1
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|
2
|
Copper and lipid metabolism: A reciprocal relationship. Biochim Biophys Acta Gen Subj 2021; 1865:129979. [PMID: 34364973 DOI: 10.1016/j.bbagen.2021.129979] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Copper and lipid metabolism are intimately linked, sharing a complex, inverse relationship in the periphery (outside of the central nervous system), which remains to be fully elucidated. SCOPE Copper and lipids have independently been implicated in the pathogenesis of diseases involving dyslipidaemia, including obesity, cardiovascular disease and non-alcoholic fatty liver disease and also in Wilson disease, an inherited disorder of copper overload. Here we review the relationship between copper and lipid regulatory pathways, which are potential druggable targets for therapeutic intervention. MAJOR CONCLUSIONS While the inverse relationship between copper and lipids is apparent, tissue-specific roles for the copper regulatory protein, ATP7B provide further insight into the association between copper and lipid metabolism. GENERAL SIGNIFICANCE Understanding the relationship between copper and lipid metabolism is important for identifying druggable targets for diseases with disrupted copper and/or lipid metabolism; and may reveal similar connections within the brain and in neurological diseases with impaired copper and lipid transport.
Collapse
|
3
|
Jargaud V, Bour S, Tercé F, Collet X, Valet P, Bouloumié A, Guillemot JC, Mauriège P, Jalkanen S, Stolen C, Salmi M, Smith DJ, Carpéné C. Obesity of mice lacking VAP-1/SSAO by Aoc3 gene deletion is reproduced in mice expressing a mutated vascular adhesion protein-1 (VAP-1) devoid of amine oxidase activity. J Physiol Biochem 2020; 77:141-154. [PMID: 32712883 DOI: 10.1007/s13105-020-00756-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
The product of Aoc3 gene is known as vascular adhesion protein-1 (VAP-1), a glycoprotein contributing to leukocyte extravasation and exhibiting semicarbazide-sensitive amine oxidase activity (SSAO). Regarding the immune functions of VAP-1/SSAO, it is known that mice bearing Aoc3 gene knock-out (AOC3KO) exhibit defects in leukocyte migration similar to those of mice expressing a mutated VAP-1 lacking functional SSAO activity (knock-in, AOC3KI). However, it has not been reported whether these models differ regarding other disturbances. Thus, we further compared endocrine-metabolic phenotypes of AOC3KO and AOC3KI mice to their respective control. Special attention was paid on adiposity, glucose and lipid handling, since VAP-1/SSAO is highly expressed in adipose tissue (AT). In both mouse lines, no tissue SSAO activity was found, while Aoc3 mRNA was absent in AOC3KO only. Although food consumption was unchanged, both AOC3KO and AOC3KI mice were heavier and fatter than their respective controls. Other alterations commonly found in adipocytes from both lines were loss of benzylamine insulin-like action with unchanged insulin lipogenic responsiveness and adiponectin expression. A similar downregulation of inflammatory markers (CD45, IL6) was found in AT. Glucose handling and liver mass remained unchanged, while circulating lipid profile was distinctly altered, with increased cholesterol in AOC3KO only. These results suggest that the lack of oxidase activity found in AOC3KI is sufficient to reproduce the metabolic disturbances observed in AOC3KO mice, save those related with cholesterol transport. Modulation of SSAO activity therefore constitutes a potential target for the treatment of cardiometabolic diseases, especially obesity when complicated by low-grade inflammation.
Collapse
Affiliation(s)
- Valentin Jargaud
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France.,Sanofi, Translational Sciences Unit, Chilly-Mazarin, France
| | - Sandy Bour
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - François Tercé
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Xavier Collet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Philippe Valet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Anne Bouloumié
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | | | - Pascale Mauriège
- Dept. of Kinesiology, Fac. of Medicine and PEPS, Laval University, Québec, Canada
| | - Sirpa Jalkanen
- MediCity and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Craig Stolen
- MediCity and Biotie Therapies Plc, Turku, Finland
| | - Marko Salmi
- MediCity and Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France. .,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France.
| |
Collapse
|
4
|
Methylxanthines Inhibit Primary Amine Oxidase and Monoamine Oxidase Activities of Human Adipose Tissue. MEDICINES 2020; 7:medicines7040018. [PMID: 32252407 PMCID: PMC7235778 DOI: 10.3390/medicines7040018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Background: Methylxanthines including caffeine and theobromine are widely consumed compounds and were recently shown to interact with bovine copper-containing amine oxidase. To the best of our knowledge, no direct demonstration of any interplay between these phytochemicals and human primary amine oxidase (PrAO) has been reported to date. We took advantage of the coexistence of PrAO and monoamine oxidase (MAO) activities in human subcutaneous adipose tissue (hScAT) to test the interaction between several methylxanthines and these enzymes, which are involved in many key pathophysiological processes. Methods: Benzylamine, methylamine, and tyramine were used as substrates for PrAO and MAO in homogenates of subcutaneous adipose depots obtained from overweight women undergoing plastic surgery. Methylxanthines were tested as substrates or inhibitors by fluorimetric determination of hydrogen peroxide, an end-product of amine oxidation. Results: Semicarbazide-sensitive PrAO activity was inhibited by theobromine, caffeine, and isobutylmethylxanthine (IBMX) while theophylline, paraxanthine, and 7-methylxanthine had little effect. Theobromine inhibited PrAO activity by 54% at 2.5 mM. Overall, the relationship between methylxanthine structure and the degree of inhibition was similar to that seen with bovine PrAO, although higher concentrations (mM) were required for inhibition. Theobromine also inhibited oxidation of tyramine by MAO, at the limits of its solubility in a DMSO vehicle. At doses higher than 12 % v/v, DMSO impaired MAO activity. MAO was also inhibited by millimolar doses of IBMX, caffeine and by other methylxanthines to a lesser extent. Conclusions: This preclinical study extrapolates previous findings with bovine PrAO to human tissues. Given that PrAO is a potential target for anti-inflammatory drugs, it indicates that alongside phosphodiesterase inhibition and adenosine receptor antagonism, PrAO and MAO inhibition could contribute to the health benefits of methylxanthines, especially their anti-inflammatory effects.
Collapse
|
5
|
Romauch M. Zinc-α2-glycoprotein as an inhibitor of amine oxidase copper-containing 3. Open Biol 2020; 10:190035. [PMID: 32315567 PMCID: PMC6685929 DOI: 10.1098/rsob.190035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Zinc-α2-glycoprotein (ZAG) is a major plasma protein whose levels increase in chronic energy-demanding diseases and thus serves as an important clinical biomarker in the diagnosis and prognosis of the development of cachexia. Current knowledge suggests that ZAG mediates progressive weight loss through β-adrenergic signalling in adipocytes, resulting in the activation of lipolysis and fat mobilization. Here, through cross-linking experiments, amine oxidase copper-containing 3 (AOC3) is identified as a novel ZAG binding partner. AOC3-also known as vascular adhesion protein 1 (VAP-1) and semicarbazide sensitive amine oxidase (SSAO)-deaminates primary amines, thereby generating the corresponding aldehyde, H2O2 and NH3. It is an ectoenzyme largely expressed by adipocytes and induced in endothelial cells during inflammation. Extravasation of immune cells depends on amine oxidase activity and AOC3-derived H2O2 has an insulinogenic effect. The observations described here suggest that ZAG acts as an allosteric inhibitor of AOC3 and interferes with the associated pro-inflammatory and anti-lipolytic functions. Thus, inhibition of the deamination of lipolytic hormone octopamine by AOC3 represents a novel mechanism by which ZAG might stimulate lipolysis. Furthermore, experiments involving overexpression of recombinant ZAG reveal that its glycosylation is co-regulated by oxygen availability and that the pattern of glycosylation affects its inhibitory potential. The newly identified protein interaction between AOC3 and ZAG highlights a previously unknown functional relationship, which may be relevant to inflammation, energy metabolism and the development of cachexia.
Collapse
Affiliation(s)
- Matthias Romauch
- Institute of Molecular Biosciences, Karl-Franzens-University, Graz, Austria
| |
Collapse
|
6
|
Papukashvili D, Rcheulishvili N, Deng Y. Attenuation of Weight Gain and Prevention of Associated Pathologies by Inhibiting SSAO. Nutrients 2020; 12:E184. [PMID: 31936548 PMCID: PMC7019322 DOI: 10.3390/nu12010184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a worldwide prevalent metabolic disorder that is associated with diabetes, among many other diseases. Bearing this in mind, prevention and treatment ways need to be improved. Notably, activity of the enzyme semicarbazide-sensitive amine oxidase (SSAO) is found to be elevated in overweight subjects. Moreover, SSAO inhibition has resulted in an increase of histamine activity in adipose tissue and the limitation of body fat. The current review aims to overview the risks of obesity, rationalize the molecular ways of SSAO activity, and outline the strategies of inhibiting upregulated enzyme levels. It describes the differences between SSAO inhibitors and advances the prospective agents. Based on evidence, caffeine is proposed as an effective, safe, and reliable choice to inhibit SSAO activity. Furthermore, the histamine in adipocytes has been associated with SSAO activity. Therefore, it is suggested as one of the key compounds to be studied for obesity management. To conclude, inhibiting SSAO may attenuate weight gain and prevent related diseases.
Collapse
Affiliation(s)
- Dimitri Papukashvili
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
| | - Nino Rcheulishvili
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing 100081, China
| |
Collapse
|
7
|
Mercader J, Sabater AG, Le Gonidec S, Decaunes P, Chaplin A, Gómez-Zorita S, Milagro FI, Carpéné C. Oral Phenelzine Treatment Mitigates Metabolic Disturbances in Mice Fed a High-Fat Diet. J Pharmacol Exp Ther 2019; 371:555-566. [PMID: 31270215 DOI: 10.1124/jpet.119.259895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Novel mechanisms and health benefits have been recently suggested for the antidepressant drug phenelzine (PHE), known as a nonselective monoamine oxidase inhibitor. They include an antilipogenic action that could have an impact on excessive fat accumulation and obesity-related metabolic alterations. We evaluated the metabolic effects of an oral PHE treatment on mice fed a high-fat diet (HFD). Eleven-week-old male C57BL/6 mice were fed a HFD and either a 0.028% PHE solution (HFD + PHE) or water to drink for 11 weeks. PHE attenuated the increase in body weight and adiposity without affecting food consumption. Energy efficiency was lower in HFD + PHE mice. Lipid content was reduced in subcutaneous fat pads, liver, and skeletal muscle. In white adipose tissue (WAT), PHE reduced sterol regulatory element-binding protein-1c and phosphoenolpyruvate carboxykinase mRNA levels, inhibited amine-induced lipogenesis, and did not increase lipolysis. Moreover, HFD + PHE mice presented diminished levels of hydrogen peroxide release in subcutaneous WAT and reduced expression of leukocyte transmigration markers and proinflammatory cytokines in visceral WAT and liver. PHE reduced the circulating levels of glycerol, triacylglycerols, high-density lipoprotein cholesterol, and insulin. Insulin resistance was reduced, without affecting glucose levels and glucose tolerance. In contrast, PHE increased rectal temperature and slightly increased energy expenditure. The mitigation of HFD-induced metabolic disturbances points toward a promising role for PHE in obesity treatment and encourages further research on its mechanisms of action. SIGNIFICANCE STATEMENT: Phenelzine reduces body fat, markers of oxidative stress, inflammation, and insulin resistance in high-fat diet mice. Semicarbazide-sensitive amine oxidase, monoamine oxidase, phosphoenolpyruvate carboxykinase, and sterol regulatory element-binding protein-1c are involved in the metabolic effects of phenelzine. Phenelzine could be potentially used for the treatment of obesity-related complications.
Collapse
Affiliation(s)
- Josep Mercader
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Agustín G Sabater
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Sophie Le Gonidec
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Pauline Decaunes
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Alice Chaplin
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Saioa Gómez-Zorita
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Fermín I Milagro
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Christian Carpéné
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| |
Collapse
|
8
|
Carpéné C, Boulet N, Chaplin A, Mercader J. Past, Present and Future Anti-Obesity Effects of Flavin-Containing and/or Copper-Containing Amine Oxidase Inhibitors. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E9. [PMID: 30650583 PMCID: PMC6473341 DOI: 10.3390/medicines6010009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
Background: Two classes of amine oxidases are found in mammals: those with a flavin adenine dinucleotide as a cofactor, such as monoamine oxidases (MAO) and lysine-specific demethylases (LSD), and those with copper as a cofactor, including copper-containing amine oxidases (AOC) and lysyl oxidases (LOX). All are expressed in adipose tissue, including a semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) strongly present on the adipocyte surface. Methods: Previously, irreversible MAO inhibitors have been reported to limit food intake and/or fat extension in rodents; however, their use for the treatment of depressed patients has not revealed a clear anti-obesity action. Semicarbazide and other molecules inhibiting SSAO/VAP-1 also reduce adiposity in obese rodents. Results: Recently, a LOX inhibitor and a subtype-selective MAO inhibitor have been shown to limit fattening in high-fat diet-fed rats. Phenelzine, which inhibits MAO and AOC, limits adipogenesis in cultured preadipocytes and impairs lipogenesis in mature adipocytes. When tested in rats or mice, phenelzine reduces food intake and/or fat accumulation without cardiac adverse effects. Novel amine oxidase inhibitors have been recently characterized in a quest for promising anti-inflammatory or anti-cancer approaches; however, their capacity to mitigate obesity has not been studied so far. Conclusions: The present review of the diverse effects of amine oxidase inhibitors impairing adipocyte differentiation or limiting excessive fat accumulation indicates that further studies are needed to reveal their potential anti-obesity properties.
Collapse
Affiliation(s)
- Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse Cedex 4, France.
| | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse Cedex 4, France.
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Josep Mercader
- Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, 07122 Palma, Spain.
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma, Spain.
| |
Collapse
|
9
|
Metabolic Effects of Oral Phenelzine Treatment on High-Sucrose-Drinking Mice. Int J Mol Sci 2018; 19:ijms19102904. [PMID: 30257452 PMCID: PMC6213466 DOI: 10.3390/ijms19102904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 01/01/2023] Open
Abstract
Phenelzine has been suggested to have an antiobesity effect by inhibiting de novo lipogenesis, which led us to investigate the metabolic effects of oral chronic phenelzine treatment in high-sucrose-drinking mice. Sucrose-drinking mice presented higher body weight gain and adiposity versus controls. Phenelzine addition did not decrease such parameters, even though fat pad lipid content and weights were not different from controls. In visceral adipocytes, phenelzine did not impair insulin-stimulated de novo lipogenesis and had no effect on lipolysis. However, phenelzine reduced the mRNA levels of glucose transporters 1 and 4 and phosphoenolpyruvate carboxykinase in inguinal white adipose tissue (iWAT), and altered circulating levels of free fatty acids (FFA) and glycerol. Interestingly, glycemia was restored in phenelzine-treated mice, which also had higher insulinaemia. Phenelzine-treated mice presented higher rectal temperature, which was associated to reduced mRNA levels of uncoupling protein 1 in brown adipose tissue. Furthermore, unlike sucrose-drinking mice, hepatic malondialdehyde levels were not altered. In conclusion, although de novo lipogenesis was not inhibited by phenelzine, the data suggest that the ability to re-esterify FFA is impaired in iWAT. Moreover, the effects on glucose homeostasis and oxidative stress suggest that phenelzine could alleviate obesity-related alterations and deserves further investigation in obesity models.
Collapse
|
10
|
Yu M, Feng Y, Zhang X, Wang J, Tian H, Wang W, Ru S. Semicarbazide disturbs the reproductive system of male zebrafish (Danio rerio) through the GABAergic system. Reprod Toxicol 2017; 73:149-157. [PMID: 28834696 DOI: 10.1016/j.reprotox.2017.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022]
Abstract
Semicarbazide (SMC), an emerging water contaminant, exerts anti-estrogenic effects in female zebrafish. However, the exact influence of SMC on male reproduction remains unclear. In this study, adult male zebrafish were exposed to 1-1000μg/L SMC in a semi-static system for 28 d prior to examining the testicular somatic index (TSI), testis histology, plasma sex hormone levels, and the transcription of genes involved in reproduction. The results showed that testicular morphology was altered and TSI was down-regulated by high concentrations of SMC (≥100μg/L and 1000μg/L, respectively). Plasma testosterone and 17β-estradiol concentrations were significantly decreased by all of the SMC treatments, along with down-regulation of the corresponding steroidogenic gene transcripts. These changes were associated with the inhibition of gamma-aminobutyric acid synthesis and function, in addition to the decreased expression of reproductive regulators. Our results contribute to elucidating the mechanisms underlying the adverse reproductive effects of SMC in male zebrafish.
Collapse
Affiliation(s)
- Miao Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yongliang Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
11
|
Pomegranate juice and its main polyphenols exhibit direct effects on amine oxidases from human adipose tissue and inhibit lipid metabolism in adipocytes. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Stopped-flow kinetic analysis of the oxidation of semicarbazide by hexachloroiridate(IV). TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0100-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Anatomical distribution of primary amine oxidase activity in four adipose depots and plasma of severely obese women with or without a dysmetabolic profile. J Physiol Biochem 2016; 73:475-486. [PMID: 27766585 DOI: 10.1007/s13105-016-0526-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO), identical to primary amine oxidase or vascular adhesion protein-1, is a membrane enzyme that generates hydrogen peroxide. SSAO is highly expressed at the adipocyte surface, and its plasma levels increase with type 2 diabetes. Since visceral adipose tissue (AT) is more tightly associated with obesity complications than subcutaneous (SC) abdominal fat, we compared SSAO activity in plasma and 4 distinct AT locations in 48 severely obese women (body mass index (BMI), averaging 54 ± 11 kg/m2), with or without a dysmetabolic profile. Higher glucose and triacylglycerol levels vs lower high-density lipoprotein (HDL)-cholesterol characterized dysmetabolic women (DYS; n = 25) from non-dysmetabolic (NDYS; n = 23), age- and weight-matched subjects. SC, mesenteric (ME), omental (OM), and round ligament (RL) fat locations were collected during bariatric surgery. SSAO capacity to oxidize up to 1 mM benzylamine was determined in AT and plasma with radiometric and fluorimetric methods. Plasma SSAO was higher in the DYS group. SSAO activity was higher in fat than in plasma, when expressed as radiolabeled benzaldehyde per milligram of protein. In ATs from DYS women, protein content was 10 % higher, and basal hydrogen peroxide release lower than in NDYS subjects, except for RL location. The SSAO affinity towards benzylamine did not exhibit regional variation and was not altered by a dysmetabolic profile (K m averaging 184 ± 7 μM; n = 183). Although radiometric and fluorimetric methods gave different estimates of oxidase activity, both indicated that AT SSAO activity did not vary according to anatomical location and/or metabolic status in severely obese women.
Collapse
|
14
|
Hijona E, Aguirre L, Pérez-Matute P, Villanueva-Millán MJ, Mosqueda-Solis A, Hasnaoui M, Nepveu F, Senard JM, Bujanda L, Aldámiz-Echevarría L, Llarena M, Andrade F, Perio P, Leboulanger F, Hijona L, Arbones-Mainar JM, Portillo MP, Carpéné C. Limited beneficial effects of piceatannol supplementation on obesity complications in the obese Zucker rat: gut microbiota, metabolic, endocrine, and cardiac aspects. J Physiol Biochem 2016; 72:567-582. [PMID: 26792656 DOI: 10.1007/s13105-015-0464-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Resveratrol is beneficial in obese and diabetic rodents. However, its low bioavailability raises questions about its therapeutic relevance for treating or preventing obesity complications. In this context, many related natural polyphenols are being tested for their putative antidiabetic and anti-obesity effects. This prompted us to study the influence of piceatannol, a polyhydroxylated stilbene, on the prevention of obesity complications in Zucker obese rats. A 6-week supplementation was followed by the determination of various markers in plasma, liver, adipose tissue and heart, together with a large-scale analysis of gut microbiota composition. When given in doses of 15 or 45 mg/kg body weight/day, piceatannol did not reduce either hyperphagia or fat accumulation. It did not modify the profusion of the most abundant phyla in gut, though slight changes were observed in the abundance of several Lactobacillus, Clostridium, and Bacteroides species belonging to Firmicutes and Bacteroidetes. This was accompanied by a tendency to reduce plasma lipopolysaccharides by 30 %, and by a decrease of circulating non-esterified fatty acids, LDL-cholesterol, and lactate. While piceatannol tended to improve lipid handling, it did not mitigate hyperinsulinemia and cardiac hypertrophy. However, it increased cardiac expression of ephrin-B1, a membrane protein that contributes to maintaining cardiomyocyte architecture. Lastly, ascorbyl radical plasma levels and hydrogen peroxide release by adipose tissue were similar in control and treated groups. Thus, piceatannol did not exhibit strong slimming capacities but did limit several obesity complications.
Collapse
Affiliation(s)
- E Hijona
- Department of Gastroenterology, Biodonostia Research Institute, University of Basque Country (UPV/EHU), San Sebastián, Spain
- Centro de Investigación Biomédica en Enfermedades Hepáticas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - L Aguirre
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of Basque Country (UPV/EHU), Vitoria, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - P Pérez-Matute
- HIV and Associated Metabolic Alterations Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - M J Villanueva-Millán
- HIV and Associated Metabolic Alterations Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - A Mosqueda-Solis
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of Basque Country (UPV/EHU), Vitoria, Spain
| | - M Hasnaoui
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| | - F Nepveu
- University of Toulouse, UPS and IRD, UMR 152 (PHARMA-DEV), F-31062, Toulouse cedex 9, France
| | - J M Senard
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| | - L Bujanda
- Department of Gastroenterology, Biodonostia Research Institute, University of Basque Country (UPV/EHU), San Sebastián, Spain
- Centro de Investigación Biomédica en Enfermedades Hepáticas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - L Aldámiz-Echevarría
- Division of Metabolism, Cruces University Hospital and BioCruces Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- GCV-CIBER de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, Madrid, Spain
| | - M Llarena
- Division of Metabolism, Cruces University Hospital and BioCruces Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- GCV-CIBER de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, Madrid, Spain
| | - F Andrade
- Division of Metabolism, Cruces University Hospital and BioCruces Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- GCV-CIBER de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, Madrid, Spain
| | - P Perio
- University of Toulouse, UPS and IRD, UMR 152 (PHARMA-DEV), F-31062, Toulouse cedex 9, France
| | - F Leboulanger
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| | - L Hijona
- Department of Gastroenterology, Biodonostia Research Institute, University of Basque Country (UPV/EHU), San Sebastián, Spain
- Centro de Investigación Biomédica en Enfermedades Hepáticas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - J M Arbones-Mainar
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - M P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of Basque Country (UPV/EHU), Vitoria, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - C Carpéné
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| |
Collapse
|
15
|
Peng Y, Wang J, Zhang M, Niu P, Yang M, Yang Y, Zhao Y. Inactivation of Semicarbazide-Sensitive Amine Oxidase Stabilizes the Established Atherosclerotic Lesions via Inducing the Phenotypic Switch of Smooth Muscle Cells. PLoS One 2016; 11:e0152758. [PMID: 27043821 PMCID: PMC4820117 DOI: 10.1371/journal.pone.0152758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/19/2016] [Indexed: 12/11/2022] Open
Abstract
Given that the elevated serum semicarbazide-sensitive amine oxidase (SSAO) activity is associated with the severity of carotid atherosclerosis in clinic, the current study aims to investigate whether SSAO inactivation by semicarbazide is beneficial for established atherosclerotic lesions in LDLr knockout mice on a high-fat/high- cholesterol Western-type diet or after dietary lipid lowering. Despite no impact on plasma total cholesterol levels, the infiltration of circulating monocytes into peripheral tissues, and the size of atherosclerotic lesions, abrogation of SSAO activity resulted in the stabilization of established lesions as evidenced by the increased collagen contents under both conditions. Moreover, SSAO inactivation decreased Ly6Chigh monocytosis and lesion macrophage contents in hypercholesterolemic mice, while no effect was observed in mice after normalization of hypercholesterolemia by dietary lipid lowering. Strikingly, abrogation of SSAO activity significantly increased not only the absolute numbers of smooth muscle cells (SMCs), but also the percent of SMCs with a synthetic phenotype in established lesions of mice regardless of plasma cholesterol levels. Overall, our data indicate that SSAO inactivation in vivo stabilizes the established plaques mainly via inducing the switch of SMCs from a contractile to a synthetic phenotype. Targeting SSAO activity thus may represent a potential treatment for patients with atherosclerosis.
Collapse
MESH Headings
- Amine Oxidase (Copper-Containing)/antagonists & inhibitors
- Amine Oxidase (Copper-Containing)/genetics
- Amine Oxidase (Copper-Containing)/metabolism
- Animals
- Atherosclerosis/chemically induced
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Dietary Fats/adverse effects
- Dietary Fats/pharmacology
- Female
- Macrophages/enzymology
- Macrophages/pathology
- Male
- Mice
- Mice, Knockout
- Monocytes/enzymology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic/chemically induced
- Plaque, Atherosclerotic/enzymology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
Collapse
Affiliation(s)
- Ya Peng
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Miao Zhang
- Department of Pathophysiology, Soochow University, Suzhou, 215123, China
| | - Panpan Niu
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
| | - Mengya Yang
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
| | - Yilin Yang
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
- Modern Medical Research Center, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
- * E-mail: (YZ); (YY)
| | - Ying Zhao
- Department of Pathophysiology, Soochow University, Suzhou, 215123, China
- * E-mail: (YZ); (YY)
| |
Collapse
|
16
|
Yu M, Zhang X, Guo L, Tian H, Wang W, Ru S. Anti-estrogenic effect of semicarbazide in female zebrafish (Danio rerio) and its potential mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:262-270. [PMID: 26688189 DOI: 10.1016/j.aquatox.2015.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
Semicarbazide (SMC), a member of the hydrazine family, has various toxic effects and has been detected in organisms, aquatic environments, and food. SMC exposure inhibited the transcription of hepatic vitellogenin and estrogen receptors in female zebrafish (Danio rerio), suggesting that it had anti-estrogenic properties. In order to elucidate the mechanisms underlying these, we exposed female zebrafish to SMC and used enzyme-linked immunosorbent assays to examine plasma 17β-estradiol (E2) and testosterone (T) levels. Gonad histology was analyzed and the mRNA expression of genes involved in the reproductive axis, the gamma-aminobutyric acid (GABA) shunt, and leptin was quantified by real-time PCR. Zebrafish were exposed to 1, 10, 100, or 1000μg/L SMC in a semi-static system for 96hours or 28 days. Plasma E2 levels were significantly decreased and ovarian maturation was inhibited by SMC, suggesting that its anti-estrogenic effect was exerted by reducing endogenous E2 levels. This was likely due to the SMC-mediated inhibition of cytochrome P450 (CYP) 19A mRNA levels, because this enzyme catalyzes the conversion of T to E2 in the gonads. In addition, down-regulation of the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase, steroidogenic acute regulatory protein, CYP17, and 17beta-hydroxysteroid dehydrogenase was observed; this was predicted to reduce T concentrations and further contribute to the reduced E2 levels. SMC-induced changes in the expression of these steroidogenic genes correlated with decreased transcription of gonadotropic hormones (follicle-stimulating hormone and luteinizing hormone) and significantly elevated leptin expression. Furthermore, SMC also altered expression of the key enzyme in gamma-aminobutyric acid (GABA) synthesis, GABA receptors, and salmon gonadotropin-releasing hormone, thus affecting gonadotropin expression. Overall, SMC acted at multiple sites related to reproduction to reduce plasma E2 levels, consequently exerting an anti-estrogenic effect in female zebrafish. These effects were observed at environmentally relevant concentrations and highlight the importance of controlling SMC contamination.
Collapse
Affiliation(s)
- Miao Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Linlin Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
17
|
Carpéné C, Bizou M, Tréguer K, Hasnaoui M, Grès S. Glitazones inhibit human monoamine oxidase but their anti-inflammatory actions are not mediated by VAP-1/semicarbazide-sensitive amine oxidase inhibition. J Physiol Biochem 2015; 71:487-96. [PMID: 25572340 DOI: 10.1007/s13105-014-0379-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
Glitazones are peroxisome proliferator-activated receptor gamma (PPARγ) agonists widely used as antidiabetic drugs also known as thiazolidinediones. Most of them exert other effects such as anti-inflammatory actions via mechanisms supposed to be independent from PPARγ activation (e.g., decreased plasma monocyte chemoattractant protein-1 (MCP-1) levels). Recently, pioglitazone has been shown to inhibit the B form of monoamine oxidase (MAO) in mouse, while rosiglitazone and troglitazone were described as non-covalent inhibitors of both human MAO A and MAO B. Since molecules interacting with MAO might also inhibit semicarbazide-sensitive amine oxidase (SSAO), known as vascular adhesion protein-1 (VAP-1), and since VAP-1/SSAO inhibitors exhibit anti-inflammatory activity, our aim was to elucidate whether VAP-1/SSAO inhibition could be a mechanism involved in the anti-inflammatory behaviour of glitazones. To this aim, MAO and SSAO activities were measured in human subcutaneous adipose tissue biopsies obtained from overweight women undergoing plastic surgery. The production of hydrogen peroxide, an end-product of amine oxidase activity, was determined in tissue homogenates using a fluorometric method. The oxidation of 1 mM tyramine was inhibited by pargyline and almost resistant to semicarbazide, therefore predominantly MAO-dependent. Rosiglitazone was more potent than pioglitazone in inhibiting tyramine oxidation. By contrast, benzylamine oxidation was only abolished by semicarbazide: hence SSAO-mediated. Pioglitazone hampered SSAO activity only when tested at 1 mM while rosiglitazone was inefficient. However, rosiglitazone exhibited anti-inflammatory activity in human adipocytes by limiting MCP-1 expression. Our observations rule out any involvement of VAP-1/SSAO inhibition and subsequent limitation of leukocyte extravasation in the anti-inflammatory action of glitazones.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale (INSERM U1048), Toulouse, France,
| | | | | | | | | |
Collapse
|
18
|
Weston CJ, Shepherd EL, Claridge LC, Rantakari P, Curbishley SM, Tomlinson JW, Hubscher SG, Reynolds GM, Aalto K, Anstee QM, Jalkanen S, Salmi M, Smith DJ, Day CP, Adams DH. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest 2014; 125:501-20. [PMID: 25562318 DOI: 10.1172/jci73722] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/13/2014] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a range of manifestations, including steatosis and cirrhosis. Progressive disease is characterized by hepatic leukocyte accumulation in the form of steatohepatitis. The adhesion molecule vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that promotes leukocyte recruitment to the liver, and the soluble form (sVAP-1) accounts for most circulating monoamine oxidase activity, has insulin-like effects, and can initiate oxidative stress. Here, we determined that hepatic VAP-1 expression is increased in patients with chronic liver disease and that serum sVAP-1 levels are elevated in patients with NAFLD compared with those in control individuals. In 4 murine hepatic injury models, an absence or blockade of functional VAP-1 reduced inflammatory cell recruitment to the liver and attenuated fibrosis. Moreover, disease was reduced in animals expressing a catalytically inactive form of VAP-1, implicating enzyme activity in the disease pathogenesis. Within the liver, hepatic stromal cells expressed functional VAP-1, and evaluation of cultured cells revealed that sVAP-1 promotes leukocyte migration through catalytic generation of ROS, which depended on VAP-1 enzyme activity. VAP-1 enhanced stromal cell spreading and wound closure and modulated expression of profibrotic genes. Together, these results link the amine oxidase activity of VAP-1 with hepatic inflammation and fibrosis and suggest that targeting VAP-1 has therapeutic potential for NAFLD and other chronic fibrotic liver diseases.
Collapse
|
19
|
Carpéné C, Gomez-Zorita S, Gupta R, Grès S, Rancoule C, Cadoudal T, Mercader J, Gomez A, Bertrand C, Iffiu-Soltész Z. Combination of low dose of the anti-adipogenic agents resveratrol and phenelzine in drinking water is not sufficient to prevent obesity in very-high-fat diet-fed mice. Eur J Nutr 2014; 53:1625-35. [PMID: 24531732 DOI: 10.1007/s00394-014-0668-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Resveratrol inhibits lipid accumulation but suffers from limited bioavailability. The anti-depressive agent phenelzine limits adipogenesis in various models of cultured preadipocytes, and this hydrazine derivative also inhibits de novo lipogenesis in mature adipocytes. It was therefore tested whether resveratrol effects on adiposity reduction and glucose tolerance improvement could be reinforced by co-administration with phenelzine. METHODS Mice fed a very-high-fat diet (VHFD, 60% calories as fat) were subjected to drinking solution containing low dose of resveratrol (0.003%) and/or 0.02% phenelzine for 12 weeks. Body fat content, glucose tolerance, food and water consumption were checked during treatment while fat depot mass was determined at the end of supplementation. Direct influence of the agents on lipogenesis and glucose uptake was tested in adipocytes. RESULTS Epididymal fat depots were reduced in mice drinking phenelzine alone or with resveratrol. No limitation of body weight gain or body fat content was observed in the groups drinking resveratrol or phenelzine, separately or in combination. The altered glucose tolerance and the increased fat body composition of VHFD-fed mice were not reversed by resveratrol and/or phenelzine. Such lack of potentiation between resveratrol and phenelzine prompted us to verify in vitro their direct effects on mouse adipocytes. Both molecules inhibited de novo lipogenesis, but did not potentiate each other at 10 or 100 μM. Only resveratrol inhibited hexose uptake in a manner that was not improved by phenelzine. CONCLUSIONS Phenelzine has no interest to be combined with low doses of resveratrol for treating/preventing obesity, when considering the VHFD mouse model.
Collapse
Affiliation(s)
- C Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale, U 1048, Team 3, CHU Rangueil, Université de Toulouse, UPS, 31432, Toulouse Cedex 4, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake. J Neural Transm (Vienna) 2012; 120:997-1003. [DOI: 10.1007/s00702-012-0951-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022]
|
21
|
Salmi M, Jalkanen S. Homing-associated molecules CD73 and VAP-1 as targets to prevent harmful inflammations and cancer spread. FEBS Lett 2011; 585:1543-50. [DOI: 10.1016/j.febslet.2011.04.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 01/01/2023]
|