utilizing them to test the effectiveness of the polyphenol drug, Rottlerin, at inhibiting Zika virus infection and death of neuronal cell lines.
Collapse
|
10
|
Ojha D, Winkler CW, Leung JM, Woods TA, Chen CZ, Nair V, Taylor K, Yeh CD, Tawa GJ, Larson CL, Zheng W, Haigh CL, Peterson KE. Rottlerin inhibits La Crosse virus-induced encephalitis in mice and blocks release of replicating virus from the Golgi body in neurons. Nat Microbiol 2021; 6:1398-1409. [PMID: 34675384 DOI: 10.1038/s41564-021-00968-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/25/2021] [Indexed: 11/09/2022]
Abstract
La Crosse virus (LACV) is a mosquito-borne orthobunyavirus that causes approximately 60 to 80 hospitalized pediatric encephalitis cases in the United States yearly. The primary treatment for most viral encephalitis, including LACV, is palliative care, and specific antiviral therapeutics are needed. We screened the National Center for Advancing Translational Sciences library of 3,833 FDA-approved and bioactive small molecules for the ability to inhibit LACV-induced death in SH-SY5Y neuronal cells. The top three hits from the initial screen were validated by examining their ability to inhibit virus-induced cell death in multiple neuronal cell lines. Rottlerin consistently reduced LACV-induced death by 50% in multiple human and mouse neuronal cell lines with an effective concentration of 0.16-0.69 µg ml-1 depending on cell line. Rottlerin was effective up to 12 hours post-infection in vitro and inhibited virus particle trafficking from the Golgi apparatus to trans-Golgi vesicles. In human inducible pluripotent stem cell-derived cerebral organoids, rottlerin reduced virus production by one log and cell death by 35% compared with dimethyl sulfoxide-treated controls. Administration of rottlerin in mice by intraperitoneal or intracranial routes starting at 3 days post-infection decreased disease development by 30-50%. Furthermore, rottlerin also inhibited virus replication of other pathogenic California serogroup orthobunyaviruses (Jamestown Canyon and Tahyna virus) in neuronal cell lines.
Collapse
Affiliation(s)
- Durbadal Ojha
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Clayton W Winkler
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jacqueline M Leung
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tyson A Woods
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Vinod Nair
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Katherine Taylor
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Charles D Yeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Gregory J Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Charles L Larson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Cathryn L Haigh
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Karin E Peterson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
11
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
12
|
Biological Effect of Different Spinach Extracts in Comparison with the Individual Components of the Phytocomplex. Foods 2021; 10:foods10020382. [PMID: 33572474 PMCID: PMC7916335 DOI: 10.3390/foods10020382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
The Mediterranean-style diet is rich in fruit and vegetables and has a great impact on the prevention of major chronic diseases, such as cardiovascular diseases and cancer. In this work we investigated the ability of spinach extracts obtained by different extraction methods and of the single main components of the phytocomplex, alone or mixed, to modulate proliferation, antioxidant defense, and genotoxicity of HT29 human colorectal cells. Spinach extracts show dose-dependent activity, increasing the level of intracellular endogenous reactive oxygen species (ROS) when tested at higher doses. In the presence of oxidative stress, the activity is related to the oxidizing agent involved (H2O2 or menadione) and by the extraction method. The single components of the phytocomplex, alone or mixed, do not alter the intracellular endogenous level of ROS but again, in the presence of an oxidative insult, the modulation of antioxidant defense depends on the oxidizing agent used. The application of the phytocomplex extracts seem to be more effective than the application of the single phytocomplex components.
Collapse
|
13
|
Natural Product Regulates Autophagy in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:709-724. [PMID: 32671788 DOI: 10.1007/978-981-15-4272-5_53] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anti-cancer effect of natural products has been widely known. As a sort of multi-target anti-cancer agents, natural compound's regulation on autophagy in cancer cells has been studied as a promising research to reveal the mechanism in oncogenesis, as well as a potential short way to anti-cancer drug discovery. In this chapter, we reviewed the cancer-autophagic-related studies on several natural product compounds. It was concluded that natural product compounds directly or indirectly regulated most of the target proteins on the autophagic signal pathways. Considering we have not seen the whole clear atlas of autophagy in oncogenesis yet, it is hard to raise up any conclusion that autophagy is always playing a positive role in oncogenesis and cancer progression.
Collapse
|
14
|
Liu Y, Wu Y, Zhang R, Lam J, Ng JC, Xu ZP, Li L, Ta HT. Investigating the Use of Layered Double Hydroxide Nanoparticles as Carriers of Metal Oxides for Theranostics of ROS-Related Diseases. ACS APPLIED BIO MATERIALS 2019; 2:5930-5940. [DOI: 10.1021/acsabm.9b00852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yajun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Yuao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Jacinta Lam
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Jack C. Ng
- Queensland Alliance for Environment Health Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia 4072
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
15
|
Ietta F, Valacchi G, Benincasa L, Pecorelli A, Cresti L, Maioli E. Multiple mechanisms of Rottlerin toxicity in A375 melanoma cells. Biofactors 2019; 45:920-929. [PMID: 31408224 DOI: 10.1002/biof.1551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
Rottlerin is a cytostatic and cytotoxic drug in a variety of cancer cells. Our previous experience demonstrated that depending upon the genetic/biochemical background of cancer cells, rottlerin is able to induce both apoptotic and autophagic cell death, or dramatically disturb protein homeostasis leading to lethal cellular atrophy. In the current study, we investigated the cytotoxic effects and mechanisms of rottlerin against human amelanotic A375 melanoma cells. In this cell line, rottlerin exhibits its main and newest cytotoxic properties, that is, growth arrest, apoptosis induction, and translation shutoff. In fact, the drug, time-, and dose-dependently, markedly inhibited cell proliferation through cyclin D1 downregulation and induced apoptotic cell death as early as after 18 h treatment. Mechanistically, rottlerin triggered apoptosis by both intrinsic and extrinsic pathways. Both pathways are likely activated by the downregulation of the antiapoptotic B-cell lymphoma 2 (Bcl-2) protein, which simultaneously affects mitochondrial and endoplasmic reticulum (ER) membranes stability. Concomitantly to extrinsic apoptosis induction, the rottlerin-activated ER stress/eukaryotic initiation factor 2 (eIF2) α axis blocked the translational apparatus. The altered proteostasis precluded the complete cells' rescue from death in the presence of apoptosis inhibitors.
Collapse
Affiliation(s)
- Francesca Ietta
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- NC State University, Plants for Human Health Institute, Kannapolis, North Carolina
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Linda Benincasa
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandra Pecorelli
- NC State University, Plants for Human Health Institute, Kannapolis, North Carolina
| | - Laura Cresti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Emanuela Maioli
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Gupta S, Manchanda R. A computational model of large conductance voltage and calcium activated potassium channels: implications for calcium dynamics and electrophysiology in detrusor smooth muscle cells. J Comput Neurosci 2019; 46:233-256. [PMID: 31025235 DOI: 10.1007/s10827-019-00713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
The large conductance voltage and calcium activated potassium (BK) channels play a crucial role in regulating the excitability of detrusor smooth muscle, which lines the wall of the urinary bladder. These channels have been widely characterized in terms of their molecular structure, pharmacology and electrophysiology. They control the repolarising and hyperpolarising phases of the action potential, thereby regulating the firing frequency and contraction profiles of the smooth muscle. Several groups have reported varied profiles of BK currents and I-V curves under similar experimental conditions. However, no single computational model has been able to reconcile these apparent discrepancies. In view of the channels' physiological importance, it is imperative to understand their mechanistic underpinnings so that a realistic model can be created. This paper presents a computational model of the BK channel, based on the Hodgkin-Huxley formalism, constructed by utilising three activation processes - membrane potential, calcium inflow from voltage-gated calcium channels on the membrane and calcium released from the ryanodine receptors present on the sarcoplasmic reticulum. In our model, we attribute the discrepant profiles to the underlying cytosolic calcium received by the channel during its activation. The model enables us to make heuristic predictions regarding the nature of the sub-membrane calcium dynamics underlying the BK channel's activation. We have employed the model to reproduce various physiological characteristics of the channel and found the simulated responses to be in accordance with the experimental findings. Additionally, we have used the model to investigate the role of this channel in electrophysiological signals, such as the action potential and spontaneous transient hyperpolarisations. Furthermore, the clinical effects of BK channel openers, mallotoxin and NS19504, were simulated for the detrusor smooth muscle cells. Our findings support the proposed application of these drugs for amelioration of the condition of overactive bladder. We thus propose a physiologically realistic BK channel model which can be integrated with other biophysical mechanisms such as ion channels, pumps and exchangers to further elucidate its micro-domain interaction with the intracellular calcium environment.
Collapse
Affiliation(s)
- Suranjana Gupta
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Rohit Manchanda
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
17
|
Ma J, Hou Y, Xia J, Zhu X, Wang ZP. Tumor suppressive role of rottlerin in cancer therapy. Am J Transl Res 2018; 10:3345-3356. [PMID: 30662591 PMCID: PMC6291697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Cancer as a major public health problem is a big trouble to be cured at present in the world. Thus, it is essential to discover better anticancer drugs to treat cancer patients. It has been reported that rottlerin, a natural polyphenolic compound from the mature fruits of Mallotus philippinensis, possesses multiple anti-cancer biological activities. Rottlerin exhibited its antitumor property in a variety of human cancers, suggesting that rottlerin could be a potential agent for treating cancers. In this review we discuss the recent literature regarding the biological functions and tumor suppressive mechanisms of rottlerin in cancers. We hope rottlerin will be further exploited for potential treatment of human cancers.
Collapse
Affiliation(s)
- Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Yingying Hou
- Chinese Academy of Sciences Shanghai Institute of Materia MedicaShanghai 201203, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
18
|
Maioli E, Daveri E, Maellaro E, Ietta F, Cresti L, Valacchi G. Non-conventional rottlerin anticancer properties. Arch Biochem Biophys 2018; 645:50-53. [PMID: 29545132 DOI: 10.1016/j.abb.2018.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
In the past few years, we focused the interest on rottlerin, an old/new natural substance that, over the time, has revealed a number of cellular and molecular targets, all potentially implicated in the fight against cancer. Past and recent literature well demonstrated that rottlerin is an inhibitor of enzymes, transcription factors and signaling molecules that control cancer cell life and death. Although the rottlerin anticancer activity has been mainly ascribed to apoptosis and/or autophagy induction, recent findings unveiled the existence of additional mechanisms of toxicity. The major novelties highlighted in this mini review are the ability to bind and inhibit key molecules, such as ERK and mTOR, directly, thus independently of upstream signaling cascades, and to cause a profound dysregulation of cap-dependent protein translation through the mTORC1/4EBP1/eIF4E axis and by inhibition of eIF2, an initiation factor of translation that is negatively regulated by endoplasmic reticulum (ER) stress. These last mechanisms, proved to be lethal in cancer cell lines derived from breast and skin, strongly enforce the potential of rottlerin as a promising natural lead compound for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- E Maioli
- Dipartimento di Scienze della Vita, Universita' di Siena, Via A. Moro, 53100, Siena, Italy
| | - E Daveri
- University of California Davis, Department of Nutrition and Environmental Toxicology, 2251 Meyer Hall, 450 Bioletti Way, 95616-5270, Davis, CA, USA
| | - E Maellaro
- Dipartimento di Medicina Molecolare e dello Sviluppo, Universita' di Siena, Via A. Moro, 53100, Siena, Italy
| | - F Ietta
- Dipartimento di Scienze della Vita, Universita' di Siena, Via A. Moro, 53100, Siena, Italy
| | - L Cresti
- Dipartimento di Scienze della Vita, Universita' di Siena, Via A. Moro, 53100, Siena, Italy
| | - G Valacchi
- Dipartimento di Scienze della Vita e Biotecnologie, Universita' di Ferrara, Via Borsari 46, Ferrara, 44121, Italy; NC State University, Plants for Human Health Institute, Animal Science Dept. NC Research Campus, 600 Laureate Way, Kannapolis, NC, 28081, USA.
| |
Collapse
|
19
|
Benefit of Oleuropein Aglycone for Alzheimer's Disease by Promoting Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5010741. [PMID: 29675133 PMCID: PMC5838478 DOI: 10.1155/2018/5010741] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/21/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease is a proteinopathy characterized by accumulation of hyperphosphorylated Tau and β-amyloid. Autophagy is a physiological process by which aggregated proteins and damaged organelles are eliminated through lysosomal digestion. Autophagy deficiency has been demonstrated in Alzheimer's patients impairing effective elimination of aggregates and damaged mitochondria, leading to their accumulation, increasing their toxicity and oxidative stress. In the present study, we demonstrated by microarray analysis the downregulation of fundamental autophagy and mitophagy pathways in Alzheimer's patients. The benefits of the Mediterranean diet on Alzheimer's disease and cognitive impairment are well known, attributing this effect to several polyphenols, such as oleuropein aglycone (OLE), present in extra virgin olive oil. OLE is able to induce autophagy, achieving a decrease of aggregated proteins and a reduction of cognitive impairment in vivo. This effect is caused by the modulation of several pathways including the AMPK/mTOR axis and the activation of autophagy gene expression mediated by sirtuins and histone acetylation or EB transcription factor. We propose that supplementation of diet with extra virgin olive oil might have potential benefits for Alzheimer's patients by the induction of autophagy by OLE.
Collapse
|
20
|
Wang L, Hou Y, Yin X, Su J, Zhao Z, Ye X, Zhou X, Zhou L, Wang Z. Rottlerin inhibits cell growth and invasion via down-regulation of Cdc20 in glioma cells. Oncotarget 2018; 7:69770-69782. [PMID: 27626499 PMCID: PMC5342514 DOI: 10.18632/oncotarget.11974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
Rottlerin, isolated from a medicinal plant Mallotus phillippinensis, has been demonstrated to inhibit cellular growth and induce cytoxicity in glioblastoma cell lines through inhibition of calmodulin-dependent protein kinase III. Emerging evidence suggests that rottlerin exerts its antitumor activity as a protein kinase C inhibitor. Although further studies revealed that rottlerin regulated multiple signaling pathways to suppress tumor cell growth, the exact molecular insight on rottlerin-mediated tumor inhibition is not fully elucidated. In the current study, we determine the function of rottlerin on glioma cell growth, apoptosis, cell cycle, migration and invasion. We found that rottlerin inhibited cell growth, migration, invasion, but induced apoptosis and cell cycle arrest. Mechanistically, the expression of Cdc20 oncoprotein was measured by the RT-PCR and Western blot analysis in glioma cells treated with rottlerin. We observed that rottlerin significantly inhibited the expression of Cdc20 in glioma cells, implying that Cdc20 could be a novel target of rottlerin. In line with this, over-expression of Cdc20 decreased rottlerin-induced cell growth inhibition and apoptosis, whereas down-regulation of Cdc20 by its shRNA promotes rottlerin-induced anti-tumor activity. Our findings indicted that rottlerin could exert its tumor suppressive function by inhibiting Cdc20 pathway which is constitutively active in glioma cells. Therefore, down-regulation of Cdc20 by rottlerin could be a promising therapeutic strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Lixia Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yingying Hou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xuyuan Yin
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jingna Su
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhe Zhao
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiantao Ye
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Li Zhou
- Department of Gynecologic Oncosurgery, Jilin province Cancer Hospital, Changchun, Jilin, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
21
|
Min M, Yan BX, Wang P, Landeck L, Chen JQ, Li W, Cai SQ, Zheng M, Man XY. Rottlerin as a therapeutic approach in psoriasis: Evidence from in vitro and in vivo studies. PLoS One 2017; 12:e0190051. [PMID: 29272319 PMCID: PMC5741235 DOI: 10.1371/journal.pone.0190051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023] Open
Abstract
Rottlerin is a natural polyphenolic compound that was initially indicated as a PKCδ inhibitor. However, it was recently revealed that it may target a number of molecules and have biological effects on various cell types and is considered as a possible agent for tumor and cell proliferative diseases. Psoriasis is a chronic inflammatory cutaneous disorder with undefined etiology and is characterized by abnormal cellular proliferation, angiogenesis, and inflammation. Therefore, this paper investigates the regulatory effects of rottlerin on normal human epidermal keratinocytes (NHEKs) and imiquimod (IMQ)-induced psoriasiform (IPI) lesions. In vitro results showed that rottlerin inhibited cell proliferation in NHEKs through growth arrest and NFκB inhibition. It may also induce apoptosis in an autophagy-dependent pathway. We found that rottlerin inhibited human microvascular endothelial cells tube formation on matrigel. Rottlerin also decreased the cell senescence of keratinocytes and intracellular ROS generation, which indicated its antioxidant effect. We also showed that rottlerin affects the expression of keratinocyte proliferation biomarkers. In 12-O-tetradecanoylphorbol13-acetate (TPA)-induced keratinocytes, rottlerin significantly inhibited the expression of the induced pro-inflammatory cytokines in keratinocytes. An animal experiment provided the corresponding evidence based on this evidence in vitro, by using IPI model, we found that rottlerin could relieve the psoriasiform of BALB/c mice by inhibiting keratinocyte proliferation, inflammatory cell infiltration, and vascular proliferation. In conclusion, our results suggest that rottlerin may prove useful in the development of therapeutic agents against psoriasis. However, the deep mechanism still requires further study.
Collapse
Affiliation(s)
- Min Min
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xi Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lilla Landeck
- Ernst von Bergmann General Hospital, Teaching Hospital of Charité– Humboldt University, Potsdam, Germany
| | - Jia-Qi Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (MZ); (XYM)
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (MZ); (XYM)
| |
Collapse
|
22
|
Rottlerin-mediated inhibition of Toxoplasma gondii growth in BeWo trophoblast-like cells. Sci Rep 2017; 7:1279. [PMID: 28455500 PMCID: PMC5430667 DOI: 10.1038/s41598-017-01525-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a crucial and physiological process for cell survival from yeast to mammals, including protozoan parasites. Toxoplasma gondii, an intracellular parasite, typically exploits autophagic machinery of host cell; however host cell upregulates autophagy to combat the infection. Herein we tested the efficacy of Rottlerin, a natural polyphenol with autophagic promoting properties, against Toxoplasma infection on the chorioncarcinoma-derived cell line BeWo. We found that Rottlerin, at sub-toxic doses, induced morphological and biochemical alterations associated with autophagy and decreased Toxoplasma growth in infected cells. Although autophagy was synergically promoted by Toxoplasma infection in combination with Rottlerin treatment, the use of the autophagy inhibitor chloroquine revealed that Rottlerin anti-parasitic effect was largely autophagy-independent and likely mediated by the converging inhibitory effect of Rottlerin and Toxoplasma in host protein translation, mediated by mTOR inhibition and eIF2α phosphorylation. Both events, which on one hand could explain the additive effect on autophagy induction, on the other hand led to inhibition of protein synthesis, thereby depriving Toxoplasma of metabolically essential components for multiplication. We suggest that modulation of the competition between pathogen requirement and host cell defense might be an attractive, novel therapeutic approach against Toxoplasma infection and encourage the development of Rottlerin-based new therapeutic formulations.
Collapse
|
23
|
Nicolson GL, Ash ME. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1704-1724. [PMID: 28432031 DOI: 10.1016/j.bbamem.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon, TQ12 4SG, UK
| |
Collapse
|
24
|
Qi P, He Z, Zhang L, Fan Y, Wang Z. Rottlerin-induced autophagy leads to apoptosis in bladder cancer cells. Oncol Lett 2016; 12:4577-4583. [PMID: 28101215 PMCID: PMC5228088 DOI: 10.3892/ol.2016.5255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
Abstract
It has been well-established that apoptosis contributes to cancer cell death; however, the role of autophagy in cancer cell death remains unclear. The aim of the present study was to investigate the effects of rottlerin, a traditional Indian medicine, on cell growth inhibition and autophagy in EJ human bladder carcinoma cells in vitro. Cell viability, measured by MTT assay, was found to be suppressed in a dose- and time-dependent manner. In addition, apoptosis was significantly increased in cells treated with rottlerin, as indicated by increased annexin V-fluorescein isothiocyanate/propidium iodide staining and changes in the cell cycle distribution that indicated blockage at G1 phase. Rottlerin treatment also enhanced the activation of autophagy, with increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II and the appearance of autophagosomes. The increased level of LC3-II and autophagosomes suggests that autophagy may contribute to apoptosis in these cells. In addition, no apparent alterations in the levels of pro-caspase-3, cleaved caspase-3, total poly (ADP ribose) polymerase (PARP) and cleaved-PARP were observed in cells treated with rottlerin, which indicates that caspases may not serve a key role during the process of apoptosis induced by rottlerin. Therefore, the results of the present study indicate that rottlerin promotes apoptosis and arrests the cell cycle in EJ cells, which may be caused by autophagy activation.
Collapse
Affiliation(s)
- Ping Qi
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China; Department of Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhenhua He
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China; Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Lixiu Zhang
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yuan Fan
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China; Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
25
|
Feng X, Yu W, Zhou F, Chen J, Shen P. A novel small molecule compound diaporine inhibits breast cancer cell proliferation via promoting ROS generation. Biomed Pharmacother 2016; 83:1038-1047. [DOI: 10.1016/j.biopha.2016.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 11/26/2022] Open
|
26
|
Chhiber N, Kaur T, Singla S. Rottlerin, a polyphenolic compound from the fruits of Mallotus phillipensis (Lam.) Müll.Arg., impedes oxalate/calcium oxalate induced pathways of oxidative stress in male wistar rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:989-97. [PMID: 27444343 DOI: 10.1016/j.phymed.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Oxalate and/or calcium oxalate, is known to induce free radical production, subsequently leading to renal epithelial injury. Oxidative stress and mitochondrial dysfunction have emerged as new targets for managing oxalate induced renal injury. HYPOTHESIS Plant products and antioxidants have gained tremendous attention in the prevention of lithiatic disease. Rottlerin, a polyphenolic compound from the fruits of Mallotus phillipensis (Lam.) Müll.Arg., has shown free radical scavenging, antioxidant activity and has been reported to interfere in signaling pathways leading to inflammation and apoptosis. In this study, the potential role of rottlerin, in rats exposed to hyperoxaluric environment was explored. METHODS Hyperoxaluria was induced by administering 0.4% ethylene glycol and 1% ammonium chloride in drinking water to male wistar rats for 9 days. Rottlerin was administered intraperitoneally at 1mg/kg/day along with the hyperoxaluric agent. Prophylactic efficacy of rottlerin to diminish hyperoxaluria induced renal dysfunctionality and crystal load was examined along with its effect on free radicals generating pathways in hyperoxaluric rats. RESULTS 0.4% ethylene glycol and 1% ammonium chloride led to induction of hyperoxaluria, oxiadtive stress and mitochondrial damage in rats. Rottlerin treatment reduced NADPH oxidase activity, prevented mitochondrial dysfunction and maintained antioxidant environment. It also refurbished renal functioning, tissue integrity and diminished urinary crystal load in hyperoxaluric rats treated with rottlerin. CONCLUSIONS Thus, the present investigation suggests that rottlerin evidently reduced hyperoxaluric consequences and the probable mechanism of action of this drug could be attributed to its ability to quench free radicals by itself and interrupting signaling pathways involved in pathogenesis of stone formation.
Collapse
Affiliation(s)
- Nirlep Chhiber
- Department of Biochemistry, Panjab University, Chandigarh-160015, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh-160015, India
| | - Surinder Singla
- Department of Biochemistry, Panjab University, Chandigarh-160015, India.
| |
Collapse
|
27
|
Antiproliferative Effect of Rottlerin on Sk-Mel-28 Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:545838. [PMID: 26161122 PMCID: PMC4464680 DOI: 10.1155/2015/545838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/17/2015] [Indexed: 02/07/2023]
Abstract
Melanoma is the most aggressive and chemoresistant form of skin cancer. Mutated, constitutively active B-RAF is believed to play a crucial role, although the selective B-RAF inhibition has shown poor clinical success, since phenomena of resistance usually occur, likely arising from additional genetic aberrations, such as loss of function of p53 and PTEN, overexpression of cyclin D1, hyperactivation of NF-κB, and downregulation of p21/Cip1. Since all of them are present in the Sk-Mel-28 melanoma cells, this cell line could be an ideal, albeit hard to study, model to develop new therapeutic strategies. In the current study, we tested the cytostatic action of Rottlerin on Sk-Mel-28 melanoma cells, on the basis of the known Rottlerin effects on the main proliferative signaling pathways. We presented evidence that the drug inhibits cell growth by an Akt- and p21/Cip1-independent mechanism, involving the dual inhibition of ERK and NF-κB and downregulation of cyclin D1. In addition, we found that Rottlerin increases ERK phosphorylation, but, surprisingly, this resulted in decreased ERK activity. Pull-down experiments, using Rottlerin-CNBr-conjugated Sepharose beads, revealed that Rottlerin binds to ERK, independently from its phosphorylation status. This direct interaction could in part explain the paradoxical blockage of ERK downstream signaling and growth arrest. We would like to dedicate this paper to the memory of our friend and colleague, prematurely deceased, Claudia Torricelli, who actively contributed to this project
Collapse
|
28
|
Torricelli C, Daveri E, Salvadori S, Valacchi G, Ietta F, Muscettola M, Carlucci F, Maioli E. Phosphorylation-independent mTORC1 inhibition by the autophagy inducer Rottlerin. Cancer Lett 2015; 360:17-27. [PMID: 25661734 DOI: 10.1016/j.canlet.2015.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 02/07/2023]
Abstract
We recently found that Rottlerin not only inhibits proliferation but also causes Bcl-2- and Beclin 1-independent autophagic death in apoptosis-resistant breast adenocarcinoma MCF-7 cells. Having excluded a role for canonical signaling pathways, the current study was aimed to investigate the contribution of the AMPK/mTOR axis in autophagy induction and to search for the upstream signaling molecules potentially targeted by Rottlerin. Using several enzyme inhibitors, Western blotting analysis, mTOR siRNA and pull down assay, we demonstrate that the Rottlerin-triggered autophagy is mediated by inhibition of mTORC1 activity through a novel AMPK and mTORC1 phosphorylation-independent mechanism, likely mediated by the direct interaction between Rottlerin and mTOR.
Collapse
Affiliation(s)
- C Torricelli
- Department of Life Sciences, University of Siena, via Aldo Moro, Siena 7-53100, Italy
| | - E Daveri
- Department of Life Sciences, University of Siena, via Aldo Moro, Siena 7-53100, Italy
| | - S Salvadori
- Department of Life Sciences, University of Siena, via Aldo Moro, Siena 7-53100, Italy
| | - G Valacchi
- Department of Biology and Evolution, University of Ferrara, Via Luigi Borsari 46, Ferrara 44100, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - F Ietta
- Department of Life Sciences, University of Siena, via Aldo Moro, Siena 7-53100, Italy
| | - M Muscettola
- Department of Medicine, surgery and neuroscience, University of Siena, Strada delle Scotte, Siena 4-53100, Italy
| | - F Carlucci
- Department of Medical biotechnologies, University of Siena, Strada delle Scotte, Siena 4-53100, Italy
| | - E Maioli
- Department of Life Sciences, University of Siena, via Aldo Moro, Siena 7-53100, Italy.
| |
Collapse
|
29
|
Mori N, Ishikawa C, Senba M. Activation of PKC-δ in HTLV-1-infected T cells. Int J Oncol 2015; 46:1609-18. [PMID: 25625567 DOI: 10.3892/ijo.2015.2848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/06/2014] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC)-δ is a member of the PKC family. It has been implicated in tumor suppression as well as survival of various cancers. The aggressive malignancy of T lymphocytes known as adult T-cell leukemia (ATL) is associated with human T-cell leukemia virus type 1 (HTLV-1) infection. In this study, we show that HTLV-1-infected T cells are characterized by phosphorylation and nuclear translocation of PKC-δ. Expression of HTLV-1 regulatory protein Tax increased PKC-δ phosphorylation. Blockade of PKC-δ by rottlerin suppressed PKC-δ phosphorylation and inhibited cell viability in HTLV-1-infected T-cell lines and primary ATL cells. Rottlerin induced cell cycle arrest at the G1 phase and caspase-mediated apoptosis of HTLV-1-infected T cells. Rottlerin downregulated the expression of proteins involved in G1/S cell cycle transition, cyclin D2, CDK4 and 6, and c-Myc, resulting in dephosphorylation of retinoblastoma protein (pRb). Furthermore, rottlerin reduced the expression of important anti-apoptotic proteins (e.g., survivin, XIAP, Bcl-xL and c-FLIP) and Bcl-2 phosphorylation, and activated the pro-apoptotic protein Bax. Our results showed that permanent activation of nuclear factor-κB (NF-κB) by HTLV-1 Tax allows infected cells to escape cell cycle arrest and apoptosis and that PKC-δ mediates Tax-induced activation of NF-κB. Based on these findings, new therapies designed to target PKC-δ could be potentially useful in the treatment of ATL.
Collapse
Affiliation(s)
- Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903‑0215, Japan
| | - Chie Ishikawa
- Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa 903‑0213, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852‑8523, Japan
| |
Collapse
|
30
|
Hasima N, Ozpolat B. Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 2014; 5:e1509. [PMID: 25375374 PMCID: PMC4260725 DOI: 10.1038/cddis.2014.467] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/26/2022]
Abstract
Autophagy, a lysosomal degradation pathway for cellular constituents and organelles, is an adaptive and essential process required for cellular homeostasis. Although autophagy functions as a survival mechanism in response to cellular stressors such as nutrient or growth factor deprivation, it can also lead to a non-apoptotic form of programmed cell death (PCD) called autophagy-induced cell death or autophagy-associated cell death (type II PCD). Current evidence suggests that cell death through autophagy can be induced as an alternative to apoptosis (type I PCD), with therapeutic purpose in cancer cells that are resistant to apoptosis. Thus, modulating autophagy is of great interest in cancer research and therapy. Natural polyphenolic compounds that are present in our diet, such as rottlerin, genistein, quercetin, curcumin, and resveratrol, can trigger type II PCD via various mechanisms through the canonical (Beclin-1 dependent) and non-canonical (Beclin-1 independent) routes of autophagy. The capacity of these compounds to provide a means of cancer cell death that enhances the effects of standard therapies should be taken into consideration for designing novel therapeutic strategies. This review focuses on the autophagy- and cell death-inducing effects of these polyphenolic compounds in cancer.
Collapse
Affiliation(s)
- N Hasima
- 1] Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA [2] Institute Science Biology, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia [3] Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - B Ozpolat
- 1] Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA [2] Center for RNA Interference and Non-Coding RNAs - Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, USA
| |
Collapse
|
31
|
Nicolson GL, Ash ME. Lipid Replacement Therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1657-79. [PMID: 24269541 DOI: 10.1016/j.bbamem.2013.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/30/2013] [Accepted: 11/09/2013] [Indexed: 12/14/2022]
Abstract
Lipid Replacement Therapy, the use of functional oral supplements containing cell membrane phospholipids and antioxidants, has been used to replace damaged, usually oxidized, membrane glycerophospholipids that accumulate during aging and in various clinical conditions in order to restore cellular function. This approach differs from other dietary and intravenous phospholipid interventions in the composition of phospholipids and their defense against oxidation during storage, ingestion, digestion and uptake as well as the use of protective molecules that noncovalently complex with phospholipid micelles and prevent their enzymatic and bile disruption. Once the phospholipids have been taken in by transport processes, they are protected by several natural mechanisms involving lipid receptors, transport and carrier molecules and circulating cells and lipoproteins until their delivery to tissues and cells where they can again be transferred to intracellular membranes by specific and nonspecific transport systems. Once delivered to membrane sites, they naturally replace and stimulate removal of damaged membrane lipids. Various chronic clinical conditions are characterized by membrane damage, mainly oxidative but also enzymatic, resulting in loss of cellular function. This is readily apparent in mitochondrial inner membranes where oxidative damage to phospholipids like cardiolipin and other molecules results in loss of trans-membrane potential, electron transport function and generation of high-energy molecules. Recent clinical trials have shown the benefits of Lipid Replacement Therapy in restoring mitochondrial function and reducing fatigue in aged subjects and patients with a variety of clinical diagnoses that are characterized by loss of mitochondrial function and include fatigue as a major symptom. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK
| |
Collapse
|
32
|
Yao CW, Piao MJ, Kim KC, Zheng J, Cha JW, Hyun JW. 6'-o-galloylpaeoniflorin protects human keratinocytes against oxidative stress-induced cell damage. Biomol Ther (Seoul) 2013; 21:349-57. [PMID: 24244822 PMCID: PMC3825198 DOI: 10.4062/biomolther.2013.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023] Open
Abstract
6'-O-galloylpaeoniflorin (GPF) is a galloylated derivate of paeoniflorin and a key chemical constituent of the peony root, a perennial flowering plant that is widely used as an herbal medicine in East Asia. This study is the first investigation of the cytoprotective effects of GPF against hydrogen peroxide (H2O2)-induced cell injury and death in human HaCaT keratinocytes. GPF demonstrated a significant scavenging capacity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, H2O2-generated intracellular reactive oxygen species (ROS), the superoxide anion radical (O2-), and the hydroxyl radical (•OH). GPF also safeguarded HaCaT keratinocytes against H2O2-provoked apoptotic cell death and attenuated oxidative macromolecular damage to DNA, lipids, and proteins. The compound exerted its cytoprotective actions in keratinocytes at least in part by decreasing the number of DNA strand breaks, the levels of 8-isoprostane (a stable end-product of lipid peroxidation), and the formation of carbonylated protein species. Taken together, these results indicate that GPF may be developed as a cytoprotector against ROS-mediated oxidative stress.
Collapse
Affiliation(s)
- Cheng Wen Yao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
33
|
Lu QY, Zhang L, Lugea A, Moro A, Edderkaoui M, Eibl G, Pandol SJ, Go VLW. Determination of Rottlerin, a Natural Protein Kinases C Inhibitor, in Pancreatic Cancer Cells and Mouse Xenografts by RP-HPLC Method. JOURNAL OF CHROMATOGRAPHY & SEPARATION TECHNIQUES 2013; 4:100062. [PMID: 24482742 DOI: 10.4172/2157-7064.1000162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rottlerin is a natural polyphenolic ketone isolated from the pericarps of Mallotus phillippinensis. In previous studies we showed that parenteral administration of rottlerin reduced tumor growth in murine xenograft models of pancreatic cancer. The aim of this study was to develop a simple and validated method for the quantitative determination of rottlerin in plasma and tumor tissues of mice fed a rottlerin diet. A xenograft model of pancreatic cancer was prepared by injection of 2×106 HPAF-II cells subcutaneously into nude mice. One week before tumor implantation, mice were randomly allocated to standard diet (AIN76A) and standard diet supplement with 0.012% rottlerin (n=6 per group). Mice were sacrificed after 6 weeks on diets. Rottlerin was extracted from the plasma and tissues using protein precipitation-extraction and analyzed by reverse-phase HPLC-DAD method. The same HPLC method was also applied to determine rottlerin levels in conditioned culture media and in cell lysates from HPAF-II cells exposed to 25 µM concentration of rottlerin. A substantial amount of rottlerin was detected in tumor (2.11 ± 0.25 nmol/g tissue) and plasma (2.88 ± 0.41 µM) in mice fed rottlerin diet. In addition, significant levels of rottlerin (57.4 ± 5.4 nmol/mg protein) were detected in cell lysates from rottlerin-treated HPAF-II cells. These data indicate that rottlerin is efficiently absorbed in cells and tissues both in vivo and in vitro and suggest a strong potential for rottlerin as a preventive or adjuvant supplement for pancreatic cancer.
Collapse
Affiliation(s)
- Qing-Yi Lu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Lifeng Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Aurelia Lugea
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA ; Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles, CA, USA
| | - Aune Moro
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mouad Edderkaoui
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA ; Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles, CA, USA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stephen J Pandol
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA ; Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles, CA, USA
| | - Vay-Liang W Go
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Alternative Pathways of Cancer Cell Death by Rottlerin: Apoptosis versus Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:980658. [PMID: 23320042 PMCID: PMC3541534 DOI: 10.1155/2012/980658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 02/07/2023]
Abstract
Since the ability of cancer cells to evade apoptosis often limits the efficacy of radiotherapy and chemotherapy, autophagy is emerging as an alternative target to promote cell death. Therefore, we wondered whether Rottlerin, a natural polyphenolic compound with antiproliferative effects in several cell types, can induce cell death in MCF-7 breast cancer cells. The MCF-7 cell line is a good model of chemo/radio resistance, being both apoptosis and autophagy resistant, due to deletion of caspase 3 gene, high expression of the antiapoptotic protein Bcl-2, and low expression of the autophagic Beclin-1 protein. The contribution of autophagy and apoptosis to the cytotoxic effects of Rottlerin was examined by light, fluorescence, and electron microscopic examination and by western blotting analysis of apoptotic and autophagic markers. By comparing caspases-3-deficient (MCF-73def) and caspases-3-transfected MCF-7 cells (MCF-73trans), we found that Rottlerin induced a noncanonical, Bcl-2-, Beclin 1-, Akt-, and ERK-independent autophagic death in the former- and the caspases-mediated apoptosis in the latter, in not starved conditions and in the absence of any other treatment. These findings suggest that Rottlerin could be cytotoxic for different cancer cell types, both apoptosis competent and apoptosis resistant.
Collapse
|
35
|
Abstract
Rottlerin and curcumin are natural plant polyphenols with a long tradition in folk medicine. Over the past two decades, curcumin has been extensively investigated, while rottlerin has received much less attention, in part, as a consequence of its reputation as a selective PKCδ inhibitor. A comparative analysis of genomic, proteomic, and cell signaling studies revealed that rottlerin and curcumin share a number of targets and have overlapping effects on many biological processes. Both molecules, indeed, modulate the activity and/or expression of several enzymes (PKCδ, heme oxygenase, DNA methyltransferase, cyclooxygenase, lipoxygenase) and transcription factors (NF-κB, STAT), and prevent aggregation of different amyloid precursors (α-synuclein, amyloid Aβ, prion proteins, lysozyme), thereby exhibiting convergent antioxidant, anti-inflammatory, and antiamyloid actions. Like curcumin, rottlerin could be a promising candidate in the fight against a variety of human diseases.
Collapse
Affiliation(s)
- Emanuela Maioli
- Department of Physiology, University of Siena, Siena, Italy.
| | | | | |
Collapse
|
36
|
Reactive oxygen species in health and disease. J Biomed Biotechnol 2012; 2012:936486. [PMID: 22927725 PMCID: PMC3424049 DOI: 10.1155/2012/936486] [Citation(s) in RCA: 469] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
During the past decades, it became obvious that reactive oxygen species (ROS) exert a multitude of biological effects covering a wide spectrum that ranges from physiological regulatory functions to damaging alterations participating in the pathogenesis of increasing number of diseases. This review summarizes the key roles played by the ROS in both health and disease. ROS are metabolic products arising from various cells; two cellular organelles are intimately involved in their production and metabolism, namely, the endoplasmic reticulum and the mitochondria. Updates on research that tremendously aided in confirming the fundamental roles of both organelles in redox regulation will be discussed as well. Although not comprehensive, this review will provide brief perspective on some of the current research conducted in this area for better understanding of the ROS actions in various conditions of health and disease.
Collapse
|
37
|
Treatment with aqueous extract from Croton cajucara Benth reduces hepatic oxidative stress in streptozotocin-diabetic rats. J Biomed Biotechnol 2012; 2012:902351. [PMID: 22811599 PMCID: PMC3395422 DOI: 10.1155/2012/902351] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/01/2012] [Accepted: 05/07/2012] [Indexed: 12/13/2022] Open
Abstract
Croton cajucara Benth is a plant found in Amazonia, Brazil and the bark and leaf infusion of this plant have been popularly used to treat diabetes and hepatic disorders. The present study was designed to evaluate the oxidative stress as well as the therapeutic effect of Croton cajucara Benth (1.5 mL of the C. cajucara extract i.g.) in rats with streptozotocin-induced diabetes. Croton cajucara Benth was tested as an aqueous extract for its phytochemical composition, and its antioxidant activity in vitro was also evaluated. Lipid peroxidation and superoxide dismutase, catalase, and glutathione reductase activities were measured in the hepatic tissue, as well as the presence activation of p65 (NF-κB), through western blot. Phytochemical screening of Croton cajucara Benth detected the presence of flavonoids, coumarins and alkaloids. The extract exhibited a significant antioxidant activity in the DPPH-scavenging and the hypoxanthine/xanthine oxidase assays. Liver lipid peroxidation increased in diabetic animals followed by a reduction in the Croton-cajucara-Benth-treated group. There was activation of p65 nuclear expression in the diabetic animals, which was attenuated in the animals receiving the Croton cajucara Benth aqueous extract. The liver tissue in diabetic rats showed oxidative alterations related to the streptozotocin treatment. In conclusion the Croton cajucara Benth aqueus extract treatment effectively reduced the oxidative stress and contributed to tissue recovery.
Collapse
|
38
|
Maioli E, Torricelli C, Valacchi G. Rottlerin and cancer: novel evidence and mechanisms. ScientificWorldJournal 2012; 2012:350826. [PMID: 22272173 PMCID: PMC3259573 DOI: 10.1100/2012/350826] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 11/14/2011] [Indexed: 12/26/2022] Open
Abstract
Because cancers are caused by deregulation of hundreds of genes, an ideal anticancer agent should target multiple gene products or signaling pathways simultaneously. Recently, extensive research has addressed the chemotherapeutic potential of plant-derived compounds. Among the ever-increasing list of naturally occurring anticancer agents, Rottlerin appears to have great potentiality for being used in chemotherapy because it affects several cell machineries involved in survival, apoptosis, autophagy, and invasion. The underlying mechanisms that have been described are diverse, and the final, cell-specific, Rottlerin outcome appears to result from a combination of signaling pathways at multiple levels. This paper seeks to summarize the multifocal signal modulatory properties of Rottlerin, which merit to be further exploited for successful prevention and treatment of cancer.
Collapse
Affiliation(s)
- E Maioli
- Department of Physiology, University of Siena, Aldo Moro Street, 53100 Siena, Italy.
| | | | | |
Collapse
|
39
|
Takano K, Sato K, Negishi Y, Aramaki Y. Involvement of actin cytoskeleton in macrophage apoptosis induced by cationic liposomes. Arch Biochem Biophys 2011; 518:89-94. [PMID: 22203089 DOI: 10.1016/j.abb.2011.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 01/24/2023]
Abstract
We clarified whether actin cytoskeleton is involved in the macrophage apoptosis induced by cationic liposomes composed of stearylamine (SA-liposomes). Externalization of phosphatidylserine induced by SA-liposomes was suppressed by cytochalasin D, a specific inhibitor of polymerization of F-actin. Furthermore, activation of PKCδ and reactive oxygen species (ROS) generation, which could be involved in the macrophage apoptosis, were inhibited by cytochalasin D. Microscopical observation revealed the co-localization of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled SA-liposomes and fluorescein-labeled phalloidin, which specifically binds to F-actin, and this co-localization was also inhibited by cytochalasin D. Co-localization of SA-liposomes and F-actin was also inhibited by the pre-treatment of cells with chondroitinase ABC. These findings could be the first observation concerning the contribution of the proteoglycan-actin cytoskeleton-ROS generation pathway to apoptosis induced by SA-liposomes in macrophages.
Collapse
Affiliation(s)
- Katsuki Takano
- Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
40
|
A switching mechanism in doxorubicin bioactivation can be exploited to control doxorubicin toxicity. PLoS Comput Biol 2011; 7:e1002151. [PMID: 21935349 PMCID: PMC3174179 DOI: 10.1371/journal.pcbi.1002151] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/21/2011] [Indexed: 02/07/2023] Open
Abstract
Although doxorubicin toxicity in cancer cells is multifactorial, the enzymatic bioactivation of the drug can significantly contribute to its cytotoxicity. Previous research has identified most of the components that comprise the doxorubicin bioactivation network; however, adaptation of the network to changes in doxorubicin treatment or to patient-specific changes in network components is much less understood. To investigate the properties of the coupled reduction/oxidation reactions of the doxorubicin bioactivation network, we analyzed metabolic differences between two patient-derived acute lymphoblastic leukemia (ALL) cell lines exhibiting varied doxorubicin sensitivities. We developed computational models that accurately predicted doxorubicin bioactivation in both ALL cell lines at high and low doxorubicin concentrations. Oxygen-dependent redox cycling promoted superoxide accumulation while NADPH-dependent reductive conversion promoted semiquinone doxorubicin. This fundamental switch in control is observed between doxorubicin sensitive and insensitive ALL cells and between high and low doxorubicin concentrations. We demonstrate that pharmacological intervention strategies can be employed to either enhance or impede doxorubicin cytotoxicity in ALL cells due to the switching that occurs between oxygen-dependent superoxide generation and NADPH-dependent doxorubicin semiquinone formation. In the United States, acute lymphoblastic leukemia (ALL) is the most common form of cancer among children. Although the survival rate of childhood leukemia is relatively high, those who do not respond to chemotherapy have very low prognostic outcome. Recent reports point to the critical role of metabolism in determining cell sensitivity to doxorubicin, a conventional drug used in leukemia treatment. Most of the molecular components involved in doxorubicin metabolism have been identified; however, how these components operate as a system and how adaptation of the doxorubicin metabolic network to patient-specific changes in protein components is much less understood. We have therefore chosen to investigate via computational modeling the variations in the distribution of proteins that metabolize doxorubicin can control a cell's ability to respond to doxorubicin treatment. This systems-level approach provides a framework for understanding how patient-specific variability leads to patient-sensitivity to doxorubicin treatment at different doses. With this knowledge, we were able to correctly predict complex behavior induced by pharmacological intervention strategies for manipulation of doxorubicin metabolism. When our interventions are used in combination with doxorubicin, cell viability was promoted or potentiated based on dominant control mechanisms within the metabolic network.
Collapse
|
41
|
Vijaya Kumar T, Tiwari AK, Robinson A, Suresh Babu K, Sateesh Chandra Kumar R, Anand Kumar D, Zehra A, Madhusudna Rao J. Synthesis and antiglycation potentials of bergenin derivatives. Bioorg Med Chem Lett 2011; 21:4928-31. [DOI: 10.1016/j.bmcl.2011.04.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 11/15/2022]
|
42
|
Valacchi G, Pecorelli A, Sticozzi C, Torricelli C, Muscettola M, Aldinucci C, Maioli E. Rottlerin exhibits antiangiogenic effects in vitro. Chem Biol Drug Des 2011; 77:460-70. [PMID: 21435184 DOI: 10.1111/j.1747-0285.2011.01121.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rottlerin, a natural product purified from Mallotus philippinensis, has a number of target molecules and biological effects. We recently found that Rottlerin caused growth arrest in MCF-7 breast cancer cells and human immortalized keratinocytes, through inhibition of NFκB and downregulation of cyclin D-1. To evaluate whether this effect could be generalized to primary cells, human microvascular endothelial cells were treated with Rottlerin. In this study, we demonstrated that Rottlerin prevents basal and TNFα-stimulated NFκB nuclear migration and DNA binding also in human microvascular endothelial cell, where NFκB inhibition was accompanied by the downregulation of NFκB target gene products, such as cyclin D-1 and endothelin-1, which are essential molecules for endothelial cell proliferation and survival. Rottlerin, indeed, inhibited human microvascular endothelial cells proliferation and tube formation on Matrigel. Rottlerin also increases cytoplasmic free calcium and nitric oxide levels and downregulates endothelin converting enzyme-1 expression, thus contributing to the drop in endothelin-1 and growth arrest. These results suggest that Rottlerin may prove useful in the development of therapeutic agents against angiogenesis.
Collapse
|
43
|
Das J, Ghosh J, Manna P, Sil PC. Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCdelta-JNK pathway. PLoS One 2010; 5:e12602. [PMID: 20830294 PMCID: PMC2935368 DOI: 10.1371/journal.pone.0012602] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/06/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. METHODOLOGY/PRINCIPAL FINDINGS Rats were exposed to NaAsO(2) (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO(2) (10 microM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCdelta and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCdelta is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO(2) exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis. CONCLUSIONS/SIGNIFICANCE Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCdelta-JNK signalling pathways. Therefore taurine supplementation could provide a new approach for the reduction of hepatic complication due to arsenic poisoning.
Collapse
Affiliation(s)
- Joydeep Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Jyotirmoy Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Prasenjit Manna
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|