1
|
Raza A, Li Y, Rizwan HM, Khan A, Peng Y, Guo C, Hu Z. Harnessing light-harvesting chlorophyll a/b-binding proteins for multiple abiotic stress tolerance in Chlamydomonas reinhardtii: Insights from genomic and physiological analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14653. [PMID: 39663819 DOI: 10.1111/ppl.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Light-harvesting chlorophyll a/b-binding proteins (LHC) of photosystem II perform key functions in various processes, e.g., photosynthesis, development, and abiotic stress responses. Nonetheless, comprehensive genome-wide investigation of LHC family genes (CrLHCs) has not been well-reported in single-cell alga (Chlamydomonas reinhardtii). Here, we discovered 61 putative CrLHC genes in the C. reinhardtii genome and observed that most genes demonstrate stable exon-intron and motif configurations. We predicted five phytohormones- and six abiotic stress-interrelated cis-regulatory elements in promoter regions of CrLHC. Likewise, 19 miRNAs targeting 42 CrLHC genes from 16 unique families were discovered. Besides, we identified 400 transcription factors from 13 families, including ERF, GATA, CPP, bZIP, C3H, MYB, SBP, Dof, bHLH, C2H2, G2-like, etc. Protein-protein interactions and 3D structures provided insight into CrLHC proteins. Gene ontology and KEGG-based enrichment advocated their role in light responses, photosynthesis, and energy metabolisms. Expression analysis highlighted the shared and unique roles of many CrLHC genes against different abiotic stresses (UV-C, green light, heat, nitric oxide, cadmium, nitrogen starvation, and salinity). Under salinity stress, antioxidant enzyme activity, reactive oxygen species markers, photosynthesis-related traits and pigments were significantly affected. Briefly, this comprehensive genomic and physiological study shed light on the impact of CrLHC genes in abiotic stress tolerance and set the path for future genetic engineering experiments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yiran Li
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hafiz Muhammad Rizwan
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Asadullah Khan
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuqi Peng
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chunli Guo
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Lihanova Y, Nagel R, Jakob T, Sasso S. Characterization of activating cis-regulatory elements from the histone genes of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:525-539. [PMID: 38693717 DOI: 10.1111/tpj.16781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Regulation of gene expression in eukaryotes is controlled by cis-regulatory modules (CRMs). A major class of CRMs are enhancers which are composed of activating cis-regulatory elements (CREs) responsible for upregulating transcription. To date, most enhancers and activating CREs have been studied in angiosperms; in contrast, our knowledge about these key regulators of gene expression in green algae is limited. In this study, we aimed at characterizing putative activating CREs/CRMs from the histone genes of the unicellular model alga Chlamydomonas reinhardtii. To test the activity of four candidates, reporter constructs consisting of a tetramerized CRE, an established promoter, and a gene for the mCerulean3 fluorescent protein were incorporated into the nuclear genome of C. reinhardtii, and their activity was quantified by flow cytometry. Two tested candidates, Eupstr and Ehist cons, significantly upregulated gene expression and were characterized in detail. Eupstr, which originates from highly expressed genes of C. reinhardtii, is an orientation-independent CRE capable of activating both the RBCS2 and β2-tubulin promoters. Ehist cons, which is a CRM from histone genes of angiosperms, upregulates the β2-tubulin promoter in C. reinhardtii over a distance of at least 1.5 kb. The octamer motif present in Ehist cons was identified in C. reinhardtii and the related green algae Chlamydomonas incerta, Chlamydomonas schloesseri, and Edaphochlamys debaryana, demonstrating its high evolutionary conservation. The results of this investigation expand our knowledge about the regulation of gene expression in green algae. Furthermore, the characterized activating CREs/CRMs can be applied as valuable genetic tools.
Collapse
Affiliation(s)
- Yuliia Lihanova
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Raimund Nagel
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Torsten Jakob
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Severin Sasso
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Milito A, Aschern M, McQuillan JL, Yang JS. Challenges and advances towards the rational design of microalgal synthetic promoters in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3833-3850. [PMID: 37025006 DOI: 10.1093/jxb/erad100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Microalgae hold enormous potential to provide a safe and sustainable source of high-value compounds, acting as carbon-fixing biofactories that could help to mitigate rapidly progressing climate change. Bioengineering microalgal strains will be key to optimizing and modifying their metabolic outputs, and to render them competitive with established industrial biotechnology hosts, such as bacteria or yeast. To achieve this, precise and tuneable control over transgene expression will be essential, which would require the development and rational design of synthetic promoters as a key strategy. Among green microalgae, Chlamydomonas reinhardtii represents the reference species for bioengineering and synthetic biology; however, the repertoire of functional synthetic promoters for this species, and for microalgae generally, is limited in comparison to other commercial chassis, emphasizing the need to expand the current microalgal gene expression toolbox. Here, we discuss state-of-the-art promoter analyses, and highlight areas of research required to advance synthetic promoter development in C. reinhardtii. In particular, we exemplify high-throughput studies performed in other model systems that could be applicable to microalgae, and propose novel approaches to interrogating algal promoters. We lastly outline the major limitations hindering microalgal promoter development, while providing novel suggestions and perspectives for how to overcome them.
Collapse
Affiliation(s)
- Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
5
|
Fei X, Li P, Li X, Deng X. Low-Temperature- and Phosphate Deficiency-Responsive Elements Control DGTT3 Expression inChlamydomonas reinhardtii. J Eukaryot Microbiol 2017; 65:117-126. [DOI: 10.1111/jeu.12444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Xiaowen Fei
- School of Science; Hainan Medical College; Haikou 571101 China
| | - Ping Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology; Chinese Academy of Tropical Agricultural Science; Haikou 571101 China
| | - Xinghan Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology; Chinese Academy of Tropical Agricultural Science; Haikou 571101 China
| | - Xiaodong Deng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology; Chinese Academy of Tropical Agricultural Science; Haikou 571101 China
| |
Collapse
|
6
|
Olsson S, Penacho V, Puente-Sánchez F, Díaz S, Gonzalez-Pastor JE, Aguilera A. Horizontal Gene Transfer of Phytochelatin Synthases from Bacteria to Extremophilic Green Algae. MICROBIAL ECOLOGY 2017; 73:50-60. [PMID: 27592346 DOI: 10.1007/s00248-016-0848-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Transcriptomic sequencing together with bioinformatic analyses and an automated annotation process led us to identify novel phytochelatin synthase (PCS) genes from two extremophilic green algae (Chlamydomonas acidophila and Dunaliella acidophila). These genes are of intermediate length compared to known PCS genes from eukaryotes and PCS-like genes from prokaryotes. A detailed phylogenetic analysis gives new insight into the complicated evolutionary history of PCS genes and provides evidence for multiple horizontal gene transfer events from bacteria to eukaryotes within the gene family. A separate subgroup containing PCS-like genes within the PCS gene family is not supported since the PCS genes are monophyletic only when the PCS-like genes are included. The presence and functionality of the novel genes in the organisms were verified by genomic sequencing and qRT-PCR. Furthermore, the novel PCS gene in Chlamydomonas acidophila showed very strong induction by cadmium. Cloning and expression of the gene in Escherichia coli clearly improves its cadmium resistance. The gene in Dunaliella was not induced, most likely due to gene duplication.
Collapse
Affiliation(s)
- Sanna Olsson
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland.
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| | - Vanessa Penacho
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
- Bioarray, S.L., Parque Científico y Empresarial de la UMH. Edificio Quorum III, Avenida de la Universidad s/n, 03202, Elche, Alicante, Spain
| | - Fernando Puente-Sánchez
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Silvia Díaz
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense (UCM), Madrid, Spain
| | | | - Angeles Aguilera
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| |
Collapse
|
7
|
Deng X, Yang J, Wu X, Li Y, Fei X. A C2H2 zinc finger protein FEMU2 is required for fox1 expression in Chlamydomonas reinhardtii. PLoS One 2014; 9:e112977. [PMID: 25485540 PMCID: PMC4259311 DOI: 10.1371/journal.pone.0112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/17/2014] [Indexed: 02/01/2023] Open
Abstract
Chlamydomonas reinhardtii fox1 gene encodes a ferroxidase that is involved in cellular Fe uptake and highly induced during Fe deficient conditions. In an effort to identify fox1 promoter regulatory elements, an insertional library was generated in a transgenic Chlamydomonas strain (2A38) harboring an arylsulfatase (ARS) reporter gene driven by the fox1 promoter. Mutants with a defective response to low iron conditions were selected for further study. Among these, a strain containing a disrupted femu2 gene was identified. Activation of the fox1 promoter by the femu2 gene product was confirmed by silencing the femu2 gene using RNA interference. In three femu2 RNAi transgenic lines (IR3, IR6, and IR7), ARS reporter gene activities declined by 84.3%, 86.4%, and 88.8%, respectively under Fe deficient conditions. Furthermore, RT-PCR analysis of both the femu2 mutant and the RNAi transgenic lines showed significantly decreased transcript abundance of the endogenous fox1 gene under Fe deficient conditions. Amino acid sequence analysis of the femu2 gene product identified three potential C2H2 zinc finger (ZF) motifs and a nuclear localization study suggests that FEMU2 is localized to the nucleus. In addition, a potential FEMU2 binding site ((G/T)TTGG(G/T)(G/T)T) was identified using PCR-mediated random binding site selection. Taken together, this evidence suggests that FEMU2 is involved in up-regulation of the fox1 gene in Fe deficient cells.
Collapse
Affiliation(s)
- Xiaodong Deng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Jinghao Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Xiaoxia Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - YaJun Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Xiaowen Fei
- School of Science, Hainan Medical College, Haikou, 571101, China
| |
Collapse
|
8
|
Yoshinaga R, Niwa-Kubota M, Matsui H, Matsuda Y. Characterization of iron-responsive promoters in the marine diatom Phaeodactylum tricornutum. Mar Genomics 2014; 16:55-62. [PMID: 24530214 DOI: 10.1016/j.margen.2014.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/24/2013] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
It is well established that iron is one of the major constraints of primary productivity of marine diatoms in world oceans. In the present study, changes in the transcript levels of the 20 iron related genes were profiled in the marine diatom Phaeodactylum tricornutum during an early stage of acclimation from iron replete to iron-limited conditions. The results clearly showed that the profiles differ depending on genes, suggesting the occurrence of several modes of iron-responsive regulation at the transcriptional level. Upstream DNA sequences of iron starvation induced protein1 (Isi1), ferrichrome binding protein1 (FBP1), and flavodoxin (Fld) genes were isolated, fused with the GUS reporter gene, uidA, and transformed into P. tricornutum. Obtained transformants were subjected to the GUS reporter assay and the result clearly revealed that the GUS activity of all transformants was significantly increased upon iron limitation. Iron responsive Cis-elements in each promoter region were determined by the promoter truncation technique, demonstrating the occurrence of the critical iron-responsive regulatory regions of about 30bp in the promoter regions of three genes, Isi1, FBP1, and Fld. Interestingly, these sequences were similar with each other revealing two conserved motifs, A; A(A/C)G(G/C)C(G/-)C(A/G)TG; and B; CACGTG(T/C)C, which are homologous to the iron responsive Cis-element in the green alga, Chlamydomonas reinhardtii. The impairment of the motif B in the Isi1 promoter resulted in the loss of iron response and the core regulatory region of the FBP1 promoter conferred an iron response on the constitutive cytomegalovirus promoter, PCMV, indicating that these conserved promoter sequences are iron-responsive elements. Finally, the inductive regulation of these promoters under iron-limited conditions was dissipated specifically by 5% CO2, strongly suggesting the participation of CO2 in the transcriptional regulation of the iron-related gene promoters.
Collapse
Affiliation(s)
- Ryo Yoshinaga
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Megumi Niwa-Kubota
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hiroaki Matsui
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
9
|
Glaesener AG, Merchant SS, Blaby-Haas CE. Iron economy in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2013; 4:337. [PMID: 24032036 PMCID: PMC3759009 DOI: 10.3389/fpls.2013.00337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/09/2013] [Indexed: 05/05/2023]
Abstract
While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance.
Collapse
Affiliation(s)
- Anne G. Glaesener
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of CaliforniaLos Angeles, CA, USA
| | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- *Correspondence: Crysten E. Blaby-Haas, Department of Chemistry and Biochemistry, University of California, Box 951569, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA e-mail:
| |
Collapse
|
10
|
Blaby-Haas CE, Merchant SS. Iron sparing and recycling in a compartmentalized cell. Curr Opin Microbiol 2013; 16:677-85. [PMID: 23962818 DOI: 10.1016/j.mib.2013.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/18/2013] [Accepted: 07/29/2013] [Indexed: 12/31/2022]
Abstract
This review focuses on economizing, prioritizing and recycling iron in Chlamydomonas, a reference organism for discovering mechanisms of acclimation to poor iron nutrition in the plant lineage. The metabolic flexibility of Chlamydomonas offers a unique opportunity to distinguish the impact of iron nutrition on photosynthetic versus respiratory metabolism, and the contribution of subcellular compartments to iron storage and mobilization. Mechanisms of iron sparing include down regulation of protein abundance by transcript reduction or protein degradation. Two well-studied examples of hierarchical iron allocation are the maintenance of FeSOD in the plastid and heterotrophic metabolism in acetate-grown cells at the expense of photosynthetic metabolism. The latter implicates the existence of a pathway for inter-compartment iron recycling when access to iron becomes limiting.
Collapse
Affiliation(s)
- Crysten E Blaby-Haas
- University of California, Los Angeles, Box 951569, Los Angeles, CA 90095-1569, USA.
| | | |
Collapse
|
11
|
Urzica EI, Casero D, Yamasaki H, Hsieh SI, Adler LN, Karpowicz SJ, Blaby-Haas CE, Clarke SG, Loo JA, Pellegrini M, Merchant SS. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. THE PLANT CELL 2012; 24:3921-48. [PMID: 23043051 PMCID: PMC3517228 DOI: 10.1105/tpc.112.102491] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 05/03/2023]
Abstract
We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, Vitamin C 2 (VTC2), monodehydroascorbate reductase 1 (MDAR1), and conserved in the green lineage and diatoms 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron.
Collapse
Affiliation(s)
- Eugen I. Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Hiroaki Yamasaki
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Scott I. Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Lital N. Adler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Steven J. Karpowicz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| |
Collapse
|