1
|
Camerino M, Giacobino D, Tarone L, Dentini A, Martano M, Morello E, Ferraris EI, Manassero L, Iussich S, Maniscalco L, Cavallo F, Riccardo F, Buracco P. Clinical evaluation of HuDo-CSPG4 DNA electroporation as adjuvant treatment for canine oral malignant melanoma: comparison of two vaccination protocols. Vet Q 2025; 45:1-16. [PMID: 40059815 PMCID: PMC11894750 DOI: 10.1080/01652176.2025.2473717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/13/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Canine oral malignant melanoma (OMM) is an aggressive, spontaneously occurring tumor carrying a poor to guarded prognosis and relatively limited therapeutic strategies. In this landscape, chondroitin sulfate proteoglycan (CSPG)4 represents a promising immunotherapeutic target. The objective of this bi-center prospective study was to examine the clinical outcome of OMM-bearing dogs treated with surgery and adjuvant electroporation using a DNA vaccine (HuDo-CSPG4) encoding both human (Hu) and canine (Do) portions of CSPG4 through two different vaccination protocols. Dogs with stage I-III surgically resected CSPG4-positive OMM underwent HuDo-CSPG4 plasmid electroporation starting at the 3rd-4th post-operative week; electrovaccination was repeated after 2 weeks. In protocol 1, electrovaccination was then delivered monthly while in protocol 2, electrovaccination was performed monthly four additional times followed by semestral boosters. The survival rates of HuDo-CSPG4-vaccinated dogs were estimated and compared with a control group treated with surgery alone. Significantly longer overall survival times were observed in HuDo-CSPG4 vaccinated dogs as compared with non-vaccinated controls. Dogs receiving protocol 2 showed similar outcomes to those of dogs undergoing protocol 1, despite fewer vaccinations. The comparable humoral response against CSPG4 resulting from the administration of protocol 1 and 2 appears to have similar clinical relevance, highlighting protocol 2 as the optimal vaccination schedule.
Collapse
Affiliation(s)
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Marina Martano
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Luca Manassero
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Cervini R, Centa A, Locatelli C, Dal Pont GC, Assolini JP. Unraveling the Nano World in Paracoccidioidomycosis: Promising Applications of Nanotechnology in Diagnosis, Treatment, and Vaccines: A Mini Review. Curr Microbiol 2025; 82:264. [PMID: 40295332 DOI: 10.1007/s00284-025-04251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi of the genus Paracoccidioides. This disease is prevalent in Latin America, with Brazil being an endemic region. This mycosis can be classified as PCM infection, PCM disease and residual PCM. Although diagnosis and treatment exist, they have some limitations, and there is no vaccine available for this disease. Thus, the application of nanotechnology in the biomedical and health areas has become an innovative alternative. In this review, we highlight the main advances in the use of nanotechnology to improve and/or develop methods of diagnosis, treatment and vaccines for PCM. In order to improve diagnostic methods, nanoparticles can be used as biosensors associated with cell biology and spectroscopy techniques. The use of nanomaterials of different shapes and nature can act directly on the pathogen or as drug carriers, maintaining or improving antifungal activity and reducing toxicity in vitro and in vivo. In addition, nanoparticulate systems could be an important tool for vaccine development, stimulating a Th1 response, which is considered protective in PCM.
Collapse
Affiliation(s)
- Ricardo Cervini
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - Ariana Centa
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Research Group in Bioactive Molecules, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - Claudriana Locatelli
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Research Group in Bioactive Molecules, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - Gustavo Colombo Dal Pont
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Research Group in Bioactive Molecules, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - João Paulo Assolini
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil.
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil.
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil.
| |
Collapse
|
3
|
Zaccariotto GDC, Bistaffa MJ, Zapata AMM, Rodero C, Coelho F, Quitiba JVB, Lima L, Sterman R, Cardoso VMDO, Zucolotto V. Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation. ACS NANO 2025. [PMID: 40202241 DOI: 10.1021/acsnano.4c15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cancer immunotherapy has transformed the landscape of oncological treatment by employing various strategies to teach the immune system to eliminate tumors. Among these, cancer nanovaccines are an emerging strategy that utilizes nanotechnology to enhance immune activation in response to tumor antigens. This review addresses the principles behind the different technologies in this field aimed at generating a robust and effective immune response. The diversity of strategies adopted for the design of nanovaccines is discussed, including the types of active agents, nanocarriers, their functionalizations, and the incorporation of adjuvants. Furthermore, strategies to optimize nanoparticle formulations to enhance the antigen presentation, target immune cells, and organs and promote strong and durable antitumor responses are explored. Finally, we analyze the current state of clinical application, highlighting ongoing clinical trials and the future potential of cancer nanovaccines. The insights presented in this review aim to guide future research and development efforts in the field, contributing to the advancement of more effective and targeted nanovaccines in the fight against cancer.
Collapse
Affiliation(s)
- Gabriel de Camargo Zaccariotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Maria Julia Bistaffa
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Angelica Maria Mazuera Zapata
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Camila Rodero
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Fernanda Coelho
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - João Victor Brandão Quitiba
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Lorena Lima
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Raquel Sterman
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | | | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| |
Collapse
|
4
|
Yaraghi P, Kheyri A, Mikaeili N, Boroumand A, Abbasifard M, Farhangnia P, Rezagholizadeh F, Khorramdelazad H. Nanoparticle-mediated enhancement of DNA Vaccines: Revolutionizing immunization strategies. Int J Biol Macromol 2025; 302:140558. [PMID: 39900152 DOI: 10.1016/j.ijbiomac.2025.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
DNA vaccines are a novel form of vaccination that aims to harness genetic material to produce targeted immune responses. Nevertheless, their therapeutic application is hampered by low transfection efficacy, immunogenicity, and instability. Nanoparticle (NP) - based delivery systems are beneficial in enhancing DNA stability, increasing DNA uptake by antigen-presenting cells (APCs), and controlling antigen release. Some key progress includes the polymeric, lipid-based, and hybrid NPs and biocompatible carriers with inherent adjuvant effects. These systems have helped to enhance the antigen cross-presentation and T-cell activation significantly. In addition, biocompatible hybrid nanocarriers, antigen cross-presentation strategies, and next-generation sequencing (NGS) technologies are speeding up the identification of new antigens, while AI and machine learning are facilitating the development of efficient delivery systems. This review aims to assess how NPs have contributed to improving the effectiveness of DNA vaccines for treating diseases, cancer, and emerging diseases, as well as advancing the next generation of DNA vaccines.
Collapse
Affiliation(s)
- Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Rezagholizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
5
|
Ruzzi F, Riccardo F, Conti L, Tarone L, Semprini MS, Bolli E, Barutello G, Quaglino E, Lollini PL, Cavallo F. Cancer vaccines: Target antigens, vaccine platforms and preclinical models. Mol Aspects Med 2025; 101:101324. [PMID: 39631227 DOI: 10.1016/j.mam.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
This review provides a comprehensive overview of the evolving landscape of cancer vaccines, highlighting their potential to revolutionize tumor prevention. Building on the success of vaccines against virus-related cancers, such as HPV- and HBV-associated cervical and liver cancers, the current challenge is to extend these achievements to the prevention of non-viral tumors and the treatment of preneoplastic or early neoplastic lesions. This review analyzes the critical aspects of preventive anti-cancer vaccination, focusing on the choice of target antigens, the development of effective vaccine platforms and technologies, and the use of various model systems for preclinical testing, from laboratory rodents to companion animals.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Federica Riccardo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Laura Conti
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Lidia Tarone
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Elisabetta Bolli
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Giuseppina Barutello
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Elena Quaglino
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy; IRCCS Azienda Ospedaliera Universitaria di Bologna, 40138, Bologna, Italy.
| | - Federica Cavallo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy.
| |
Collapse
|
6
|
Liao HC, Liu SJ. Advances in nucleic acid-based cancer vaccines. J Biomed Sci 2025; 32:10. [PMID: 39833784 PMCID: PMC11748563 DOI: 10.1186/s12929-024-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025] Open
Abstract
Nucleic acid vaccines have emerged as crucial advancements in vaccine technology, particularly highlighted by the global response to the COVID-19 pandemic. The widespread administration of mRNA vaccines against COVID-19 to billions globally marks a significant milestone. Furthermore, the approval of an mRNA vaccine for Respiratory Syncytial Virus (RSV) this year underscores the versatility of this technology. In oncology, the combination of mRNA vaccine encoding neoantigens and immune checkpoint inhibitors (ICIs) has shown remarkable efficacy in eliciting protective responses against diseases like melanoma and pancreatic cancer. Although the use of a COVID-19 DNA vaccine has been limited to India, the inherent stability at room temperature and cost-effectiveness of DNA vaccines present a viable option that could benefit developing countries. These advantages may help DNA vaccines address some of the challenges associated with mRNA vaccines. Currently, several trials are exploring the use of DNA-encoded neoantigens in combination with ICIs across various cancer types. These studies highlight the promising role of nucleic acid-based vaccines as the next generation of immunotherapeutic agents in cancer treatment. This review will delve into the recent advancements and current developmental status of both mRNA and DNA-based cancer vaccines.
Collapse
Affiliation(s)
- Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 307378, Taiwan.
| |
Collapse
|
7
|
Shariati A, Khezrpour A, Shariati F, Afkhami H, Yarahmadi A, Alavimanesh S, Kamrani S, Modarressi MH, Khani P. DNA vaccines as promising immuno-therapeutics against cancer: a new insight. Front Immunol 2025; 15:1498431. [PMID: 39872522 PMCID: PMC11769820 DOI: 10.3389/fimmu.2024.1498431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention. DNA cancer vaccines are made of plasmid molecules that encode tumor-associated or tumor-specific antigens (TAAs or TSAs), and possibly some other immunomodulatory adjuvants such as pro-inflammatory interleukins. Following the internalization of plasmids into cells, their genes are expressed and the tumor antigens are loaded on major histocompatibility molecules to be presented to T-cells. After the T-cells have been activated, they will look for tumor antigens and destroy the tumor cells upon encountering them. As with any other treatment, there are pros and cons associated with using these vaccines. They are relatively safe, usually well-tolerated, stable, easily mass-produced, cost-effective, and easily stored and transported. They can induce a systemic immune response effective on both the primary tumor and metastases. The main disadvantage of DNA vaccines is their poor immunogenicity. Several approaches including structural modification, combination therapy with conventional and novel cancer treatments (such as chemotherapy, radiotherapy, and immune checkpoint blockade (ICB)), and the incorporation of adjuvants into the plasmid structure have been studied to enhance the vaccine's immunogenicity and improve the clinical outcome of cancer patients. In this review, we will discuss some of the most promising optimization strategies and examine some of the important trials regarding these vaccines.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
8
|
Chai D, Wang X, Fan C, Wang J, Lim JM, Yu X, Young KH, Li Y. Vaccines targeting p53 mutants elicit anti-tumor immunity. Cancer Lett 2024; 611:217421. [PMID: 39740750 DOI: 10.1016/j.canlet.2024.217421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The p53 tumor suppressor is commonly mutated in cancer; however, there are no effective treatments targeting p53 mutants. A DNA vaccine gWIZ-S237G targeting the p53 S237G mutant, which is highly expressed in A20 murine tumor cells, was developed and administered intramuscularly via electroporation, either alone or in combination with PD-1 blockade. The anti-p53-S237G immunization elicited a robust protective response against subcutaneous A20 tumors and facilitated the infiltration of immune cells including CD8+ T cells, NK cells, and DCs. The vaccine enhanced the induction and maturation of CD11c+, CD103+CD11c+, and CD8+CD11c+ cells, which in turn promoted tumor-specific antibody production, as well as Th1 and CD8+ T cell-mediated immune responses. Several antigenic epitopes of p53-S237G effectively stimulated multifunctional CD8+ T cells to secrete IFN-γ and TNF-α. The vaccine showed long-term anti-tumor effects that were dependent on memory CD8+ T cells. Furthermore, the anti-p53-S237G vaccine exhibited significant protective efficacy in the A20 liver metastasis models. When combined with PD-1 inhibition, the vaccine showed superior inhibition of tumor growth and liver metastasis. Targeting p53 mutants by vaccination represents a potential precision medicine strategy against cancers harboring p53 mutations.
Collapse
Affiliation(s)
- Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunmei Fan
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Junhao Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jing Ming Lim
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken H Young
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
10
|
Do CTP, Prochnau JY, Dominguez A, Wang P, Rao MK. The Road Ahead in Pancreatic Cancer: Emerging Trends and Therapeutic Prospects. Biomedicines 2024; 12:1979. [PMID: 39335494 PMCID: PMC11428787 DOI: 10.3390/biomedicines12091979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the challenges and emerging trends in pancreatic cancer therapy. In particular, we focus on the tumor microenvironment and the potential of immunotherapy for pancreatic cancer. Pancreatic ductal adenocarcinoma, characterized by its dense stromal architecture, presents unique challenges for effective treatment. Recent advancements have emphasized the role of the tumor microenvironment in therapeutic resistance and disease progression. We discuss novel strategies targeting the desmoplastic barrier and immunosuppressive cells to enhance immune cell infiltration and activation. Recent clinical trials, particularly those involving novel immunotherapeutic agents and tumor vaccines, are examined to understand their efficacy and limitations. Our analysis reveals that combining immunotherapy with chemotherapy, radiation therapy, or drugs targeting epigenetic processes shows promise, improving overall survival rates and response to treatment. For instance, trials utilizing checkpoint inhibitors in combination with standard chemotherapies have extended disease-free survival by up to 6 months compared to chemotherapy alone. Importantly, vaccines targeting specific tumor neoantigens have shown the potential to increase patient survival. However, these approaches also face significant challenges, including overcoming the immunosuppressive tumor microenvironment and enhancing the delivery and efficacy of therapeutic agents. By providing an overview of both the promising results and the obstacles encountered, this review aims to highlight ongoing efforts to refine immunotherapy approaches for better patient outcomes.
Collapse
Affiliation(s)
- Chris T P Do
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jack Y Prochnau
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Angel Dominguez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Shebbo S, Binothman N, Darwaish M, Niaz HA, Abdulal RH, Borjac J, Hashem AM, Mahmoud AB. Redefining the battle against colorectal cancer: a comprehensive review of emerging immunotherapies and their clinical efficacy. Front Immunol 2024; 15:1350208. [PMID: 38533510 PMCID: PMC10963412 DOI: 10.3389/fimmu.2024.1350208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer globally and presents a significant challenge owing to its high mortality rate and the limitations of traditional treatment options such as surgery, radiotherapy, and chemotherapy. While these treatments are foundational, they are often poorly effective owing to tumor resistance. Immunotherapy is a groundbreaking alternative that has recently emerged and offers new hope for success by exploiting the body's own immune system. This article aims to provide an extensive review of clinical trials evaluating the efficacy of various immunotherapies, including CRC vaccines, chimeric antigen receptor T-cell therapies, and immune checkpoint inhibitors. We also discuss combining CRC vaccines with monoclonal antibodies, delve into preclinical studies of novel cancer vaccines, and assess the impact of these treatment methods on patient outcomes. This review seeks to provide a deeper understanding of the current state of CRC treatment by evaluating innovative treatments and their potential to redefine the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Salima Shebbo
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Najat Binothman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manar Darwaish
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hanan A. Niaz
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamilah Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- College of Applied Medical Sciences, Taibah University, Almadinah Almunawarah, Saudi Arabia
| |
Collapse
|
12
|
Al-Hawary SIS, Jasim SA, Hjazi A, Oghenemaro EF, Kaur I, Kumar A, Al-Ani AM, Alwaily ER, Redhee AH, Mustafa YF. Nucleic acid-based vaccine for ovarian cancer cells; bench to bedside. Cell Biochem Funct 2024; 42:e3978. [PMID: 38515237 DOI: 10.1002/cbf.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after The First President of Russia, Yekaterinburg, Russia
| | | | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
13
|
Wu H, Lin J, Ling N, Zhang Y, He Y, Qiu L, Tan W. Functional Nucleic Acid-Based Immunomodulation for T Cell-Mediated Cancer Therapy. ACS NANO 2024; 18:119-135. [PMID: 38117770 DOI: 10.1021/acsnano.3c09861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
T cell-mediated immunity plays a pivotal role in cancer immunotherapy. The anticancer actions of T cells are coordinated by a sequence of biological processes, including the capture and presentation of antigens by antigen-presenting cells (APCs), the activation of T cells by APCs, and the subsequent killing of cancer cells by activated T cells. However, cancer cells have various means to evade immune responses. Meanwhile, these vulnerabilities provide potential targets for cancer treatments. Functional nucleic acids (FNAs) make up a class of synthetic nucleic acids with specific biological functions. With their diverse functionality, good biocompatibility, and high programmability, FNAs have attracted widespread interest in cancer immunotherapy. This Review focuses on recent research progress in employing FNAs as molecular tools for T cell-mediated cancer immunotherapy, including corresponding challenges and prospects.
Collapse
Affiliation(s)
- Hui Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Lin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Gurunathan S, Thangaraj P, Wang L, Cao Q, Kim JH. Nanovaccines: An effective therapeutic approach for cancer therapy. Biomed Pharmacother 2024; 170:115992. [PMID: 38070247 DOI: 10.1016/j.biopha.2023.115992] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer vaccines hold considerable promise for the immunotherapy of solid tumors. Nanomedicine offers several strategies for enhancing vaccine effectiveness. In particular, molecular or (sub) cellular vaccines can be delivered to the target lymphoid tissues and cells by nanocarriers and nanoplatforms to increase the potency and durability of antitumor immunity and minimize negative side effects. Nanovaccines use nanoparticles (NPs) as carriers and/or adjuvants, offering the advantages of optimal nanoscale size, high stability, ample antigen loading, high immunogenicity, tunable antigen presentation, increased retention in lymph nodes, and immunity promotion. To induce antitumor immunity, cancer vaccines rely on tumor antigens, which are administered in the form of entire cells, peptides, nucleic acids, extracellular vesicles (EVs), or cell membrane-encapsulated NPs. Ideal cancer vaccines stimulate both humoral and cellular immunity while overcoming tumor-induced immune suppression. Herein, we review the key properties of nanovaccines for cancer immunotherapy and highlight the recent advances in their development based on the structure and composition of various (including synthetic and semi (biogenic) nanocarriers. Moreover, we discuss tumor cell-derived vaccines (including those based on whole-tumor-cell components, EVs, cell membrane-encapsulated NPs, and hybrid membrane-coated NPs), nanovaccine action mechanisms, and the challenges of immunocancer therapy and their translation to clinical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India.
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India
| | - Lin Wang
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Qilong Cao
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
15
|
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 2023; 40:200. [PMID: 37294501 PMCID: PMC10251337 DOI: 10.1007/s12032-023-02060-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.
Collapse
Affiliation(s)
- Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
16
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
17
|
Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown! Vaccines (Basel) 2023; 11:507. [PMID: 36992091 PMCID: PMC10052021 DOI: 10.3390/vaccines11030507] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
mRNA vaccines take advantage of the mechanism that our cells use to produce proteins. Our cells produce proteins based on the knowledge contained in our DNA; each gene encodes a unique protein. The genetic information is essential, but cells cannot use it until mRNA molecules convert it into instructions for producing specific proteins. mRNA vaccinations provide ready-to-use mRNA instructions for constructing a specific protein. BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) both are newly approved mRNA-based COVID-19 vaccines that have shown excellent protection and efficacy. In total, there are five more mRNA-based vaccine candidates for COVID-19 under different phases of clinical development. This review is specifically focused on mRNA-based vaccines for COVID-19 covering its development, mechanism, and clinical aspects.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Gargi Jogi
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Srusti Dave
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Bhoomika M. Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar 382007, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
| | - Krishna Koradia
- Department of Pharmaceutics, Saurashtra University, Rajkot 360005, India
| |
Collapse
|
18
|
Fang X, Lan H, Jin K, Gong D, Qian J. Nanovaccines for Cancer Prevention and Immunotherapy: An Update Review. Cancers (Basel) 2022; 14:3842. [PMID: 36010836 PMCID: PMC9405528 DOI: 10.3390/cancers14163842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer immunotherapy has received more and more attention from cancer researchers over the past few decades. Various methods such as cell therapy, immune checkpoint blockers, and cancer vaccines alone or in combination therapies have achieved relatively satisfactory results in cancer therapy. Among these immunotherapy-based methods, cancer vaccines alone have not yet had the necessary efficacy in the clinic. Therefore, nanomaterials have increased the efficacy and ef-fectiveness of cancer vaccines by increasing their half-life and durability, promoting tumor mi-croenvironment (TME) reprogramming, and enhancing their anti-tumor immunity with minimal toxicity. In this review, according to the latest studies, the structure and different types of nanovaccines, the mechanisms of these vaccines in cancer treatment, as well as the advantages and disadvantages of these nanovaccines are discussed.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Huanrong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Daojun Gong
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hosptial, Wenzhou Medical University, Xinchang 312500, China
| |
Collapse
|
19
|
Garg I, Sheikh AB, Pal S, Shekhar R. Mix-and-Match COVID-19 Vaccinations (Heterologous Boost): A Review. Infect Dis Rep 2022; 14:537-546. [PMID: 35893476 PMCID: PMC9326526 DOI: 10.3390/idr14040057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
Various safe and effective COVID-19 vaccines utilizing different platforms (mRNA, adenovirus vector, inactivated virus-based) are available against SARS-CoV-2 infection. A prime-boost regimen (administration of two doses) is recommended to induce an adequate and sustained immune response. Most of these vaccines follow a homologous regimen (the same type of vaccine as priming and booster doses). However, there is a growing interest in a heterologous prime-boost vaccination regimen to potentially help address concerns posed by fluctuating vaccine supplies, serious adverse effects (anaphylaxis and thromboembolic episodes following adenovirus-based vaccines), new emerging virulent strains, inadequate immune response in immunocompromised individuals, and waning immunity. Various studies have demonstrated that heterologous prime-boost vaccination may induce comparable or higher antibody (spike protein) titers and a similar reactogenicity profile to the homologous prime-boost regimen. Based on these considerations, the Center for Disease Control and Prevention has issued guidance supporting the "mix-and-match" heterologous boost COVID-19 vaccine strategy.
Collapse
Affiliation(s)
- Ishan Garg
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (A.B.S.); (S.P.)
| | | | | | - Rahul Shekhar
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (A.B.S.); (S.P.)
| |
Collapse
|
20
|
Li Z, Yang D, Guo T, Lin M. Advances in MUC1-Mediated Breast Cancer Immunotherapy. Biomolecules 2022; 12:biom12070952. [PMID: 35883508 PMCID: PMC9313386 DOI: 10.3390/biom12070952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer (BRCA) is the leading cause of death from malignant tumors among women. Fortunately, however, immunotherapy has recently become a prospective BRCA treatment with encouraging achievements and mild safety profiles. Since the overexpression and aberrant glycosylation of MUC1 (human mucin) are closely associated with BRCA, it has become an ideal target for BRCA immunotherapies. In this review, the structure and function of MUC1 are briefly introduced, and the main research achievements in different kinds of MUC1-mediated BRCA immunotherapy are highlighted, from the laboratory to the clinic. Afterward, the future directions of MUC1-mediated BRCA immunotherapy are predicted, addressing, for example, urgent issues in regard to how efficient immunotherapeutic strategies can be generated.
Collapse
Affiliation(s)
- Zhifeng Li
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Dazhuang Yang
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Ting Guo
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
| | - Mei Lin
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
- Correspondence:
| |
Collapse
|
21
|
Immunological Study of Combined Administration of SARS-CoV-2 DNA Vaccine and Inactivated Vaccine. Vaccines (Basel) 2022; 10:vaccines10060929. [PMID: 35746536 PMCID: PMC9228235 DOI: 10.3390/vaccines10060929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Objective: We constructed two DNA vaccines containing the receptor-binding domain (RBD) genes of multiple SARS-CoV-2 variants and used them in combination with inactivated vaccines in a variety of different protocols to explore potential novel immunization strategies against SARS-CoV-2 variants. Methods: Two DNA vaccine candidates with different signal peptides (namely, secreted and membrane signal peptides) and RBD protein genes of different SARS-CoV-2 strains (Wuhan-Hu-1, B.1.351, B.1.617.2, C.37) were used. Four different combinations of DNA and inactivated vaccines were tested, namely, Group A: three doses of DNA vaccine; B: three doses of DNA vaccine and one dose of inactivated vaccine; C: two doses of inactivated vaccine and one dose of DNA vaccine; and D: coadministration of DNA and inactivated vaccines in two doses. Subgroups were grouped according to the signal peptide used (subgroup 1 contained secreted signal peptides, and subgroup 2 contained membrane signal peptides). The in vitro expression of the DNA vaccines, the humoral and cellular immunity responses of the immunized mice, the immune cell population changes in local lymph nodes, and proinflammatory cytokine levels in serum samples were evaluated. Results: The antibody responses and cellular immunity in Group A were weak for all SARS-CoV-2 strains; for Group B, there was a great enhancement of neutralizing antibody (Nab) titers against the B.1.617.2 variant strain. Group C showed a significant increase in antibody responses (NAb titers against the Wuhan-Hu-1 strain were 768 and 1154 for Group C1 and Group C2, respectively, versus 576) and cellular immune responses, especially for variant B.1.617.2 (3240 (p < 0.001) and 2430 (p < 0.05) for Group C1 and Group C2, versus 450); Group D showed an improvement in immunogenicity. Group C induced higher levels of multiple cytokines. Conclusion: The DNA vaccine candidates we constructed, administered as boosters, could enhance the humoral and cellular immune responses of inactivated vaccines against COVID-19, especially for B.1.617.2.
Collapse
|
22
|
In vitro and in vivo correlation of skin and cellular responses to nucleic acid delivery. Biomed Pharmacother 2022; 150:113088. [PMID: 35658241 PMCID: PMC10010056 DOI: 10.1016/j.biopha.2022.113088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Skin, the largest organ in the body, provides a passive physical barrier against infection and contains elements of the innate and adaptive immune systems. Skin consists of various cells, including keratinocytes, fibroblasts, endothelial cells and immune cells. This diversity of cell types could be important to gene therapies because DNA transfection could elicit different responses in different cell types. Previously, we observed the upregulation and activation of cytosolic DNA sensing pathways in several non-tumor and tumor cell types as well in tumors after the electroporation (electrotransfer) of plasmid DNA (pDNA). Based on this research and the innate immunogenicity of skin, we correlated the effects of pDNA electrotransfer to fibroblasts and keratinocytes to mouse skin using reverse transcription real-time PCR (RT-qPCR) and several types of protein quantification. After pDNA electrotransfer, the mRNAs of the putative DNA sensors DEAD (AspGlu-Ala-Asp) box polypeptide 60 (Ddx60), absent in melanoma 2 (Aim2), Z-DNA binding protein 1 (Zbp1), interferon activated gene 202 (Ifi202), and interferon-inducible protein 204 (Ifi204) were upregulated in keratinocytes, while Ddx60, Zbp1 and Ifi204 were upregulated in fibroblasts. Increased levels of the mRNAs and proteins of several cytokines and chemokines were detected and varied based on cell type. Mouse skin experiments in vivo confirmed our in vitro results with increased expression of putative DNA sensor mRNAs and of the mRNAs and proteins of several cytokines and chemokines. Finally, with immunofluorescent staining, we demonstrated that skin keratinocytes, fibroblasts and macrophages contribute to the immune response observed after pDNA electrotransfer.
Collapse
|
23
|
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 2022; 15:28. [PMID: 35303904 PMCID: PMC8931585 DOI: 10.1186/s13045-022-01247-x] [Citation(s) in RCA: 375] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Research on tumor immunotherapy has made tremendous progress in the past decades, with numerous studies entering the clinical evaluation. The cancer vaccine is considered a promising therapeutic strategy in the immunotherapy of solid tumors. Cancer vaccine stimulates anti-tumor immunity with tumor antigens, which could be delivered in the form of whole cells, peptides, nucleic acids, etc. Ideal cancer vaccines could overcome the immune suppression in tumors and induce both humoral immunity and cellular immunity. In this review, we introduced the working mechanism of cancer vaccines and summarized four platforms for cancer vaccine development. We also highlighted the clinical research progress of the cancer vaccines, especially focusing on their clinical application and therapeutic efficacy, which might hopefully facilitate the future design of the cancer vaccine.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
24
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Rezaei T, Davoudian E, Khalili S, Amini M, Hejazi M, de la Guardia M, Mokhtarzadeh A. Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res 2021; 34:869-891. [PMID: 33089665 DOI: 10.1111/pcmr.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
According to reports of the international agency for cancer on research, although malignant melanoma shows less prevalence than nonmelanoma skin cancers, it is the major cause of skin cancer mortality. Given that, the production of effective vaccines to control melanoma is eminently required. In this regard, DNA-based vaccines have been extensively investigated for melanoma therapy. DNA vaccines are capable of inducing both cellular and humoral branches of immune responses. These vaccines possess some valuable advantages such as lack of severe side effects and high stability compared to conventional vaccination methods. The ongoing studies are focused on novel strategies in the development of DNA vaccines encoding artificial polyepitope immunogens based on the multiple melanoma antigens, the inclusion of molecular adjuvants to increase the level of immune responses, and the improvement of delivery approaches. In this review, we have outlined the recent advances in the field of melanoma DNA vaccines and described their implications in clinical trials as a strong strategy in the prevention and control of melanoma.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Elham Davoudian
- Department of Microbiology, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Karthika C, Hari B, Rahman MH, Akter R, Najda A, Albadrani GM, Sayed AA, Akhtar MF, Abdel-Daim MM. Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomed Pharmacother 2021; 140:111704. [PMID: 34082400 DOI: 10.1016/j.biopha.2021.111704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer treatment is improving widely over time, but finding a proper defender to beat them seems like a distant dream. The quest for identification and discovery of drugs with an effective action is still a vital work. The role of a membrane protein called P-glycoprotein, which functions as garbage chute that efflux the waste, xenobiotics, and toxins out of the cancer cells acts as a major reason behind the therapeutic failure of most chemotherapeutic drugs. In this review, we mainly focused on a multiple strategies by employing 5-Fluorouracil, curcumin, and lipids in Nano formulation for the possible treatment of colorectal cancer and its metastasis. Eventually, multidrug resistance and angiogenesis can be altered and it would be helpful in colorectal cancer targeting.We have depicted the possible way for the depletion of colorectal cancer cells without disturbing the normal cells. The concept of focusing on multiple pathways for marking the colorectal cancer cells could help in activating one among the pathways if the other one fails. The activity of the 5-Fluorouracil can be enhanced with the help of curcumin which acts as a chemosensitizer, chemotherapeutic agent, and even for altering the resistance. As we eat to survive, so do the cancer cells. The cancer cells utilize the energy source to stay alive and survive. Fatty acids can be used as the energy source and this concept can be employed for targeting the colorectal cancer cells and also for altering the resistant part.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Balaji Hari
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
27
|
Hwang SB, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. Role of Recent Therapeutic Applications and the Infection Strategies of Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2021; 11:614963. [PMID: 34268129 PMCID: PMC8276698 DOI: 10.3389/fcimb.2021.614963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a global foodborne bacterial pathogen that is often accountable for colon disorder or distress. STEC commonly induces severe diarrhea in hosts but can cause critical illnesses due to the Shiga toxin virulence factors. To date, there have been a significant number of STEC serotypes have been evolved. STECs vary from nausea and hemorrhoid (HC) to possible lethal hemolytic-based uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP). Inflammation-based STEC is usually a foodborne illness with Shiga toxins (Stx 1 and 2) thought to be pathogenesis. The STEC's pathogenicity depends significantly on developing one or more Shiga toxins, which can constrain host cell protein synthesis leading to cytotoxicity. In managing STEC infections, antimicrobial agents are generally avoided, as bacterial damage and discharge of accumulated toxins are thought the body. It has also been documented that certain antibiotics improve toxin production and the development of these species. Many different groups have attempted various therapies, including toxin-focused antibodies, toxin-based polymers, synbiotic agents, and secondary metabolites remedies. Besides, in recent years, antibiotics' efficacy in treating STEC infections has been reassessed with some encouraging methods. Nevertheless, the primary role of synbiotic effectiveness (probiotic and prebiotic) against pathogenic STEC and other enteropathogens is less recognized. Additional studies are required to understand the mechanisms of action of probiotic bacteria and yeast against STEC infection. Because of the consensus contraindication of antimicrobials for these bacterial pathogens, the examination was focused on alternative remedy strategies for STEC infections. The rise of novel STEC serotypes and approaches employed in its treatment are highlighted.
Collapse
Affiliation(s)
- Su-bin Hwang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ji Eun Kang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
28
|
Meng X, Sun X, Liu Z, He Y. A novel era of cancer/testis antigen in cancer immunotherapy. Int Immunopharmacol 2021; 98:107889. [PMID: 34174699 DOI: 10.1016/j.intimp.2021.107889] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
Immunotherapy is a regimen that is especially utilized in many advanced cancers. Tumor antigens include tumor-specific antigens and tumor-associated antigens, and they function as targets for immunotherapy, such as cancer vaccines and autologous T cells. Cancer/testis antigens (CTAs), which is a group of genes that are restrictedly expressed in malignant cells as well as some germline cells, are tumor-associated antigens. These expression characteristics make CTAs promising candidates for vaccine or T cell therapy targets. Cancer vaccines utilize cancer antigens to induce specific cellular and humoral immune responses to strengthen the body's immune system. T cell transfer therapy refers to genetically modifying T cells to express antigen-specific T cell receptors or chimeric antigen receptors, both of which can be directly activated by tumor antigens. Moreover, combined therapies are being investigated based on CTAs. Current studies have mainly focused on MAGE-A, NY-ESO-1, and IL-13Rα. And we will review clinical trials of CTA-based immunotherapies related to these three antigens. We will summarize completed trials and results and examine the future trends in immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai 200011, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai 200011, China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai 200011, China.
| |
Collapse
|
29
|
Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer Vaccines, Adjuvants, and Delivery Systems. Front Immunol 2021; 12:627932. [PMID: 33859638 PMCID: PMC8042385 DOI: 10.3389/fimmu.2021.627932] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination was first pioneered in the 18th century by Edward Jenner and eventually led to the development of the smallpox vaccine and subsequently the eradication of smallpox. The impact of vaccination to prevent infectious diseases has been outstanding with many infections being prevented and a significant decrease in mortality worldwide. Cancer vaccines aim to clear active disease instead of aiming to prevent disease, the only exception being the recently approved vaccine that prevents cancers caused by the Human Papillomavirus. The development of therapeutic cancer vaccines has been disappointing with many early cancer vaccines that showed promise in preclinical models often failing to translate into efficacy in the clinic. In this review we provide an overview of the current vaccine platforms, adjuvants and delivery systems that are currently being investigated or have been approved. With the advent of immune checkpoint inhibitors, we also review the potential of these to be used with cancer vaccines to improve efficacy and help to overcome the immune suppressive tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Peter Symonds
- Biodiscovery Institute, Scancell Limited, Nottingham, United Kingdom
| | - Lindy G. Durrant
- Biodiscovery Institute, University of Nottingham, Faculty of Medicine and Health Sciences, Nottingham, United Kingdom
| |
Collapse
|
30
|
Batista VL, da Silva TF, de Jesus LCL, Tapia-Costa AP, Drumond MM, Azevedo V, Mancha-Agresti P. Lactic Acid Bacteria as Delivery Vehicle for Therapeutics Applications. Methods Mol Biol 2021; 2183:447-459. [PMID: 32959259 DOI: 10.1007/978-1-0716-0795-4_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactic acid bacteria comprise a large group of Gram-positive organisms capable of converting sugar into lactic acid. They have been studied due to their therapeutic potential on the mucosal surface. Among the species, Lactococcus lactis is considered the model bacterium and it has been explored as an important vehicle for providing therapeutic molecules and antigens in the mucosa. They can be genetically engineered to produce a variety of molecules as well as deliver heterologous DNA and protein. DNA vaccines consist of the administration of a bacterial plasmid under the control of a eukaryotic promoter encoding the antigen of interest. The resulting proteins are capable of stimulating the immune system, becoming a promising technique for immunization against a variety of tumors and infection diseases and having several advantages compared to conventional nucleic acid delivery methods (such as bioballistic delivery, electroporation, and intramuscular administration).
Collapse
Affiliation(s)
- Viviane Lima Batista
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Tales Fernando da Silva
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Luis Cláudio Lima de Jesus
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Tapia-Costa
- Biomedical Science Institute (ICBM), Catholic of Cuyo University, San Juan, CP, Argentina
| | - Mariana Martins Drumond
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, Federal Center for Technological Education of Minas Gerais (CEFET/MG), Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
- Biomedical Science Institute (ICBM), Catholic of Cuyo University, San Juan, CP, Argentina.
| |
Collapse
|
31
|
Gamat-Huber M, Jeon D, Johnson LE, Moseman JE, Muralidhar A, Potluri HK, Rastogi I, Wargowski E, Zahm CD, McNeel DG. Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers (Basel) 2020; 12:cancers12102831. [PMID: 33008010 PMCID: PMC7601088 DOI: 10.3390/cancers12102831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The only vaccine approved by FDA as a treatment for cancer is sipuleucel-T, a therapy for patients with metastatic castration-resistant prostate cancer (mCRPC). Most investigators studying anti-tumor vaccines believe they will be most effective as parts of combination therapies, rather than used alone. Unfortunately, the cost and complexity of sipuleucel-T makes it difficult to feasibly be used in combination with many other agents. In this review article we discuss the use of DNA vaccines as a simpler vaccine approach that has demonstrated efficacy in several animal species. We discuss the use of DNA vaccines in combination with traditional treatments for mCRPC, and other immune-modulating treatments, in preclinical and early clinical trials for patients with mCRPC. Abstract Metastatic castration-resistant prostate cancer (mCRPC) is a challenging disease to treat, with poor outcomes for patients. One antitumor vaccine, sipuleucel-T, has been approved as a treatment for mCRPC. DNA vaccines are another form of immunotherapy under investigation. DNA immunizations elicit antigen-specific T cells that cause tumor cell lysis, which should translate to meaningful clinical responses. They are easily amenable to design alterations, scalable for large-scale manufacturing, and thermo-stable for easy transport and distribution. Hence, they offer advantages over other vaccine formulations. However, clinical trials with DNA vaccines as a monotherapy have shown only modest clinical effects against tumors. Standard therapies for CRPC including androgen-targeted therapies, radiation therapy and chemotherapy all have immunomodulatory effects, which combined with immunotherapies such as DNA vaccines, could potentially improve treatment. In addition, many investigational drugs are being developed which can augment antitumor immunity, and together with DNA vaccines can further enhance antitumor responses in preclinical models. We reviewed the literature available prior to July 2020 exploring the use of DNA vaccines in the treatment of prostate cancer. We also examined various approved and experimental therapies that could be combined with DNA vaccines to potentially improve their antitumor efficacy as treatments for mCRPC.
Collapse
|
32
|
Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020; 15:576-590. [PMID: 33193861 PMCID: PMC7610208 DOI: 10.1016/j.ajps.2019.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Vaccines therapeutics manipulate host's immune system and have broad potential for cancer prevention and treatment. However, due to poor immunogenicity and limited safety, fewer cancer vaccines have been successful in clinical trials. Over the past decades, nanotechnology has been exploited to deliver cancer vaccines, eliciting long-lasting and effective immune responses. Compared to traditional vaccines, cancer vaccines delivered by nanomaterials can be tuned towards desired immune profiles by (1) optimizing the physicochemical properties of the nanomaterial carriers, (2) modifying the nanomaterials with targeting molecules, or (3) co-encapsulating with immunostimulators. In order to develop vaccines with desired immunogenicity, a thorough understanding of parameters that affect immune responses is required. Herein, we discussed the effects of physicochemical properties on antigen presentation and immune response, including but not limited to size, particle rigidity, intrinsic immunogenicity. Furthermore, we provided a detailed overview of recent preclinical and clinical advances in nanotechnology for cancer vaccines, and considerations for future directions in advancing the vaccine platform to widespread anti-cancer applications.
Collapse
Affiliation(s)
- Jingjing Liu
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Jiying Sui
- Affiliated Hospital of Shandong Academy of Medical Sciences, Ji'nan 250012, China
| | - Yanyun Hao
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Guihua Huang
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
33
|
Riccardo F, Barutello G, Petito A, Tarone L, Conti L, Arigoni M, Musiu C, Izzo S, Volante M, Longo DL, Merighi IF, Papotti M, Cavallo F, Quaglino E. Immunization against ROS1 by DNA Electroporation Impairs K-Ras-Driven Lung Adenocarcinomas . Vaccines (Basel) 2020; 8:vaccines8020166. [PMID: 32268572 PMCID: PMC7349290 DOI: 10.3390/vaccines8020166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of cancer death worldwide. Despite the introduction of tyrosine kinase inhibitors and immunotherapeutic approaches, there is still an urgent need for novel strategies to improve patient survival. ROS1, a tyrosine kinase receptor endowed with oncoantigen features, is activated by chromosomal rearrangement or overexpression in NSCLC and in several tumor histotypes. In this work, we have exploited transgenic mice harboring the activated K-Ras oncogene (K-RasG12D) that spontaneously develop metastatic NSCLC as a preclinical model to test the efficacy of ROS1 immune targeting. Indeed, qPCR and immunohistochemical analyses revealed ROS1 overexpression in the autochthonous primary tumors and extrathoracic metastases developed by K-RasG12D mice and in a derived transplantable cell line. As proof of concept, we have evaluated the effects of the intramuscular electroporation (electrovaccination) of plasmids coding for mouse- and human-ROS1 on the progression of these NSCLC models. A significant increase in survival was observed in ROS1-electrovaccinated mice challenged with the transplantable cell line. It is worth noting that tumors were completely rejected, and immune memory was achieved, albeit only in a few mice. Most importantly, ROS1 electrovaccination was also found to be effective in slowing the development of autochthonous NSCLC in K-RasG12D mice.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Angela Petito
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Chiara Musiu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Stefania Izzo
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Marco Volante
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), 10126 Torino, Italy;
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Mauro Papotti
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| |
Collapse
|
34
|
Lu Y, Dong H, Li J, Li L, Wang M, Liu H, Teng Z, Zhang Y, Jin Y, Guo H, Yang Y, Wen X, Sun S. Enhanced protective immune response of foot-and-mouth disease vaccine through DNA-loaded virus-like particles. Microb Pathog 2020; 143:104130. [PMID: 32165331 DOI: 10.1016/j.micpath.2020.104130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects cloven-hoofed animals. Virus-like particles (VLPs) can induce a robust immune response and deliver DNA and small molecules. In this study, a VLP-harboring pcDNA3.1/P12A3C plasmid was generated, and the protective immune response was characterized. Guinea pigs were injected with VLPs, naked DNA vaccine, DNA-loaded VLPs, or phosphate-buffered saline twice subcutaneously at four-week intervals. Results demonstrated that the VLPs protected the naked DNA from DNase degeneration and delivered the DNA into the cells in vitro. The DNA-loaded VLPs and the VLPs alone induced a similar level of specific antibodies (P > 0.05) except at 49 dpv (P < 0.05). The difference in interferon-γ was consistent with that in specific antibodies. The levels of neutralizing antibodies induced by the DNA-loaded VLPs were significantly higher than those of other samples (P < 0.01). Similarly, the lymphocyte proliferation by using DNA-loaded VLPs was significantly higher than those using other formulas after booster immunization. Vaccination with DNA-loaded VLPs provided higher protection (100%) against viral challenge compared with vaccination with VLPs (75%) and DNA vaccine (25%). This study suggested that VLPs can be used as a delivery carrier for DNA vaccine. In turn, the DNA vaccine can enhance the immune response and prolong the serological duration of the VLP vaccine. This phenomenon contributes in providing complete protection against the FMDV challenge in guinea pigs and can be valuable in exploring novel nonreplicating vaccines and controlling FMD in endemic countries worldwide.
Collapse
Affiliation(s)
- Yuanlu Lu
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; College of Animal Science, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Jielin Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Luying Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Miaomiao Wang
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Haiyun Liu
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, Haidian Island, Haikou, 570228, PR China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| |
Collapse
|
35
|
Hoo WPY, Siak PY, In LLA. Overview of Current Immunotherapies Targeting Mutated KRAS Cancers. Curr Top Med Chem 2019; 19:2158-2175. [PMID: 31483231 DOI: 10.2174/1568026619666190904163524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The occurrence of somatic substitution mutations of the KRAS proto-oncogene is highly prevalent in certain cancer types, which often leads to constant activation of proliferative pathways and subsequent neoplastic transformation. It is often seen as a gateway mutation in carcinogenesis and has been commonly deemed as a predictive biomarker for poor prognosis and relapse when conventional chemotherapeutics are employed. Additionally, its mutational status also renders EGFR targeted therapies ineffective owing to its downstream location. Efforts to discover new approaches targeting this menacing culprit have been ongoing for years without much success, and with incidences of KRAS positive cancer patients being on the rise, researchers are now turning towards immunotherapies as the way forward. In this scoping review, recent immunotherapeutic developments and advances in both preclinical and clinical studies targeting K-ras directly or indirectly via its downstream signal transduction machinery will be discussed. Additionally, some of the challenges and limitations of various K-ras targeting immunotherapeutic approaches such as vaccines, adoptive T cell therapies, and checkpoint inhibitors against KRAS positive cancers will be deliberated.
Collapse
Affiliation(s)
- Winfrey Pui Yee Hoo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Lionel L A In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Zhao X, Long J, Liang F, Liu N, Sun Y, Xi Y. Dynamic profiles, biodistribution and integration evaluation after intramuscular/intravenous delivery of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in vaccinated normal rodent. J Nanobiotechnology 2019; 17:94. [PMID: 31492169 PMCID: PMC6729025 DOI: 10.1186/s12951-019-0528-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/28/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The persistence, biodistribution, and risk of integration into the host genome of any new therapeutic DNA vaccine must be established in preclinical studies. We previously developed the DNA vaccine pcDNA-CCOL2A1 encoding chicken type II collagen (CCII) for the treatment of rheumatoid arthritis (RA). In the present study, we characterized its dynamic profile, biodistribution, and potential for genomic DNA integration in normal vaccinated rodent. RESULTS A real-time quantitative PCR analysis (RT-qPCR) of animals administered a single dose of pcDNA-CCOL2A1 (300 μg/kg by intramuscular injection) showed that CCOL2A1 mRNA level in the blood peaked between 2 and 6 h post-immunization and then rapidly declined, and was undetectable between day 1-42. CCOL2A1 transcript was detected at the muscle injection site on days 3-14 post-immunization. Starting from day 14, the transcript was detected in the heart, liver, lung, and kidney but not in the spleen or thymus, and was expressed only in the lung on day 28. There was no CCOL2A1 mRNA present in the testes or ovaries at any time point. Non-invasive in vivo fluorescence imaging revealed CCII protein expression from 2 h up to day 10 and from 2 h up to day 35 after administration of pcDNA-CCOL2A1 via the intravenous and intramuscular routes, respectively; the protein had disappeared by day 42. Importantly, CCOL2A1 was not integrated into the host genome. CONCLUSIONS These results indicate that pcDNA-CCOL2A1 vaccine is rapidly cleared within a short period of time and is therefore safe, and merits further development as a therapeutic vaccine for RA treatment.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China.
| |
Collapse
|
37
|
Tondini E, Arakelian T, Oosterhuis K, Camps M, van Duikeren S, Han W, Arens R, Zondag G, van Bergen J, Ossendorp F. A poly-neoantigen DNA vaccine synergizes with PD-1 blockade to induce T cell-mediated tumor control. Oncoimmunology 2019; 8:1652539. [PMID: 31646082 PMCID: PMC6791440 DOI: 10.1080/2162402x.2019.1652539] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
The combination of immune-stimulating strategies has the potency to improve immunotherapy of cancer. Vaccination against neoepitopes derived from patient tumor material can generate tumor-specific T cell immunity, which could reinforce the efficacy of checkpoint inhibitor therapies such as anti-PD-1 treatment. DNA vaccination is a versatile platform that allows the inclusion of multiple neoantigen-coding sequences in a single formulation and therefore represents an ideal platform for neoantigen vaccination. We developed an anti-tumor vaccine based on a synthetic DNA vector designed to contain multiple cancer-specific epitopes in tandem. The DNA vector encoded a fusion gene consisting of three neoepitopes derived from the mouse colorectal tumor MC38 and their natural flanking sequences as 40 amino acid stretches. In addition, we incorporated as reporter epitopes the helper and CTL epitope sequences of ovalbumin. The poly-neoantigen DNA vaccine elicited T cell responses to all three neoantigens and induced functional CD8 and CD4 T cell responses to the reporter antigen ovalbumin after intradermal injection in mice. The DNA vaccine was effective in preventing outgrowth of B16 melanoma expressing ovalbumin in a prophylactic setting. Moreover, the combination of therapeutic DNA vaccination and anti-PD-1 treatment was synergistic in controlling MC38 tumor growth whereas individual treatments did not succeed. These data demonstrate the potential of DNA vaccination to target multiple neoepitopes in a single formulation and highlight the cooperation between vaccine-based and checkpoint blockade immunotherapies for the successful eradication of established tumors.
Collapse
Affiliation(s)
- Elena Tondini
- Dept. Immunohematology and Blood transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Tsolere Arakelian
- Dept. Immunohematology and Blood transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marcel Camps
- Dept. Immunohematology and Blood transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne van Duikeren
- Dept. Immunohematology and Blood transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Wanda Han
- Immunetune BV, Leiden, The Netherlands
| | - Ramon Arens
- Dept. Immunohematology and Blood transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Ferry Ossendorp
- Dept. Immunohematology and Blood transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Zhang Y, Lin S, Wang XY, Zhu G. Nanovaccines for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1559. [PMID: 31172659 PMCID: PMC7040494 DOI: 10.1002/wnan.1559] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022]
Abstract
The past few decades have witnessed the booming field of cancer immunotherapy. Cancer therapeutic vaccines, either alone or in combination with other immunotherapies such as adoptive cell therapy or immune checkpoint blockade therapy, are an attractive class of cancer immunotherapeutics. However, cancer vaccines have thus far shown suboptimal efficacy in the clinic. Nanomedicines offer unique opportunities to improve the efficacy of these vaccines. A variety of nanoplatforms have been investigated to deliver molecular or cellular or subcellular vaccines to target lymphoid tissues and cells, thereby promoting the potency and durability of anti-tumor immunity while reducing adverse side effects. In this article, we reviewed the key parameters and features of nanovaccines for cancer immunotherapy; we highlighted recent advances in the development of cancer nanovaccines based on synthetic nanocarriers, biogenic nanocarriers, as well as semi-biogenic nanocarriers; and we summarized newly emerging types of nanovaccines, such as those based on stimulator of interferon genes agonists, cancer neoantigens, mRNA vaccines, as well as artificial antigen-presenting cells. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Shuibin Lin
- Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Guizhi Zhu
- Center for Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
39
|
Valdés I, Lazo L, Hermida L, Guillén G, Gil L. Can Complementary Prime-Boost Immunization Strategies Be an Alternative and Promising Vaccine Approach Against Dengue Virus? Front Immunol 2019; 10:1956. [PMID: 31507591 PMCID: PMC6718459 DOI: 10.3389/fimmu.2019.01956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/02/2019] [Indexed: 12/27/2022] Open
Abstract
Dengue is one of the most important diseases transmitted by mosquitoes. Dengvaxia®, a vaccine registered in several countries, cannot be administered to non-immune individuals and children younger than 9 years old, due to safety reasons. There are two vaccine candidates in phase 3 efficacy trials, but their registration date is completely unknown at this moment. So, the development of new vaccines or vaccine strategies continues to be a priority for the WHO. This work reviews some complementary prime-boost immunization studies against important human pathogens. Additionally, it reviews the results obtained using this regimen of immunization against dengue virus as a potential alternative approach for finding a safe and efficient vaccine. Finally, the main elements associated with this strategy are also discussed. The generation of new strategies of vaccination against dengue virus, must be directed to reduce the risk of increasing viral load through sub-neutralizing antibodies and it must be also directed to induce a polyfunctional T cell response. Complementary prime-boost immunization strategies could emerge as an interesting approach to induce solid immunity or at least to reduce viral load after natural infection, avoiding severe dengue. Subunit vaccine could be safe and attractive antigens for this strategy, especially proteins including B, and T-cells epitopes for inducing humoral and cellular immune responses, which can play an important role controlling the disease.
Collapse
Affiliation(s)
- Iris Valdés
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Laura Lazo
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lisset Hermida
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lázaro Gil
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
40
|
Guevara M, Jilesen Z, Stojdl D, Persano S. Codelivery of mRNA with α-Galactosylceramide Using a New Lipopolyplex Formulation Induces a Strong Antitumor Response upon Intravenous Administration. ACS OMEGA 2019; 4:13015-13026. [PMID: 31460428 PMCID: PMC6705043 DOI: 10.1021/acsomega.9b00489] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/23/2019] [Indexed: 05/22/2023]
Abstract
Recently, the use of mRNA-based vaccines for cancer immunotherapy has gained growing attention. Several studies have shown that mRNA delivered in a vectorized format can generate a robust and efficient immune response. In this work, a new lipopolyplex vector (multi-LP), incorporating the immune adjuvant α-galactosylceramide (α-GalCer) and a multivalent cationic lipid, was proposed for the in vivo delivery of mRNA into antigen-presenting cells. We demonstrate that dendritic cells (DCs) can be targeted in vivo by intravenous administration of a α-GalCer-/mRNA-loaded multi-LP vector, without the need for its functionalization with cell-specific antibodies or ligands. The multi-LP nanoparticles loaded with a reporter mRNA efficiently led to high expression of the enhanced green fluorescence protein in DCs both in vitro and in vivo, exhibiting an intrinsic selectivity for DCs. Finally, the TRP2-mRNA/α-GalCer-based multi-LP vaccine induced a significant therapeutic effect against a highly malignant B16-F10 melanoma tumor. This study provides the first evidence that a combination of antigen-mRNA and α-GalCer can be used as an effective antitumor vaccine, inducing strong innate and adaptive immune responses.
Collapse
Affiliation(s)
- Maria
L. Guevara
- Children’s
Hospital of Eastern Ontario (CHEO) Research Institute, Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Zachary Jilesen
- Children’s
Hospital of Eastern Ontario (CHEO) Research Institute, Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - David Stojdl
- Children’s
Hospital of Eastern Ontario (CHEO) Research Institute, Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1N 6N5, Canada
- E-mail: (D.S.)
| | - Stefano Persano
- Children’s
Hospital of Eastern Ontario (CHEO) Research Institute, Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1N 6N5, Canada
- Istituto
Italiano di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
- E-mail: (S.P.)
| |
Collapse
|
41
|
A. Gómez L, A. Oñate A. Plasmid-Based DNA Vaccines. Plasmid 2019. [DOI: 10.5772/intechopen.76754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Gulla SK, Rao BR, Moku G, Jinka S, Nimmu NV, Khalid S, Patra CR, Chaudhuri A. In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles. Biomater Sci 2019; 7:773-788. [PMID: 30601510 DOI: 10.1039/c8bm01272e] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The clinical success of dendritic cell (DC)-based genetic immunization remains critically dependent on the availability of effective and safe nano-carriers for targeting antigen-encoded DNA vaccines to DCs, the most potent antigen-presenting cells in the human body in vivo. Recent studies revealed the efficacies of mannose receptor-mediated in vivo DC-targeted genetic immunization by liposomal DNA vaccine carriers containing both mannose-mimicking shikimoyl and transfection enhancing guanidinyl functionalities. However, to date, the efficacies of this approach have not been examined for metal-based nanoparticle DNA vaccine carriers. Herein, we report for the first time, the design, synthesis, physico-chemical characterization and bioactivities of gold nanoparticles covalently functionalized with a thiol ligand containing both shikimoyl and guanidinyl functionalities (Au-SGSH). We show that Au-SGSH nanoparticles can deliver DNA vaccines to mouse DCs under in vivo conditions. Subcutaneous administration of near infrared (NIR) dye-labeled Au-SGSH showed significant accumulation of the NIR dye in the DCs of the nearby lymph nodes compared to that for the non-targeting NIR-labeled Au-GSH nanoconjugate containing only a covalently tethered guanidinyl group, not the shikimoyl-functionality. Under prophylactic settings, in vivo immunization (s.c.) with the Au-SGSH-pCMV-MART1 nanoplex induced a long-lasting (180 days) immune response against murine melanoma. Notably, mannose receptor-mediated in vivo DC-targeted immunization (s.c.) with the Au-SGSH-MART1 nanoplex significantly inhibited established melanoma growth and increased the overall survivability of melanoma-bearing mice under therapeutic settings. The Au-SGSH nanoparticles reported herein have potential use for in vivo DC-targeted genetic immunization against cancer and infectious diseases.
Collapse
Affiliation(s)
- Suresh Kumar Gulla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Thalmensi J, Pliquet E, Liard C, Chamel G, Kreuz C, Bestetti T, Escande M, Kostrzak A, Pailhes-Jimenez AS, Bourges E, Julithe M, Bourre L, Keravel O, Clayette P, Huet T, Wain-Hobson S, Langlade-Demoyen P. A DNA telomerase vaccine for canine cancer immunotherapy. Oncotarget 2019; 10:3361-3372. [PMID: 31164958 PMCID: PMC6534364 DOI: 10.18632/oncotarget.26927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is highly expressed in more than 90% of canine cancer cells and low to absent in normal cells. Given that immune tolerance to telomerase is easily broken both naturally and experimentally, telomerase is an attractive tumor associated antigen for cancer immunotherapy. Indeed, therapeutic trials using human telomerase peptides have been performed. We have developed an immunogenic yet catalytically inactive human telomerase DNA construct that is in clinical trials with patients presenting solid tumors. Paralleling this human construct, we have developed a canine telomerase DNA vaccine, called pDUV5. When administered intradermally to mice combined with electrogene transfer, pDUV5 induced canine TERT specific cytotoxic T-cells as measured by IFN-γ ELISpot assay. Intradermal vaccination of healthy dogs with 400 μg of pDUV5 generated strong, broad and long lasting TERT specific cellular immune responses. In vitro immunization with cTERT peptides revealed the maintenance of cTERT specific T-cells in PBMCs from tumor bearing dogs showing that this repertoire was not depleted. This study highlights the potential of pDUV5 as a cancer vaccine and supports its evaluation for the treatment of spontaneous canine tumors.
Collapse
Affiliation(s)
| | | | | | | | - Christine Kreuz
- ImmunoPharmacology and Biosafety Lab, Bertin Pharma/CEA, Fontenay-aux-Roses 92265, France
| | | | | | | | | | | | | | | | | | - Pascal Clayette
- ImmunoPharmacology and Biosafety Lab, Bertin Pharma/CEA, Fontenay-aux-Roses 92265, France
| | | | - Simon Wain-Hobson
- Invectys, Paris BioPark, Paris 75013, France.,Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris 75015, France
| | - Pierre Langlade-Demoyen
- Invectys, Paris BioPark, Paris 75013, France.,Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris 75015, France
| |
Collapse
|
44
|
Kohnepoushi C, Nejati V, Delirezh N, Biparva P. Poly Lactic-co-Glycolic Acid Nanoparticles Containing Human Gastric Tumor Lysates as Antigen Delivery Vehicles for Dendritic Cell-Based Antitumor Immunotherapy. Immunol Invest 2019; 48:794-808. [DOI: 10.1080/08820139.2019.1610889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chia Kohnepoushi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Vahid Nejati
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Nowruz Delirezh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Pouria Biparva
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
45
|
Mahmoodi S, Nezafat N. In SilicoDesigning a Novel Multi-epitope DNA Vaccine against Anti-apoptotic Proteins in Tumor Cells. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666181127142214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Cancer therapy has been known as one of the most important challenges in the world. Various therapeutic methods such as cancer immunotherapy are used to eradicate tumor cells. Vaccines have an important role among different cancer immunotherapeutic approaches. In the field of vaccine production, bioinformatics approach is considered as a useful tool to design multi-epitope cancer vaccines, mainly for selecting immunodominant Cytotoxic T Lymphocytes (CTL) and Helper T Lymphocytes (HTL) epitopes.Objective:Generally, to design efficient multi-epitope cancer vaccines, Tumor-Specific Antigens (TSA) are targeted. In the context of DNA-based cancer vaccines, they contain genes that code tumor antigens and are delivered to host by different methods.Methods:In this study, the anti-apoptotic proteins (BCL2, BCL-X, survivin) that are over-expressed in different tumor cells were selected for CTL and HTL epitopes prediction through different servers such as RANKPEP, CTLpred, and BCPREDS.Results:Three regions from BCL2 and one region from BCL-X were selected as CTL epitopes and two segments from survivin were defined as HTL epitopes. In addition, β-defensin was used as a proper adjuvant to enhance vaccine efficacy. The aforesaid segments were joined together by appropriate linkers, and some important properties of designed vaccine such as antigenicity, allergenicity and physicochemical characteristics were determined by various bioinformatics servers.Conclusion:Based on the bioinformatics results, the physicochemical and immunological features showed that the designed vaccine construct can be used as an efficient cancer vaccine after its efficacy was confirmed by in vitro and in vivo immunological assays.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy. J Control Release 2018; 292:256-276. [PMID: 30312721 PMCID: PMC6355332 DOI: 10.1016/j.jconrel.2018.10.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
The development of therapeutic cancer vaccines as a means to generate immune reactivity against tumors has been explored since the early discovery of tumor-specific antigens by Georg Klein in the 1960s. However, challenges including weak immunogenicity, systemic toxicity, and off-target effects of cancer vaccines remain as barriers to their broad clinical translation. Advances in the design and implementation of biomaterials are now enabling enhanced efficacy and reduced toxicity of cancer vaccines by controlling the presentation and release of vaccine components to immune cells and their microenvironment. Here, we discuss the rational design and clinical status of several classes of cancer vaccines (including DNA, mRNA, peptide/protein, and cell-based vaccines) along with novel biomaterial-based delivery technologies that improve their safety and efficacy. Further, strategies for designing new platforms for personalized cancer vaccines are also considered.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
47
|
Marx M, Zumpe M, Troschke-Meurer S, Shah D, Lode HN, Siebert N. Co-expression of IL-15 enhances anti-neuroblastoma effectivity of a tyrosine hydroxylase-directed DNA vaccination in mice. PLoS One 2018; 13:e0207320. [PMID: 30452438 PMCID: PMC6242328 DOI: 10.1371/journal.pone.0207320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023] Open
Abstract
Long-term survival of high-risk neuroblastoma (NB) patients still remains under 50%. Here, we report the generation, in vitro characterization and anti-tumor effectivity of a new bicistronic xenogenic DNA vaccine encoding tyrosine hydroxylase (TH) that is highly expressed in NB tumors, and the immune stimulating cytokine interleukin 15 (IL-15) that induces cytotoxic but not regulatory T cells. The DNA sequences of TH linked to ubiquitin and of IL-15 were integrated into the bicistronic expression vector pIRES. Successful production and bioactivity of the vaccine-derived IL-15- and TH protein were shown by ELISA, bioactivity assay and western blot analysis. Further, DNA vaccine-driven gene transfer to the antigen presenting cells of Peyer’s patches using attenuated Salmonella typhimurium that served as oral delivery system was shown by immunofluorescence analysis. The anti-tumor effect of the generated vaccine was evaluated in a syngeneic mouse model (A/J mice, n = 12) after immunization with S. typhimurium (3× prior and 3× after tumor implantation). Importantly, TH-/IL-15-based DNA vaccination resulted in an enhanced tumor remission in 45.5% of mice compared to controls (TH (16.7%), IL-15 (0%)) and reduced spontaneous metastasis (30.0%) compared to controls (TH (63.6%), IL-15 (70.0%)). Interestingly, similar levels of tumor infiltrating CD8+ T cells were observed among all experimental groups. Finally, co-expression of IL-15 did not result in elevated regulatory T cell levels in tumor environment measured by flow cytometry. In conclusion, co-expression of the stimulatory cytokine IL-15 enhanced the NB-specific anti-tumor effectivity of a TH-directed vaccination in mice and may provide a novel immunological approach for NB patients.
Collapse
Affiliation(s)
- Madlen Marx
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
- * E-mail:
| | - Maxi Zumpe
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Diana Shah
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Holger N. Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
48
|
Enhanced anti-tumor therapeutic efficacy of DNA vaccine by fusing the E7 gene to BAFF in treating human papillomavirus-associated cancer. Oncotarget 2018; 8:33024-33036. [PMID: 28423693 PMCID: PMC5464847 DOI: 10.18632/oncotarget.16032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
B-cell-activating factor (BAFF) belongs to the tumor necrosis factor family that not only stimulates B and T cells but also counteracts immune tolerance. BAFF is also a type II membrane protein, which is secreted through the endoplasmic reticulum (ER)–Golgi apparatus pathway. Fusing an antigen to BAFF might enhance the presentation of major histocompatibility complex class I molecules. These characteristics represent an opportunity to enhance the antitumor effects of DNA vaccines. Therefore, we fused BAFF to human papillomavirus type 16 E7 as a DNA vaccine and evaluated its antitumor effects. We found that this vaccine increased E7-specific CD8+ T-cell immune responses, engendered major antitumor effects against E7-expressing tumors, and prolonged the survival of the immunized mice. Interestingly, vaccinating B-cell-deficient mice with BAFF–E7 revealed considerable E7-specific CD8+ T-cell immune responses, suggesting that B cells do not contribute to this immune response. Image analysis through confocal fluorescence microscopy revealed that fusing BAFF to E7 targeted the protein to the ER, but not BAFF lacking 128 N-terminal residues that generated a lower number of E7-specific CD8+ T cells in the vaccinated mice. Our data indicated that the ER-targeting characteristic of BAFF is the main factor improving the potency of DNA vaccines.
Collapse
|
49
|
Rezaee M, Gholami L, Gildeh MS, Ramezani M, Kazemi Oskuee R. Charge reduction: an efficient strategy to reduce toxicity and increase the transfection efficiency of high molecular weight polyethylenimine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Men K, Huang R, Zhang X, Zhang R, Zhang Y, Peng Y, Tong R, Yang L, Wei Y, Duan X. Delivery of interleukin-22 binding protein (IL-22BP) gene by cationic micelle for colon cancer gene therapy. RSC Adv 2018; 8:16537-16548. [PMID: 35540501 PMCID: PMC9080254 DOI: 10.1039/c8ra02580k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/23/2018] [Indexed: 02/05/2023] Open
Abstract
Gene therapy has provided an alternative strategy for cancer therapy. As an important cytokine, interleukin-22 (IL-22) is not only critical in reinforcing innate immune defenses and tissue regeneration, but also involved in the initial establishment of tumors. A soluble-secreted receptor of the cytokine IL-22, IL-22 binding protein (IL-22BP), binds IL-22 and prevents its binding to the functional transmembrane receptor IL-22R1 complex, inhibiting IL-22-based intracellular cancer proliferation signal. In this work, a novel IL-22BP-based cancer gene therapy strategy was reported for the first time. It was established by delivering IL-22BP gene with a newly developed non-viral gene vector DMP. The DMP cationic micelles were prepared by modifying monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) with DOTAP lipid through self-assembling. The anti-cancer efficacy of the DMP/IL-22BP complex was studied on a colon cancer model by intraperitoneal administration. Our results demonstrated that the secretory expressed IL-22BP cytokine effectively inhibited cancer growth both in vitro and in vivo. Multiple anti-cancer mechanisms including IL-22 blocking, apoptosis inducing, lymphocyte infiltration and angiogenesis inhibition were indicated to be involved while no pathology changes were observed in healthy tissues. These results suggest the DMP/IL-22BP complex to be a potential candidate for cancer gene therapy. Cationic DMP micelle delivered interleukin-22BP gene efficiently inhibits colon carcinoma growth, providing a novel strategy for cancer gene therapy.![]()
Collapse
|