1
|
Ambrin G, Cai S, Singh BR. Critical analysis in the advancement of cell-based assays for botulinum neurotoxin. Crit Rev Microbiol 2023; 49:1-17. [PMID: 35212259 DOI: 10.1080/1040841x.2022.2035315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study on botulinum neurotoxins (BoNTs) has rapidly evolved for their structure and functions as opposed to them being poisons or cures. Since their discoveries, the scientific community has come a long way in understanding BoNTs' structure and biological activity. Given its current application as a tool for understanding neurocellular activity and as a drug against over 800 neurological disorders, relevant and sensitive assays have become critical for biochemical, physiological, and pharmacological studies. The natural entry of the toxin being ingestion, it has also become important to examine its mechanism while crossing the epithelial cell barrier. Several techniques and methodologies have been developed, for its entry, pharmacokinetics, and biological activity for identification, and drug efficacy both in vivo and in vitro conditions. However, each of them presents its own challenges. The cell-based assay is a platform that exceeds the sensitivity of mouse bioassay while encompassing all the steps of intoxication including cell binding, transcytosis, endocytosis, translocation and proteolytic activity. In this article we review in detail both the neuronal and nonneuronal based cellular interaction of BoNT involving its transportation, and interaction with the targeted cells, and intracellular activities.
Collapse
Affiliation(s)
- Ghuncha Ambrin
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, MA, USA.,Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Bal Ram Singh
- Institute of Advanced Sciences, Botulinum Research Center, Dartmouth, MA, USA
| |
Collapse
|
2
|
An JM, Shahriar SMS, Lee DY, Hwang SR, Lee YK. Pore Size-Dependent Stereoscopic Hydrogels Enhance the Therapeutic Efficiency of Botulinum Toxin for the Treatment of Nerve-Related Diseases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19139-19153. [PMID: 35452222 DOI: 10.1021/acsami.2c01738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Botulinum toxin (BoNT) is a major neurotherapeutic protein that has been used at low doses for diverse pharmacological applications. However, the pleiotropic effect of BoNT depends on multiple periodic injections owing to its rapid elimination profile, short-term therapeutic effect, and high mortality rate when administered at high doses. In addition to low patient compliance, these drawbacks represent the significant challenges that limit the further clinical use of BoNT. This study developed a new hydrogel-based single dosage form of BoNT by employing a one-step cross-linking chemistry. Its controlled porous structures and composition facilitated uniform drug distribution inside the hydrogel and controllable release of BoNT mediated by slow diffusion. A single dose remained stable for at least 2.5 months and showed sustained effect for at least 20 weeks, meeting the requirements for a single-dose form of BoNT. Additionally, this dosage form was evaluated as safe from all aspects of toxicology. This delivery system resulted in a 100% survival rate after administering a BoNT dose of 30 units, while a dose of more than 5 units of naked BoNT caused a 100% mortality rate within a few days. Overall, this strategy could provide patients with the first single-dose treatment option of BoNT and improve their quality of life.
Collapse
Affiliation(s)
- Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
| | - S M Shatil Shahriar
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5940, United States
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
| |
Collapse
|
3
|
Suzuki T. Genetic sequence analysis and characterization of bioactive compounds in mushroom-forming fungi. Biosci Biotechnol Biochem 2021; 85:8-12. [PMID: 33577662 DOI: 10.1093/bbb/zbaa067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 11/12/2022]
Abstract
Mushroom-forming fungi produce unique bioactive compounds that have potential applications as medicines, supplements, and agrochemicals. Thus, it is necessary to clarify the biosynthetic pathways of these compounds using genome and transcriptome analyses. This review introduces some of our research on bioactive compounds isolated from mushrooms, as well as genetic analysis with next-generation sequencing.
Collapse
Affiliation(s)
- Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
4
|
Harris RA, Anniballi F, Austin JW. Adult Intestinal Toxemia Botulism. Toxins (Basel) 2020; 12:E81. [PMID: 31991691 PMCID: PMC7076759 DOI: 10.3390/toxins12020081] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
Intoxication with botulinum neurotoxin can occur through various routes. Foodborne botulism results after consumption of food in which botulinum neurotoxin-producing clostridia (i.e., Clostridium botulinum or strains of Clostridiumbutyricum type E or Clostridiumbaratii type F) have replicated and produced botulinum neurotoxin. Infection of a wound with C. botulinum and in situ production of botulinum neurotoxin leads to wound botulism. Colonization of the intestine by neurotoxigenic clostridia, with consequent production of botulinum toxin in the intestine, leads to intestinal toxemia botulism. When this occurs in an infant, it is referred to as infant botulism, whereas in adults or children over 1 year of age, it is intestinal colonization botulism. Predisposing factors for intestinal colonization in children or adults include previous bowel or gastric surgery, anatomical bowel abnormalities, Crohn's disease, inflammatory bowel disease, antimicrobial therapy, or foodborne botulism. Intestinal colonization botulism is confirmed by detection of botulinum toxin in serum and/or stool, or isolation of neurotoxigenic clostridia from the stool, without finding a toxic food. Shedding of neurotoxigenic clostridia in the stool may occur for a period of several weeks. Adult intestinal botulism occurs as isolated cases, and may go undiagnosed, contributing to the low reported incidence of this rare disease.
Collapse
Affiliation(s)
- Richard A. Harris
- Botulism Reference Service for Canada, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Ottawa, ON K1A 0K9, Canada;
| | - Fabrizio Anniballi
- National Reference Centre for Botulism, Microbiological Foodborne Hazard Unit, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, viale Regina Elena, 29900161 Rome, Italy;
| | - John W. Austin
- Botulism Reference Service for Canada, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Ottawa, ON K1A 0K9, Canada;
| |
Collapse
|
5
|
Ismaya WT, Efthyani A, Retnoningrum DS, Lai X, Dijkstra BW, Tjandrawinata RR, Rachmawati H. Study of response of Swiss Webster mice to light subunit of mushroom tyrosinase. Biotech Histochem 2017; 92:411-416. [PMID: 28800260 DOI: 10.1080/10520295.2017.1339912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The light subunit of mushroom, Agaricus bisporus, tyrosinase (LSMT), has been identified as an extrinsic component of the enzyme. Its function is unknown, but it can cross an epithelial cell layer, which suggests that it can be absorbed by the intestine. A similar capability has been demonstrated for the HA-33 component of the progenitor toxin from Clostridium botulinum, which is the closest structural homolog of LSMT. Unlike HA-33, LSMT appears to be non-immunogenic as shown by preliminary tests in Swiss Webster mice. We investigated the immunogenicity and histopathology of LSMT in mice to determine its safety in vivo. LSMT did not evoke generation of antibodies after prolonged periods of intraperitoneal administration. Histopathological observations confirmed the absence of responses in organs after twelve weekly administrations of LSMT. We found that LSMT is not toxic and is less immunogenic than the C. botulinum HA-33 protein, which supports further research and development for pharmaceutical application.
Collapse
Affiliation(s)
- W T Ismaya
- a Dexa Laboratories of Biomolecular Sciences , JABABEKA II Industrial Estate , Cikarang
| | - A Efthyani
- b Research group of Pharmaceutics, School of Pharmacy , Bandung Institute of Technology , Bandung
| | - D S Retnoningrum
- c Research group of Biotechnology, School of Pharmacy , Bandung Institute of Technology , Bandung , Indonesia
| | - X Lai
- d European Synchrotron Radiation Facility , Grenoble , France
| | - B W Dijkstra
- e Laboratory of Biophysical Chemistry , University of Groningen , Groningen , The Netherlands
| | - R R Tjandrawinata
- a Dexa Laboratories of Biomolecular Sciences , JABABEKA II Industrial Estate , Cikarang
| | - H Rachmawati
- b Research group of Pharmaceutics, School of Pharmacy , Bandung Institute of Technology , Bandung.,f Research Center for Nanosciences and Nanotechnology , Bandung Institute of Technology , Bandung , Indonesia
| |
Collapse
|
6
|
Lam TI, Tam CC, Stanker LH, Cheng LW. Probiotic Microorganisms Inhibit Epithelial Cell Internalization of Botulinum Neurotoxin Serotype A. Toxins (Basel) 2016; 8:toxins8120377. [PMID: 27999281 PMCID: PMC5198571 DOI: 10.3390/toxins8120377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/13/2016] [Indexed: 01/02/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins known to man and are threats to public health and safety. Previous work from our laboratory showed that both BoNT serotype A complex and holotoxin can bind and transit through the intestinal epithelia to disseminate in the blood. The timing of BoNT/A toxin internalization was shown to be comparable in both the Caco-2 in vitro cell culture and in the oral mouse intoxication models. Probiotic microorganisms have been extensively studied for their beneficial effects in not only maintaining the normal gut mucosa but also protection from allergens, pathogens, and toxins. In this study, we evaluate whether probiotic microorganisms will block BoNT/A uptake in the in vitro cell culture system using Caco-2 cells. Several probiotics tested (Saccharomyces boulardii, Lactobacillus acidophilus, Lactobacillus rhamnosus LGG, and Lactobacillus reuteri) blocked BoNT/A uptake in a dose-dependent manner whereas a non-probiotic strain of Escherichia coli did not. We also showed that inhibition of BoNT/A uptake was not due to the degradation of BoNT/A nor by sequestration of toxin via binding to probiotics. These results show for the first time that probiotic treatment can inhibit BoNT/A binding and internalization in vitro and may lead to the development of new therapies.
Collapse
Affiliation(s)
- Tina I Lam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Larry H Stanker
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
7
|
Ismaya WT, Yunita, Damayanti S, Wijaya C, Tjandrawinata RR, Retnoningrum DS, Rachmawati H. In Silico Study to Develop a Lectin-Like Protein from Mushroom Agaricus bisporus for Pharmaceutical Application. Sci Pharm 2016; 84:203-17. [PMID: 27110510 PMCID: PMC4839548 DOI: 10.3797/scipharm.isp.2015.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023] Open
Abstract
A lectin-like protein of unknown function designated as LSMT was recently discovered in the edible mushroom Agaricus bisporus. The protein shares high structural similarity to HA-33 from Clostridium botulinum (HA33) and Ricin-B-like lectin from the mushroom Clitocybe nebularis (CNL), which have been developed as drug carrier and anti-cancer, respectively. These homologous proteins display the ability to penetrate the intestinal epithelial cell monolayer, and are beneficial for oral administration. As the characteristics of LSMT are unknown, a structural study in silico was performed to assess its potential pharmaceutical application. The study suggested potential binding to target ligands such as HA-33 and CNL although the nature, specificity, capacity, mode, and strength may differ. Further molecular docking experiments suggest that interactions between the LSMT and tested ligands may take place. This finding indicates the possible use of the LSMT protein, initiating new research on its use for pharmaceutical purposes.
Collapse
Affiliation(s)
- Wangsa Tirta Ismaya
- Dexa Laboratories of Biomolecular Sciences, Industri Selatan V, Blok PP No. 7, Kawasan Industri, Jababeka II, Cikarang 17550, Indonesia
| | - Yunita
- Research group of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
| | - Sophi Damayanti
- Research group of Pharmacochemistry, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
| | - Caroline Wijaya
- Dexa Laboratories of Biomolecular Sciences, Industri Selatan V, Blok PP No. 7, Kawasan Industri, Jababeka II, Cikarang 17550, Indonesia
| | - Raymond R Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, Industri Selatan V, Blok PP No. 7, Kawasan Industri, Jababeka II, Cikarang 17550, Indonesia
| | - Debbie Sofie Retnoningrum
- Research group of Biotechnology, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
| | - Heni Rachmawati
- Research group of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
| |
Collapse
|
8
|
Lam TI, Stanker LH, Lee K, Jin R, Cheng LW. Translocation of botulinum neurotoxin serotype A and associated proteins across the intestinal epithelia. Cell Microbiol 2015; 17:1133-43. [PMID: 25640773 PMCID: PMC4610714 DOI: 10.1111/cmi.12424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins. Botulinum neurotoxins associate with neurotoxin-associated proteins (NAPs) forming large complexes that are protected from the harsh environment of the gastrointestinal tract. However, it is still unclear how BoNT complexes as large as 900 kDa traverse the epithelial barrier and what role NAPs play in toxin translocation. In this study, we examined the transit of BoNT serotype A (BoNT/A) holotoxin, complex and recombinantly purified NAP complex through cultured and polarized Caco-2 cells and, for the first time, in the small mouse intestine. Botulinum neurotoxin serotype A and NAPs in the toxin complex were detectable inside intestinal cells beginning at 2 h post intoxication. Appearance of the BoNT/A holotoxin signal was slower, with detection starting at 4-6 h. This indicated that the holotoxin alone was sufficient for entry but the presence of NAPs enhanced the rate of entry. Botulinum neurotoxin serotype A detection peaked at approximately 6 and 8 h for complex and holotoxin, respectively, and thereafter began to disperse with some toxin remaining in the epithelia after 24 h. Purified HA complexes alone were also internalized and followed a similar time course to that of BoNT/A complex internalization. However, recombinant HA complexes did not enhance BoNT/A holotoxin entry in the absence of a physical link with BoNT/A. We propose a model for BoNT/A toxin complex translocation whereby toxin complex entry is facilitated by NAPs in a receptor-mediated mechanism. Understanding the intestinal uptake of BoNT complexes will aid the development of new measures to prevent or treat oral intoxications.
Collapse
Affiliation(s)
- Tina I Lam
- Foodborne Toxin Detection and Prevention Unit, Western Regional Research Center, U.S. Department of Agriculture -Agricultural Research Service, Albany, CA, 94710, USA
| | - Larry H Stanker
- Foodborne Toxin Detection and Prevention Unit, Western Regional Research Center, U.S. Department of Agriculture -Agricultural Research Service, Albany, CA, 94710, USA
| | - Kwangkook Lee
- Physiology & Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Rongsheng Jin
- Physiology & Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Unit, Western Regional Research Center, U.S. Department of Agriculture -Agricultural Research Service, Albany, CA, 94710, USA
| |
Collapse
|
9
|
Guo J, Xu C, Li X, Chen S. A simple, rapid and sensitive FRET assay for botulinum neurotoxin serotype B detection. PLoS One 2014; 9:e114124. [PMID: 25437190 PMCID: PMC4250190 DOI: 10.1371/journal.pone.0114124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), the most potent naturally-occurring neurotoxins known to humans, comprise seven distinct serotypes (BoNT/A-G), each of which exhibits unique substrate specificity. Many methods have been developed for BoNT detection, in particular for BoNT/A, with various complexity and sensitivity, while substrate based FRET assay is considered as the most widely used approach due to its simplicity and sensitivity. In this study, we designed a vesicle-associated membrane protein 2 (VAMP2) based FRET assay based on the understanding of the VAMP2 and light chain/B (LC/B) interactions in our previous studies. The current design constituted the shortest peptide, VAMP2 (63–85), with FRET dyes (EDAN and Dabcyl) labelled at position 76 and 85, respectively, which showed minimal effect on VAMP2 substrate catalysis by LC/B and therefore enhanced the sensitivity of the assay. The FRET peptide, designated as FVP-B, was specific to LC/B, with a detection sensitivity as low as ∼20 pM in 2 h. Importantly, FVP-B showed the potential to be scaled up and used in high throughput screening of LC/B inhibitor. The currently developed FRET assay is one of the most economic and rapid FRET assays for LC/B detection.
Collapse
Affiliation(s)
- Jiubiao Guo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Ci Xu
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong
| | - Xuechen Li
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (XL); (SC)
| | - Sheng Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
- * E-mail: (XL); (SC)
| |
Collapse
|
10
|
Vazquez-Cintron EJ, Vakulenko M, Band PA, Stanker LH, Johnson EA, Ichtchenko K. Atoxic derivative of botulinum neurotoxin A as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. PLoS One 2014; 9:e85517. [PMID: 24465585 PMCID: PMC3899041 DOI: 10.1371/journal.pone.0085517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/27/2013] [Indexed: 12/31/2022] Open
Abstract
We have previously described genetic constructs and expression systems that enable facile production of recombinant derivatives of botulinum neurotoxins (BoNTs) that retain the structural and trafficking properties of wt BoNTs. In this report we describe the properties of one such derivative, BoNT/A ad, which was rendered atoxic by introducing two amino acid mutations to the light chain (LC) of wt BoNT/A, and which is being developed as a molecular vehicle for delivering drugs to the neuronal cytoplasm. The neuronal binding, internalization, and intracellular trafficking of BoNT/A ad in primary hippocampal cultures was evaluated using three complimentary techniques: flow cytometry, immunohistochemistry, and Western blotting. Neuronal binding of BoNT ad was significantly increased when neurons were incubated in depolarizing medium. Flow cytometry demonstrated that BoNT/A ad internalized into neurons but not glia. After 24 hours, the majority of the neuron-bound BoNT/A ad became internalized, as determined by its resistance to pronase E-induced proteolytic degradation of proteins associated with the plasma membrane of intact cells. Significant amounts of the atoxic LC accumulated in a Triton X-100-extractable fraction of the neurons, and persisted as such for at least 11 days with no evidence of degradation. Immunocytochemical analysis demonstrated that the LC of BoNT/A ad was translocated to the neuronal cytoplasm after uptake and was specifically targeted to SNARE proteins. The atoxic LC consistently co-localized with synaptic markers SNAP-25 and VAMP-2, but was rarely co-localized with markers for early or late endosomes. These data demonstrate that BoNT/A ad mimics the trafficking properties of wt BoNT/A, confirming that our platform for designing and expressing BoNT derivatives provides an accessible system for elucidating the molecular details of BoNT trafficking, and can potentially be used to address multiple medical and biodefense needs.
Collapse
Affiliation(s)
- Edwin J. Vazquez-Cintron
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Maksim Vakulenko
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Philip A. Band
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
- Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, New York, United States of America
| | - Larry H. Stanker
- USDA, Agriculture Research Service, Albany, California, United States of America
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Efficacy of Clostridium botulinum types C and D toxoid vaccination in Danish cows. Anaerobe 2013; 23:97-101. [DOI: 10.1016/j.anaerobe.2013.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022]
|
12
|
Sayadmanesh A, Ebrahimi F, Hajizade A, Rostamian M, Keshavarz H. Expression and purification of neurotoxin-associated protein HA-33/A from Clostridium botulinum and evaluation of its antigenicity. IRANIAN BIOMEDICAL JOURNAL 2013; 17:165-70. [PMID: 23999711 DOI: 10.6091/ibj.1216.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Botulinum neurotoxin (BoNT) complexes consist of neurotoxin and neurotoxin-associated proteins. Hemagglutinin-33 (HA-33) is a member of BoNT type A (BoNT/A) complex. Considering the protective role of HA-33 in preservation of BoNT/A in gastrointestinal harsh conditions and also its adjuvant role, recombinant production of this protein is favorable. Thus in this study, HA-33 was expressed and purified, and subsequently its antigenicity in mice was studied. METHODS Initially, ha-33 gene sequence of Clostridium botulinum serotype A was adopted from GenBank. The gene sequence was optimized and synthesized in pET28a (+) vector. E. coli BL21 (DE3) strain was transformed by the recombinant vector and the expression of HA-33 was optimized at 37°C and 5 h induction time. RESULTS The recombinant protein was purified by nickel nitrilotriacetic acid agarose affinity chromatography and confirmed by immunoblotting. Enzyme Linked Immunoassay showed a high titer antibody production in mice. CONCLUSION The results indicated a highly expressed and purified recombinant protein, which is able to evoke high antibody titers in mice.
Collapse
Affiliation(s)
- Ali Sayadmanesh
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Firouz Ebrahimi
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Abbas Hajizade
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Mosayeb Rostamian
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Hani Keshavarz
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| |
Collapse
|
13
|
Bryant AM, Davis J, Cai S, Singh BR. Molecular composition and extinction coefficient of native botulinum neurotoxin complex produced by Clostridium botulinum hall A strain. Protein J 2013; 32:106-17. [PMID: 23334849 DOI: 10.1007/s10930-013-9465-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seven distinct strains of Clostridium botulinum (type A to G) each produce a stable complex of botulinum neurotoxin (BoNT) along with neurotoxin-associated proteins (NAPs). Type A botulinum neurotoxin (BoNT/A) is produced with a group of NAPs and is commercially available for the treatment of numerous neuromuscular disorders and cosmetic purposes. Previous studies have indicated that BoNT/A complex composition is specific to the strain, the method of growth and the method of purification; consequently, any variation in composition of NAPs could have significant implications to the effectiveness of BoNT based therapeutics. In this study, a standard analytical technique using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry analysis was developed to accurately analyze BoNT/A complex from C. botulinum type A Hall strain. Using 3 batches of BoNT/A complex the molar ratio was determined as neurotoxin binding protein (NBP, 124 kDa), heavy chain (HC, 90 kDa), light chain (LC, 53 kDa), NAP-53 (50 kDa), NAP-33 (36 kDa), NAP-22 (24 kDa), NAP-17 (17 kDa) 1:1:1:2:3:2:2. With Bradford, Lowry, bicinchoninic acid (BCA) and spectroscopic protein estimation methods, the extinction coefficient of BoNT/A complex was determined as 1.54 ± 0.26 (mg/mL)(-1)cm(-1). These findings of a reproducible BoNT/A complex composition will aid in understanding the molecular structure and function of BoNT/A and NAPs.
Collapse
Affiliation(s)
- Anne-Marie Bryant
- Botulinum Research Center and Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Botulinum neurotoxin (BoNT) is produced by Clostridium botulinum and associates with nontoxic neurotoxin-associated proteins to form high-molecular weight progenitor complexes (PCs). The PCs are required for the oral toxicity of BoNT in the context of food-borne botulism and are thought to protect BoNT from destruction in the gastrointestinal tract and aid in absorption from the gut lumen. The PC can differ in size and protein content depending on the C. botulinum strain. The oral toxicity of the BoNT PC increases as the size of the PC increases, but the molecular architecture of these large complexes and how they contribute to BoNT toxicity have not been elucidated. We have generated 2D images of PCs from strains producing BoNT serotypes A1, B, and E using negative stain electron microscopy and single-particle averaging. The BoNT/A1 and BoNT/B PCs were observed as ovoid-shaped bodies with three appendages, whereas the BoNT/E PC was observed as an ovoid body. Both the BoNT/A1 and BoNT/B PCs showed significant flexibility, and the BoNT/B PC was documented as a heterogeneous population of assembly/disassembly intermediates. We have also determined 3D structures for each serotype using the random conical tilt approach. Crystal structures of the individual proteins were placed into the BoNT/A1 and BoNT/B PC electron density maps to generate unique detailed models of the BoNT PCs. The structures highlight an effective platform that can be engineered for the development of mucosal vaccines and the intestinal absorption of oral biologics.
Collapse
|
15
|
Carruthers A, Kane MAC, Flynn TC, Huang P, Kim SD, Solish N, Kaeuper G. The Convergence of Medicine and Neurotoxins: A Focus on Botulinum Toxin Type A and Its Application in Aesthetic Medicine—A Global, Evidence-Based Botulinum Toxin Consensus Education Initiative. Dermatol Surg 2013; 39:493-509. [DOI: 10.1111/dsu.12147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
|
17
|
Kumar R, Zhou Y, Ghosal K, Cai S, Singh BR. Anti-apoptotic activity of hemagglutinin-33 and botulinum neurotoxin and its implications to therapeutic and countermeasure issues. Biochem Biophys Res Commun 2012; 417:726-31. [DOI: 10.1016/j.bbrc.2011.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
|
18
|
Dorner MB, Schulz KM, Kull S, Dorner BG. Complexity of Botulinum Neurotoxins: Challenges for Detection Technology. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Comella CL, Jankovic J, Truong DD, Hanschmann A, Grafe S. Efficacy and safety of incobotulinumtoxinA (NT 201, XEOMIN®, botulinum neurotoxin type A, without accessory proteins) in patients with cervical dystonia. J Neurol Sci 2011; 308:103-9. [PMID: 21764407 DOI: 10.1016/j.jns.2011.05.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/25/2011] [Indexed: 01/28/2023]
Abstract
OBJECTIVE IncobotulinumtoxinA differs from available formulations in that it does not have accessory proteins. IncobotulinumtoxinA has previously shown non-inferiority to onabotulinumtoxinA for the treatment of CD with a 1:1 dosing regimen. The objective of this study was to compare the safety and efficacy of incobotulinumtoxinA (120 U, 240 U; Merz Pharmaceuticals) to placebo in subjects with cervical dystonia (CD). METHODS This was a prospective, double-blind, randomized, placebo-controlled, multicenter clinical trial in botulinum toxin-treated or toxin-naïve CD patients. The primary outcome measure was change from baseline to Week 4 on the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) Total score. Adverse events (AEs) also were evaluated. RESULTS Participants (N=233) were mostly women (66%), a mean of 52.8 years old, who had CD for a mean of 51.9 months. Of those, 39% were toxin-naïve. IncobotulinumtoxinA significantly improved TWSTRS-Total scores from baseline to Week 4 compared to placebo (placebo=-2.2; 120 U=-9.9, and 240 U=-10.9; 240 U vs. placebo p<0.001 and 120 U vs. placebo p<0.001). This effect persisted through to the end of the study. The most frequently reported AEs in the incobotulinumtoxinA groups were dysphagia, neck pain, and muscular weakness which were generally mild. INTERPRETATION IncobotulinumtoxinA (at doses of 120 U or 240 U) is a safe and effective treatment for CD in previously-treated as well as toxin-naïve subjects.
Collapse
|
20
|
Cheng LW, Henderson TD. Comparison of oral toxicological properties of botulinum neurotoxin serotypes A and B. Toxicon 2011; 58:62-7. [PMID: 21600236 DOI: 10.1016/j.toxicon.2011.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/27/2011] [Accepted: 05/03/2011] [Indexed: 01/26/2023]
Abstract
Botulinum neurotoxins (BoNTs) are among the most potent biological toxins for humans. Of the seven known serotypes (A-G) of BoNT, serotypes A, B and E cause most of the foodborne intoxications in humans. BoNTs in nature are associated with non-toxic accessory proteins known as neurotoxin-associated proteins (NAPs), forming large complexes that have been shown to play important roles in oral toxicity. Using mouse intraperitoneal and oral models of botulism, we determined the dose response to both BoNT/B holotoxin and complex toxins, and compared the toxicities of BoNT/B and BoNT/A complexes. Although serotype A and B complexes have similar NAP composition, BoNT/B formed larger-sized complexes, and was approximately 90 times more lethal in mouse oral intoxications than BoNT/A complexes. When normalized by mean lethal dose, mice orally treated with high doses of BoNT/B complex showed a delayed time-to-death when compared with mice treated with BoNT/A complex. Furthermore, we determined the effect of various food matrices on oral toxicity of BoNT/A and BoNT/B complexes. BoNT/B complexes showed lower oral bioavailability in liquid egg matrices when compared to BoNT/A complexes. In summary, our studies revealed several factors that can either enhance or reduce the toxicity and oral bioavailability of BoNTs. Dissecting the complexities of the different BoNT serotypes and their roles in foodborne botulism will lead to a better understanding of toxin biology and aid future food risk assessments.
Collapse
Affiliation(s)
- Luisa W Cheng
- Foodborne Contaminants Research Unit, Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | | |
Collapse
|
21
|
Thirunavukkarasusx N, Ghosal KJ, Kukreja R, Zhou Y, Dombkowski A, Cai S, Singh BR. Microarray analysis of differentially regulated genes in human neuronal and epithelial cell lines upon exposure to type A botulinum neurotoxin. Biochem Biophys Res Commun 2011; 405:684-90. [PMID: 21291863 DOI: 10.1016/j.bbrc.2011.01.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 11/16/2022]
Abstract
Among the seven serotypes (A-G), type A botulinum neurotoxin (BoNT/A) is the most prevalent etiologic agent and the most potent serotype to cause foodborne botulism, characterized by flaccid muscle paralysis. Upon ingestion, BoNT/A crosses epithelial cell barriers to reach lymphatic and circulatory systems and blocks acetylcholine release at the pre-synaptic cholinergic nerve terminals of neuromuscular junctions (NMJs) resulting in paralysis. One of the unique features of BoNT/A intoxication is its neuroparalytic longevity due to its persistent catalytic activity. The persistent presence of the toxin inside the cell can induce host cell responses. To understand the pathophysiology and host response at the cellular level, gene expression changes upon exposure of human HT-29 colon carcinoma (epithelial) and SH-SY5Y neuroblastoma cell lines to BoNT/A complex were investigated using microarray analysis. In HT-29 cells, 167 genes were up-regulated while 60 genes were down-regulated, whereas in SH-SY5Y cells about 223 genes were up-regulated and 18 genes were down-regulated. Modulation of genes and pathways involved in neuroinflammatory, ubiquitin-proteasome degradation, phosphatidylinositol, calcium signaling in SH-SY5Y cells, and genes relevant to focal adhesion, cell adhesion molecules, adherens and gap junction related pathways in HT-29 cells suggest a massive host response to BoNT/A. A clear differential response in epithelial and neuronal cells indicates that the genes affected may play a distinct role in BoNTs cellular mode of action, involving these two types of host cells.
Collapse
Affiliation(s)
- Nagarajan Thirunavukkarasusx
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Botulinum Research Center, 285 Old Westport Road, N Dartmouth, MA 02747, United States
| | | | | | | | | | | | | |
Collapse
|