1
|
Al-Shibli R, AlSuleimani M, Ahmed I, Al Lawati A, Das S. Association of miRNA and Bone Tumors: Future Therapeutic Inroads. Curr Med Chem 2025; 32:1103-1120. [PMID: 38299295 DOI: 10.2174/0109298673284932231226110754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
Small endogenous non-coding RNA molecules known as micro-ribonucleic acids (miRNAs) control post-transcriptional gene regulation. A change in miRNA expression is related to various diseases, including bone tumors. Benign bone tumors are categorized based on matrix production and predominant cell type. Osteochondromas and giant cell tumors are among the most common bone tumors. Interestingly, miRNAs can function as either tumor suppressor genes or oncogenes, thereby determining the fate of a tumor. In the present review, we discuss various bone tumors with regard to their prognosis, pathogenesis, and diagnosis. The association between miRNAs and bone tumors, such as osteosarcoma, Ewing's sarcoma, chondrosarcoma, and giant-cell tumors, is also discussed. Moreover, miRNA may play an important role in tumor proliferation, growth, and metastasis. Knowledge of the dysregulation, amplification, and deletion of miRNA can be beneficial for the treatment of various bone cancers. The miRNAs could be beneficial for prognosis, treatment, future drug design, and treatment of resistant cases of bone cancer.
Collapse
Affiliation(s)
- Rashid Al-Shibli
- Department of Medical, Sultan Qaboos University Hospital, Muscat, 123, Oman
| | | | - Ibrahim Ahmed
- Department of Medical, Sultan Qaboos University Hospital, Muscat, 123, Oman
| | - Abdullah Al Lawati
- Department of Medical, Sultan Qaboos University Hospital, Muscat, 123, Oman
| | - Srijit Das
- Department of Human & Clinical Anatomy, Sultan Qaboos University, Muscat, 123, Oman
| |
Collapse
|
2
|
Karabacak M, Shahbandi A, Mavridis O, Jagtiani P, Carr MT, Boylan A, Margetis K. Chondrosarcoma of the Mobile Spine in the Elderly: A National Cancer Database Study. World Neurosurg 2024; 190:e60-e76. [PMID: 38968994 DOI: 10.1016/j.wneu.2024.06.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The current research on geriatric patients with spinal chondrosarcoma is limited. This study aimed to investigate the demographics, patterns of care, and survival of geriatric patients with chondrosarcoma of the mobile spine. METHODS The National Cancer Database was queried from 2008 to 2018 for geriatric patients (60-89 years) with chondrosarcoma of the mobile spine. The primary outcome of this study was overall survival. The secondary outcome was treatment utilization patterns. Survival analyses were conducted using log-rank tests and Cox proportional hazards regressions. Logistic regression models were utilized to assess correlations between baseline variables and treatment utilization. RESULTS The database retrieved 122 patients. While 43.7% of the patients presented with tumors exceeding 5 cm in size, the incidence of regional lymph node involvement or distant metastases was relatively low, affecting only 5% of the patients. Furthermore, 22.3% of the patients had tumors graded as 3-4. The 5-year overall survival rate was 52.9% (95% confidence interval: 42-66.6). The mortality risk was significantly associated with age, tumor grade and stage, and treatment plan. Most patients (79.5%) underwent surgery, while 35.9% and 4.2% were treated with radiotherapy and chemotherapy, respectively. Age, race, comorbidities, geographical region, tumor stage, and healthcare facility type significantly correlated with treatment utilization. CONCLUSIONS Surgical resection significantly lowered the mortality risk in geriatric patients with spinal chondrosarcomas. Demographic and geographical factors significantly dictated treatment plans. Further studies are required to assess the role of radiotherapy and chemotherapy in treating these patients in the modern era.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | | | - Olga Mavridis
- Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Pemla Jagtiani
- School of Medicine, SUNY Downstate Health Sciences University, New York, New York, USA
| | - Matthew T Carr
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | - Arianne Boylan
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | | |
Collapse
|
3
|
Barcellini A, Cassani C, Orlandi E, Nappi RE, Broglia F, Delmonte MP, Molinelli S, Vai A, Vitolo V, Gronchi A, D'Ambrosio G, Cobianchi L, Fiore MR. Is motherhood still possible after pelvic carbon ion radiotherapy? A promising combined fertility-preservation approach. TUMORI JOURNAL 2024; 110:132-138. [PMID: 38183176 DOI: 10.1177/03008916231218794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Preserving the endocrine and reproductive function in young female cancer patients undergoing pelvic radiation is a significant challenge. While the photon beam radiation's adverse effects on the uterus and ovaries are well established, the impact of pelvic carbon ion radiotherapy on women's reproductive function is largely unexplored. Strategies such as oocyte cryopreservation and ovarian transposition are commonly recommended for safeguarding future fertility. METHODS This study presents a pioneering case of successful pregnancy after carbon ion radiotherapy for locally advanced sacral chondrosarcoma. RESULTS A multidisciplinary approach facilitated the displacement of ovaries and uterus before carbon ion radiotherapy, resulting in the preservation of endocrine and reproductive function. CONCLUSION The patient achieved optimal oncological response and delivered a healthy infant following the completion of cancer treatment.
Collapse
Affiliation(s)
- Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Chiara Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Unit of Obstetrics and Gynecology, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Rossella E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Federica Broglia
- Department of Anesthesia and Intensive Care, Unit of Obstetric Anesthesia, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Maria Paola Delmonte
- Department of Anesthesia and Intensive Care, Unit of Obstetric Anesthesia, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Alessandro Vai
- Medical Physics Unit, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gioacchino D'Ambrosio
- Department of Molecular Medicine, Anatomic Pathology Unit, University of Pavia and Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Department of General Surgery, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
- ITIR-Institute for Transformative Innovation Research, University of Pavia, Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| |
Collapse
|
4
|
Trovarelli G, Sbaraglia M, Angelini A, Bellan E, Pala E, Belluzzi E, Pozzuoli A, Borga C, Dei Tos AP, Ruggieri P. Are IDH1 R132 Mutations Associated With Poor Prognosis in Patients With Chondrosarcoma of the Bone? Clin Orthop Relat Res 2024; 482:00003086-990000000-01457. [PMID: 38170705 PMCID: PMC11124741 DOI: 10.1097/corr.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Because chondrosarcomas vary widely in their behavior, and because anticipating their behavior based on histology alone can be challenging, genetic markers represent an appealing area of inquiry that may help us refine our prognostic approaches. Isocitrate dehydrogenase (IDH) mutations are involved in the pathogenesis of a variety of neoplasms, and recently, IDH1/2 mutations have been found in the tissue of benign cartilage tumors as well as in conventional chondrosarcomas and highly aggressive dedifferentiated chondrosarcomas. However, their association with patient survival is still controversial. QUESTIONS/PURPOSES (1) What proportion of patients with chondrosarcomas carry IDH mutations, and which IDH mutations can be found? (2) Are any specific IDH mutations associated with poorer overall survival, metastasis-free survival, or local recurrence-free survival? METHODS Between April 2017 and December 2022, we treated 74 patients for atypical cartilaginous tumors or chondrosarcomas in a musculoskeletal tumor referral center. Patients were considered potentially eligible for the present study if the histologic diagnosis was confirmed by two expert soft tissue and bone pathologists following the current WHO classification, complete preoperative imaging and follow-up data were available, surgical excision was performed by sarcoma orthopaedic surgeons directed by a team leader, and the minimum follow-up was 2 years after surgical treatment unless the patient died. Data including sex, age, diagnosis, grade, type of operation, local recurrence, metastasis, and oncologic follow-up were recorded. Forty-one patients (55%) were eligible for the study. For each patient, DNA was extracted and quantified from paraffin-embedded sections of tumor tissue, and the mutational status of IDH1 (codons 105 and 132) and IDH2 (codons 140 and 172) genes was assessed. Of those, 56% (23 of 41) of patients had adequate DNA for analysis of IDH mutations: 10 male and 13 female patients, with a median age of 59 years (range 15 to 98 years). There were 22 conventional chondrosarcomas (8 atypical cartilaginous tumors, 11 Grade 2, and 3 Grade 3) and 1 dedifferentiated chondrosarcoma. Stage was IA in 3 patients, IB in 5, IIA in 1, IIB in 13, and III in 1, according to the Musculoskeletal Tumor Society classification. At a median follow-up of 3.5 years (range 4 months to 5.6 years), 14 patients were disease-free, 2 were alive with disease, and 7 died (3 within 2 years from surgery). Eight patients had metastases, and 7 developed local recurrence. We determined the proportion of patients who carried IDH mutations, and compared patients with and without those mutations in terms of overall survival, metastasis-free survival, and local recurrence-free survival using Kaplan-Meier curves. RESULTS Six patients showed wild-type IDH genes, and 17 had IDH mutations (12 had IDH1 R132, 3 had IDH1 G105, and 2 had IDH2 R172). Overall survival at 2 years using the Kaplan-Meier estimator was lower in patients with an IDH mutation than in those with the wild-type gene (75% [95% confidence interval 50% to 99%] versus 100% [95% CI 100% to 100%]; p = 0.002). Two-year metastasis-free survival was also lower in patients with an IDH mutation than in those with the wild-type gene (33% [95% CI 7% to 60%] versus 100% [95% CI 100% to 100%]; p = 0.001), as was 2-year local recurrence-free survival (70% [95% CI 42% to 98%] versus 100% [95% CI 100% to 100%]; p = 0.02). CONCLUSION We found that IDH1 R132 mutations were negatively associated with the prognosis of patients with bone chondrosarcomas. Nevertheless, more extensive studies (such as multicenter international studies) are needed and advisable to confirm our observations in this preliminary small series. Moreover, evaluating mutational status in fresh samples instead of in paraffin-embedded sections could help to increase the number of patients with adequate DNA for analysis. If our findings will be confirmed, the evaluation of IDH mutational status in biopsy samples or resection specimens could be considered when stratifying patients, highlighting those who may benefit from more aggressive treatment (such as adjuvant chemotherapy) or closer follow-up. LEVEL OF EVIDENCE Level III, prognostic study.
Collapse
Affiliation(s)
- Giulia Trovarelli
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Andrea Angelini
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Elena Bellan
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Elisa Pala
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Elisa Belluzzi
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Assunta Pozzuoli
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Chiara Borga
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Pietro Ruggieri
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| |
Collapse
|
5
|
Zając AE, Czarnecka AM, Rutkowski P. The Role of Macrophages in Sarcoma Tumor Microenvironment and Treatment. Cancers (Basel) 2023; 15:5294. [PMID: 37958467 PMCID: PMC10648209 DOI: 10.3390/cancers15215294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Sarcomas are a heterogeneous group of malignant mesenchymal tumors, including soft tissue and bone sarcomas. Macrophages in the tumor microenvironment, involved in immunosuppression and leading to tumor development, are called tumor-associated macrophages (TAMs). TAMs are very important in modulating the microenvironment of sarcomas by expressing specific markers and secreting factors that influence immune and tumor cells. They are involved in many signaling pathways, such as p-STAT3/p-Erk1/2, PI3K/Akt, JAK/MAPK, and JAK/STAT3. TAMs also significantly impact the clinical outcomes of patients suffering from sarcomas and are mainly related to poor overall survival rates among bone and soft tissue sarcomas, for example, chondrosarcoma, osteosarcoma, liposarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma. This review summarizes the current knowledge on TAMs in sarcomas, focusing on specific markers on sarcoma cells, cell-cell interactions, and the possibly involved molecular pathways. Furthermore, we discuss the clinical significance of macrophages in sarcomas as a potential target for new therapies, presenting clinical relevance, possible new treatment options, and ongoing clinical trials using TAMs in sarcoma treatment.
Collapse
Affiliation(s)
- Agnieszka E. Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
| |
Collapse
|
6
|
Reis IB, Tibo LHS, de Souza BR, Durán N, Fávaro WJ. OncoTherad ® is an immunomodulator of biological response that downregulate RANK/RANKL signaling pathway and PD-1/PD-L1 immune checkpoint in non-muscle invasive bladder cancer. J Cancer Res Clin Oncol 2023; 149:5025-5036. [PMID: 36322290 DOI: 10.1007/s00432-022-04449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
INTODUCTION Bladder cancer is the second most common urinary tract cancer. Above 70% of the occurrence of bladder cancer is superficial (pTis, pTa, and pT1), non-muscle invasive tumor (NMIBC), and the incidence of invasive disease is occasional. Treatments for NMIBC consist of transurethral resection (TUR) and subsequently intravesical immunotherapy with Bacillus Calmette-Guérin (BCG), intending to prevent tumor progression and decrease recurrence. However, 20-30% of these tumors have progression, and 70% have a recurrence after exclusive TUR treatment. The immunomodulator of biological response, OncoTherad®, is an attractive potential to revolutionize cancer therapy. In our previous studies with mice, the results showed that treatment with OncoTherad® reduced 100% of tumor progression in NMIBC through the activation of Toll-Like Receptors' non-canonical pathway. MATERIALS AND METHODS In the present study, 36 female C57Bl/6J mice were divided into 6 groups (n = 6/group): Control, Cancer, Cancer + BCG, Cancer + OncoTherad® (MRB-CFI-1), Cancer + P14-16 and Cancer + CFI-1. NMIBC was chemically induced and the treatments were followed for 6 weeks. A week after the last dose of treatment, animals were euthanized, the bladder was collected and routinely processed for immunohistochemical analyses of RANK, RANKL, FOXP3, and PD-1/PD-L1, such as PD-1/PD-L1 western blotting. CONCLUSION The immunohistochemical results showed that OncoTherad® reduced RANK and RANKL immunoreactivities compared to the cancer group, which indicates a good prognosis. Immunohistochemical and western blotting analyses confirmed that OncoTherad® modulated PD-1/PD-L1 immune checkpoint.
Collapse
Affiliation(s)
- Ianny Brum Reis
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Rua Humaitá, 1680-Centro, Araraquara, SP, CEP 14801-903, Brazil.
| | | | | | - Nelson Durán
- Institute of Biology, Universidade Estadual de Campinas/UNICAMP, Campinas, SP, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Wagner José Fávaro
- Institute of Biology, Universidade Estadual de Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
7
|
Tornín J, Mateu-Sanz M, Rey V, Murillo D, Huergo C, Gallego B, Rodríguez A, Rodríguez R, Canal C. Cold plasma and inhibition of STAT3 selectively target tumorigenicity in osteosarcoma. Redox Biol 2023; 62:102685. [PMID: 36989573 PMCID: PMC10074989 DOI: 10.1016/j.redox.2023.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Osteosarcoma (OS) is a malignant type of bone cancer that arises in periods of increased bone formation. Curative strategies for these types of tumors have remained essentially unchanged for decades and the overall survival for most advanced cases is still dismally low. This is in part due to the existence of drug resistant Cancer Stem Cells (CSC) with progenitor properties that are responsible for tumor relapse and metastasis. In the quest for therapeutic alternatives for OS, Cold Atmospheric Plasmas and Plasma-Treated Liquids (PTL) have come to the limelight as a source of Reactive Oxygen and Nitrogen Species displaying selectivity towards a variety of cancer cell lines. However, their effects on CSC subpopulations and in vivo tumor growth have been barely studied to date. By employing bioengineered 3D tumor models and in vivo assays, here we show that low doses of PTL increase the levels of pro-stemness factors and the self-renewal ability of OS cells, coupled to an enhanced in vivo tumor growth potential. This could have critical implications to the field. By proposing a combined treatment, our results demonstrate that the deleterious pro-stemness signals mediated by PTL can be abrogated when this is combined with the STAT3 inhibitor S3I-201, resulting in a strong suppression of in vivo tumor growth. Overall, our study unveils an undesirable stem cell-promoting function of PTL in cancer and supports the use of combinatorial strategies with STAT3 inhibitors as an efficient treatment for OS avoiding critical side effects. We anticipate our work to be a starting point for wider studies using relevant 3D tumor models to evaluate the effects of plasma-based therapies on tumor subpopulations of different cancer types. Furthermore, combination with STAT3 inhibition or other suitable cancer type-specific targets can be relevant to consolidate the development of the field.
Collapse
|
8
|
Gilbert A, Tudor M, Montanari J, Commenchail K, Savu DI, Lesueur P, Chevalier F. Chondrosarcoma Resistance to Radiation Therapy: Origins and Potential Therapeutic Solutions. Cancers (Basel) 2023; 15:cancers15071962. [PMID: 37046623 PMCID: PMC10093143 DOI: 10.3390/cancers15071962] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Chondrosarcoma is a malignant cartilaginous tumor that is particularly chemoresistant and radioresistant to X-rays. The first line of treatment is surgery, though this is almost impossible in some specific locations. Such resistances can be explained by the particular composition of the tumor, which develops within a dense cartilaginous matrix, producing a resistant area where the oxygen tension is very low. This microenvironment forces the cells to adapt and dedifferentiate into cancer stem cells, which are described to be more resistant to conventional treatments. One of the main avenues considered to treat this type of tumor is hadrontherapy, in particular for its ballistic properties but also its greater biological effectiveness against tumor cells. In this review, we describe the different forms of chondrosarcoma resistance and how hadrontherapy, combined with other treatments involving targeted inhibitors, could help to better treat high-grade chondrosarcoma.
Collapse
|
9
|
Nilles JD, Lim D, Boyer MP, Wilson BD, Betar RA, Showalter HA, Liu D, Ananieva EA. The occurrence of bone and joint cancers and their association with rural living and radon exposure in Iowa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:925-940. [PMID: 35381949 PMCID: PMC8983034 DOI: 10.1007/s10653-022-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Primary bone and joint cancers are rare and understudied, yet these neoplasms are difficult to treat and impact all age groups. To explore the long-term changes in the occurrence of bone and joint cancers, patients diagnosed with these neoplasms between 1975 and 2016 were identified in the Surveillance Epidemiology and End Results of the National Cancer Institute of the USA. The age-adjusted incidence (AAIR) and mortality (AAMR) rates were calculated for three decades and compared to AAIR and AAMR in years 1975-1984. By using the population-based cancer registries of the USA, Iowa was identified as a state with increased cases of bone and joint malignancies. The bone and joint cancer cases in Iowa were correlated with the percentage of rural population, the average farmland size, or the residential radon levels. Results demonstrated that the mean AAIR of bone and joint cancers for US female and male patients (< 50 years of age) increased from 0.57 (95% C.I. 0.55-0.63) and 0.76 (95% C.I. 0.69-0.82) for years 1975-1984 to 0.71 (95% C.I. 0.66-0.76) and 0.94 (95% C.I. 0.87-1.07) for years 2005-2014, respectively. The increase in bone and joint cancer cases in Iowa positively correlated with the percentage rural population (R = 0.222, P < 0.02), and the average farmland size (R = 0.236, P < 0.02) but not the radon levels (R = - 0.038, P < 0.7). The findings revealed that patients younger than 50 years of age and those who resided in rural areas and engaged in farming were more likely to be diagnosed with primary bone and joint cancers.
Collapse
Affiliation(s)
- Jonathan D Nilles
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Dooyoung Lim
- Department of Public Health, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Michael P Boyer
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Brittany D Wilson
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Rebekah A Betar
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Holly A Showalter
- Waukee Aspiring Professional Experience (APEX), 295 SE Ashworth Road, Waukee, IA, 50263, USA
| | - Darren Liu
- Department of Public Health, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Elitsa A Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA.
| |
Collapse
|
10
|
Zhou H, Dong Y, Alhaskawi A, Lai J, Wang Z, Ezzi SHA, Kota VG, Abdulla MHAH, Sun Z, Lu H. The Roles of TNF Signaling Pathways in Metabolism of Bone Tumors. Front Pharmacol 2022; 13:907629. [PMID: 35847045 PMCID: PMC9277014 DOI: 10.3389/fphar.2022.907629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
The metabolism of bone tumors is extraordinarily complex and involves many signaling pathways and processes, including the tumor necrosis factor (TNF) signaling pathway, which consists of TNF factors and the TNF receptors that belong to the TNF receptor superfamily (TNFRSF). It is appreciated that signaling events and pathways involving TNFRSF components are essential in coordinating the functions of multiple cell types that act as a host defense network against pathogens and malignant cells, the implications of TNFRSF-related signaling pathways on bone tumor metabolism remain to be summarized, which is one of the significant obstacles to the application of TNF-related treatment modalities in the domain of bone oncology. This review will discuss and summarize the anti-tumor properties of important TNFRSF components concerning osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jingtian Lai
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | - Zhenyu Sun
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Gallego B, Murillo D, Rey V, Huergo C, Estupiñán Ó, Rodríguez A, Tornín J, Rodríguez R. Addressing Doxorubicin Resistance in Bone Sarcomas Using Novel Drug-Resistant Models. Int J Mol Sci 2022; 23:ijms23126425. [PMID: 35742867 PMCID: PMC9224263 DOI: 10.3390/ijms23126425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Bone sarcomas have not shown a significant improvement in survival for decades, due, in part, to the development of resistance to current systemic treatments, such as doxorubicin. To better understand those mechanisms mediating drug-resistance we generated three osteosarcoma and one chondrosarcoma cell lines with a stable doxorubicin-resistant phenotype, both in vitro and in vivo. These resistant strains include a pioneer model generated from a patient-derived chondrosarcoma line. The resistant phenotype was characterized by a weaker induction of apoptosis and DNA damage after doxorubicin treatment and a lower migratory capability. In addition, all resistant lines expressed higher levels of ABC pumps; meanwhile, no clear trends were found in the expression of anti-apoptotic and stem cell-related factors. Remarkably, upon the induction of resistance, the proliferation potential was reduced in osteosarcoma lines but enhanced in the chondrosarcoma model. The exposure of resistant lines to other anti-tumor drugs revealed an increased response to cisplatin and/or methotrexate in some models. Finally, the ability to retain the resistant phenotype in vivo was confirmed in an osteosarcoma model. Altogether, this work evidenced the co-existence of common and case-dependent phenotypic traits and mechanisms associated with the development of resistance to doxorubicin in bone sarcomas.
Collapse
Affiliation(s)
- Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Óscar Estupiñán
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-985-101-399
| |
Collapse
|
12
|
Russo S, Scotto di Carlo F, Gianfrancesco F. The Osteoclast Traces the Route to Bone Tumors and Metastases. Front Cell Dev Biol 2022; 10:886305. [PMID: 35646939 PMCID: PMC9139841 DOI: 10.3389/fcell.2022.886305] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts are highly specialized cells of the bone, with a unique apparatus responsible for resorption in the process of bone remodeling. They are derived from differentiation and fusion of hematopoietic precursors, committed to form mature osteoclasts in response to finely regulated stimuli produced by bone marrow-derived cells belonging to the stromal lineage. Despite a highly specific function confined to bone degradation, emerging evidence supports their relevant implication in bone tumors and metastases. In this review, we summarize the physiological role of osteoclasts and then focus our attention on their involvement in skeletal tumors, both primary and metastatic. We highlight how osteoclast-mediated bone erosion confers increased aggressiveness to primary tumors, even those with benign features. We also outline how breast and pancreas cancer cells promote osteoclastogenesis to fuel their metastatic process to the bone. Furthermore, we emphasize the role of osteoclasts in reactivating dormant cancer cells within the bone marrow niches for manifestation of overt metastases, even decades after homing of latent disseminated cells. Finally, we point out the importance of counteracting tumor progression and dissemination through pharmacological treatments based on a better understanding of molecular mechanisms underlying osteoclast lytic activity and their recruitment from cancer cells.
Collapse
Affiliation(s)
| | | | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Naples, Italy
| |
Collapse
|
13
|
Baines AJ, Babazadeh-Naseri A, Dunbar NJ, Lewis VO, Fregly BJ. Bilateral asymmetry of bone density adjacent to pelvic sarcomas: A retrospective study using computed tomography. J Orthop Res 2022; 40:644-653. [PMID: 33914952 DOI: 10.1002/jor.25067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
Limb-salvaging hemipelvectomy surgeries involving allograft or custom prosthesis reconstruction require high quality remaining pelvic bone for adequate device fixation. Modeling studies of custom pelvis prosthesis designs typically mirror contralateral pelvic bone material properties to the ipsilateral pelvis. However, the extent of bone material property and geometric symmetry, and thus the appropriateness of mirroring, remains unknown and should be considered when designing or analyzing the performance of pelvic prostheses. This study investigates preoperative differences between ipsilateral and contralateral pelvic bone for patients with a pelvic sarcoma. Computed tomography (CT) data were obtained retrospectively from eight patients with a pelvic sarcoma. Subject-specific computational models of the pelvic bones were constructed from the CT data. Bilateral asymmetry of bone material properties and cross-sectional areas between the ipsilateral and contralateral hemipelvis were quantified at points adjacent to the pelvic sarcoma. Large bilateral asymmetry (>20%) in trabecular but not cortical bone density was observed within 20 mm of the tumor location. Differences in trabecular bone density typically declined with increased distance from the tumor. The greatest bilateral difference in cross-sectional area occurred within 10 mm of the tumor boundary for three patients and within 40 mm from the tumor site for four patients. Our results suggest that pelvic sarcomas can cause significant bilateral asymmetries in trabecular bone density for patients with a pelvic sarcoma. These differences should be taken into account when designing custom implants for this patient population.
Collapse
Affiliation(s)
- Andrew J Baines
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA
| | | | - Nicholas J Dunbar
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA
| | - Valerae O Lewis
- Department of Orthopaedic Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin J Fregly
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
14
|
Pennington Z, Ehresman J, Pittman PD, Ahmed AK, Lubelski D, McCarthy EF, Goodwin CR, Sciubba DM. Chondrosarcoma of the spine: a narrative review. Spine J 2021; 21:2078-2096. [PMID: 33971325 DOI: 10.1016/j.spinee.2021.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/19/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023]
Abstract
Chondrosarcoma is an uncommon primary bone tumor with an estimated incidence of 0.5 per 100,000 patient-years. Primary chondrosarcoma of the mobile spine and sacrum cumulatively account for less than 20% of all cases, most .commonly causing patients to present with focal pain with or without radiculopathy, or myelopathy secondary to neural element compression. Because of the rarity, patients benefit from multidisciplinary care at academic tertiary-care centers. Current standard-of-care consists of en bloc surgical resection with negative margins; for high grade lesions adjuvant focused radiation with ≥60 gray equivalents is taking an increased role in improving local control. Prognosis is dictated by lesion grade at the time of resection. Several groups have put forth survival calculators and epidemiological evidence suggests prognosis is quite good for lesions receiving R0 resection. Future efforts will be focused on identifying potential chemotherapeutic adjuvants and refining radiation treatments as a means of improving local control.
Collapse
Affiliation(s)
- Zach Pennington
- Department of Neurosurgery, Mayo Clinic, Rochester, MN USA 55905; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA 21287.
| | - Jeff Ehresman
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA 21287; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ USA 85013.
| | - Patricia D Pittman
- Department of Neuropathology, Duke University School of Medicine, Durham, NC USA 27710
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA 21287
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA 21287
| | - Edward F McCarthy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA 21287
| | - C Rory Goodwin
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA 27710
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA 21287; Department of Neurosurgery, Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, NY USA 11030.
| |
Collapse
|
15
|
Munoz-Garcia J, Jubelin C, Loussouarn A, Goumard M, Griscom L, Renodon-Cornière A, Heymann MF, Heymann D. In vitro three-dimensional cell cultures for bone sarcomas. J Bone Oncol 2021; 30:100379. [PMID: 34307011 PMCID: PMC8287221 DOI: 10.1016/j.jbo.2021.100379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare tumour entities that arise from the mesenchyme most of which are highly heterogeneous at the cellular, genetic and epigenetic levels. The three main types are osteosarcoma, Ewing sarcoma, and chondrosarcoma. These oncological entities are characterised by high morbidity and mortality and an absence of significant therapeutic improvement in the last four decades. In the field of oncology, in vitro cultures of cancer cells have been extensively used for drug screening unfortunately with limited success. Indeed, despite the massive knowledge acquired from conventional 2D culture methods, scientific community has been challenged by the loss of efficacy of drugs when moved to clinical trials. The recent explosion of new 3D culture methods is paving the way to more relevant in vitro models mimicking the in vivo tumour environment (e.g. bone structure) with biological responses close to the in vivo context. The present review gives a brief overview of the latest advances of the 3D culture methods used for studying primary bone sarcomas.
Collapse
Affiliation(s)
- Javier Munoz-Garcia
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Camille Jubelin
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,Atlantic Bone Screen, Saint-Herblain, France
| | | | - Matisse Goumard
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | | | | | - Marie-Françoise Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,University of Sheffield, Department of Oncology and Metabolism, Medical School, Sheffield, UK
| |
Collapse
|
16
|
Menéndez ST, Gallego B, Murillo D, Rodríguez A, Rodríguez R. Cancer Stem Cells as a Source of Drug Resistance in Bone Sarcomas. J Clin Med 2021; 10:jcm10122621. [PMID: 34198693 PMCID: PMC8232081 DOI: 10.3390/jcm10122621] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Bone sarcomas are commonly characterized by a high degree of intra-tumor heterogeneity, which in part is due to the presence of subpopulations of tumor cells presenting stem cell properties. Similar to normal stem cells, these cancer stem cells (CSCs) display a drug resistant phenotype and therefore are responsible for relapses and tumor dissemination. Drug resistance in bone sarcomas could be enhanced/modulated during tumor evolution though the acquisition of (epi)-genetic alterations and the adaptation to changing microenvironments, including drug treatments. Here we summarize findings supporting the involvement of pro-stemness signaling in the development of drug resistance in bone sarcomas. This include the activation of well-known pro-stemness pathways (Wnt/β-Cat, NOTCH or JAT/STAT pathways), changes in the metabolic and autophagic activities, the alteration of epigenetic pathways, the upregulation of specific non-coding RNAs and the crosstalk with different microenvironmental factors. This altered signaling is expected to be translated to the clinic in the form of biomarkers of response and new therapies able to overcome drug resistance.
Collapse
Affiliation(s)
- Sofía T. Menéndez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (S.T.M.); (R.R.)
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (S.T.M.); (R.R.)
| |
Collapse
|
17
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
18
|
Leucine and branched-chain amino acid metabolism contribute to the growth of bone sarcomas by regulating AMPK and mTORC1 signaling. Biochem J 2020; 477:1579-1599. [PMID: 32297642 DOI: 10.1042/bcj20190754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
Osteosarcoma and chondrosarcoma are sarcomas of the bone and the cartilage that are primarily treated by surgical intervention combined with high toxicity chemotherapy. In search of alternative metabolic approaches to address the challenges in treating bone sarcomas, we assessed the growth dependence of these cancers on leucine, one of the branched-chain amino acids (BCAAs), and BCAA metabolism. Tumor biopsies from bone sarcoma patients revealed differential expression of BCAA metabolic enzymes. The cytosolic branched-chain aminotransferase (BCATc) that is commonly overexpressed in cancer cells, was down-regulated in chondrosarcoma (SW1353) in contrast with osteosarcoma (143B) cells that expressed both BCATc and its mitochondrial isoform BCATm. Treating SW1353 cells with gabapentin, a selective inhibitor of BCATc, further revealed that these cells failed to respond to gabapentin. Application of the structural analog of leucine, N-acetyl-leucine amide (NALA) to disrupt leucine uptake, indicated that all bone sarcoma cells used leucine to support their energy metabolism and biosynthetic demands. This was evident from the increased activity of the energy sensor AMP-activated protein kinase (AMPK), down-regulation of complex 1 of the mammalian target of rapamycin (mTORC1), and reduced cell viability in response to NALA. The observed changes were most profound in the 143B cells, which appeared highly dependent on cytosolic and mitochondrial BCAA metabolism. This study thus demonstrates that bone sarcomas rely on leucine and BCAA metabolism for energy and growth; however, the differential expression of BCAA enzymes and the presence of other carbon sources may dictate how efficiently these cancer cells take advantage of BCAA metabolism.
Collapse
|
19
|
Dos Anjos DS, Sierra OR, Spugnini EP, De Nardi AB, Fonseca-Alves CE. Comparison of two different doses of bleomycin in electrochemotherapy protocols for feline cutaneous squamous cell carcinoma nonsegregated from ultraviolet light exposure. Sci Rep 2020; 10:18362. [PMID: 33110198 PMCID: PMC7591921 DOI: 10.1038/s41598-020-75472-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin tumors in cats due to chronic exposure to ultraviolet light. Local treatments such as electrochemotherapy (ECT) promote disease control or even complete remission. We hypothesize that cats could benefit from treatments using bleomycin at reduced dosages. A prospective nonrandomized single-blind study evaluated the clinical parameters, site lesion, staging, disease-free interval (DFI) and survival time by comparing the standard dose of bleomycin (15,000 UI/m2) (n = 22) with a reduced dose (10,000 UI/m2) (n = 34) in cats with cSCC that underwent ECT as the sole treatment modality. No statistically significant difference in DFI or overall survival was observed between the 2 groups. A higher DFI was found in cats with a small tumor size (less than 0.33 cm3) compared with that for cats with a large tumor size (P = 0.045). Furthermore, a reduced overall survival time for cats with a higher stage in the standard group SG (T3 and T4) (P = 0.004) was observed when compared to that for cats with a lower stage (T1 and T2). In conclusion, ECT using both doses of bleomycin may achieve the same response rate in terms of the overall response, DFI, and overall survival.
Collapse
Affiliation(s)
- Denner S Dos Anjos
- Department of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, Brazil.
| | - Oscar R Sierra
- Department of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Andrigo B De Nardi
- Department of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Animal Anesthesiology, São Paulo State University - UNESP, Botucatu, SP, Brazil.
- Institute of Health Sciences, Paulista University-UNIP, Bauru, SP, Brazil.
| |
Collapse
|
20
|
Heymann MF, Lezot F, Heymann D. Bisphosphonates in common pediatric and adult bone sarcomas. Bone 2020; 139:115523. [PMID: 32622877 DOI: 10.1016/j.bone.2020.115523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023]
Abstract
The therapeutic strategies proposed currently for bone sarcomas are based on neo-adjuvant chemotherapy, delayed en-bloc wide resection, and adjuvant chemotherapy. Unfortunately, bone sarcomas are characterized by high rates of poor drug response, with a high risk of drug resistance, local recurrence and/or a high propensity for induced metastases. The pathogenesis of bone sarcomas is strongly associated with dysregulation of local bone remodeling and increased osteolysis that plays a part in tumor development. In this context, bisphosphonates (BPs) have been proposed as a single agent or in combination with conventional drugs to block bone resorption and the vicious cycle established between bone and sarcoma cells. Pre-clinical in vitro studies revealed the potential "anti-tumor" activities of nitrogen-bisphosphonates (N-BPs). In pre-clinical models, N-BPs reduced significantly primary tumor growth in osteosarcoma and Ewing sarcoma, and the installation of lung metastases. In chondrosarcoma, N-BPs reduced the recurrence of local tumors after intralesional curettage, and increased overall survival. In pediatric and adult osteosarcoma patients, N-BPs have been assessed in combination with conventional chemotherapy and surgery in randomized phase 3 studies with no improvement in clinical outcome. The lack of benefit may potentially be explained by the biological impact of N-BPs on macrophage differentiation/recruitment which may alter CD8+-T lymphocyte infiltration. Thanks to their considerable affinity for the mineralized extracellular matrix, BPs are an excellent platform for drug delivery in malignant bone sites with reduced systemic toxicity, which opens up new opportunities for their future use.
Collapse
Affiliation(s)
- Marie-Francoise Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Université de Nantes, Nantes, France
| | - Frederic Lezot
- Université de Nantes, Inserm, U1238, Faculty of Medicine, Nantes, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Université de Nantes, Nantes, France; University of Sheffield, Dept of Oncology and Metabolism, School of Medicine, Sheffield, UK.
| |
Collapse
|
21
|
Non-Conventional Treatments for Conventional Chondrosarcoma. Cancers (Basel) 2020; 12:cancers12071962. [PMID: 32707689 PMCID: PMC7409290 DOI: 10.3390/cancers12071962] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Chondrosarcomas are the most common malignant tumors of the cartilage, are seen predominantly in adults, and have varied clinical behavior. The majority of them affect the medullary canal of long bones and pelvic bones. The prognosis of chondrosarcoma is closely related to histological grading; however, the grading is subject to interobserver variability. Conventional chondrosarcomas are overall considered to be chemotherapy- and radiation-resistant, resulting in limited treatment options. The majority of advanced conventional chondrosarcomas are treated with chemotherapy without any survival benefit. Recent studies have evaluated molecular genetic findings which have improved the understanding of chondrosarcoma biology. Newer therapeutic targets are desperately needed. In this review article, we explore ongoing clinical trials evaluating novel ways of treating advanced conventional chondrosarcoma.
Collapse
|
22
|
Vares G, Jallet V, Matsumoto Y, Rentier C, Takayama K, Sasaki T, Hayashi Y, Kumada H, Sugawara H. Functionalized mesoporous silica nanoparticles for innovative boron-neutron capture therapy of resistant cancers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 27:102195. [PMID: 32278101 DOI: 10.1016/j.nano.2020.102195] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Treatment resistance, relapse and metastasis remain critical issues in some challenging cancers, such as chondrosarcomas. Boron-neutron capture therapy (BNCT) is a targeted radiation therapy modality that relies on the ability of boron atoms to capture low energy neutrons, yielding high linear energy transfer alpha particles. We have developed an innovative boron-delivery system for BNCT, composed of multifunctional fluorescent mesoporous silica nanoparticles (B-MSNs), grafted with an activatable cell penetrating peptide (ACPP) for improved penetration in tumors and with gadolinium for magnetic resonance imaging (MRI) in vivo. Chondrosarcoma cells were exposed in vitro to an epithermal neutron beam after B-MSNs administration. BNCT beam exposure successfully induced DNA damage and cell death, including in radio-resistant ALDH+ cancer stem cells (CSCs), suggesting that BNCT using this system might be a suitable treatment modality for chondrosarcoma or other hard-to-treat cancers.
Collapse
Affiliation(s)
- Guillaume Vares
- Advanced Medical Instrumentation Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan; Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan.
| | - Vincent Jallet
- Advanced Medical Instrumentation Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan.
| | | | - Cedric Rentier
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo
| | - Toshio Sasaki
- Imaging Section, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo
| | - Hiroaki Kumada
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirotaka Sugawara
- Advanced Medical Instrumentation Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| |
Collapse
|
23
|
Seetharaman R, Mahmood A, Kshatriya P, Patel D, Srivastava A. An Overview on Stem Cells in Tissue Regeneration. Curr Pharm Des 2020; 25:2086-2098. [PMID: 31298159 DOI: 10.2174/1381612825666190705211705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deteriorations in tissues and decline in organ functions, due to chronic diseases or with advancing age or sometimes due to infections or injuries, can severely compromise the quality of life of an individual. Regenerative medicine, a field of medical research focuses on replacing non-functional or dead cells or repairing or regenerating tissues and organs to restore normal functions of an impaired organ. Approaches used in regenerative therapy for achieving the objective employ a number of means which include soluble biomolecules, stem cell transplants, tissue engineering, gene therapy and reprogramming of cells according to target tissue types. Stem cells transplant and tissue regeneration methods for treating various diseases have rapidly grown in usage over the past decades or so. There are different types of stem cells such as mesenchymal, hematopoietic, embryonic, mammary, intestinal, endothelial, neural, olfactory, neural crest, testicular and induced pluripotent stem cells. METHODS This review covers the recent advances in tissue regeneration and highlights the application of stem cell transplants in treating many life-threatening diseases or in improving quality of life. RESULTS Remarkable progress in stem cell research has established that the cell-based therapy could be an option for treating diseases which could not be cured by conventional medical means till recent. Stem cells play major roles in regenerative medicine with its exceptional characteristics of self-renewal capacity and potential to differentiate into almost all types of cells of a body. CONCLUSION Vast number of reports on preclinical and clinical application of stem cells revealed its vital role in disease management and many pharmacological industries around the globe working to achieve effective stem cell based products.
Collapse
Affiliation(s)
| | | | | | | | - Anand Srivastava
- Global Institute of Stem Cell Therapy and Research, 4660 La Jolla Village Drive, San Diego, CA 92122, United States
| |
Collapse
|
24
|
Chen YL, Tang C, Zhang MY, Huang WL, Xu Y, Sun HY, Yang F, Song LL, Wang H, Mu LL, Li MH, Zheng WW, Miao Y, Ding LX, Li BS, Shen SH, Liu SL, Li H, Zhu ZQ, Chen HW, Tang ZH, Chen J, Hong DL, Chen HZ, Duan CW, Zhou BBS. Blocking ATM-dependent NF-κB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic leukemia. Leukemia 2019; 33:2365-2378. [PMID: 30940905 DOI: 10.1038/s41375-019-0458-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Bone marrow (BM) niche responds to chemotherapy-induced cytokines secreted from acute lymphoblastic leukemia (ALL) cells and protects the residual cells from chemotherapeutics in vivo. However, the underlying molecular mechanisms for the induction of cytokines by chemotherapy remain unknown. Here, we found that chemotherapeutic drugs (e.g., Ara-C, DNR, 6-MP) induced the expression of niche-protecting cytokines (GDF15, CCL3 and CCL4) in both ALL cell lines and primary cells in vitro. The ATM and NF-κB pathways were activated after chemotherapy treatment, and the pharmacological or genetic inhibition of these pathways significantly reversed the cytokine upregulation. Besides, chemotherapy-induced NF-κB activation was dependent on ATM-TRAF6 signaling, and NF-κB transcription factor p65 directly regulated the cytokines expression. Furthermore, we found that both pharmacological and genetic perturbation of ATM and p65 significantly decreased the residual ALL cells after Ara-C treatment in ALL xenograft mouse models. Together, these results demonstrated that ATM-dependent NF-κB activation mediated the cytokines induction by chemotherapy and ALL resistance to chemotherapeutics. Inhibition of ATM-dependent NF-κB pathway can sensitize ALL to chemotherapeutics, providing a new strategy to eradicate residual chemo-resistant ALL cells.
Collapse
Affiliation(s)
- Ya-Li Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Chao Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Meng-Yi Zhang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Wen-Li Huang
- Department of Pathology, School of Basic Medical Sciences, Central South University, 410013, Changsha, China
| | - Yan Xu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Hui-Yin Sun
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Fan Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Li-Li Song
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - He Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Li-Li Mu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, SJTU-SM, 200025, Shanghai, China
| | - Ming-Hao Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Wei-Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Yan Miao
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Li-Xia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Ben-Shang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Shu-Hong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Sheng-Li Liu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Zhong-Qun Zhu
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children's Medical Center, SJTU-SM, 200025, Shanghai, China
| | - Hui-Wen Chen
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children's Medical Center, SJTU-SM, 200025, Shanghai, China
| | - Zhong-Hua Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Deng-Li Hong
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, SJTU-SM, 200025, Shanghai, China
| | - Hong-Zhuan Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China.
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China.
| | - Bin-Bing S Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China.
| |
Collapse
|
25
|
Alvarez C, Monasterio G, Cavalla F, Córdova LA, Hernández M, Heymann D, Garlet GP, Sorsa T, Pärnänen P, Lee HM, Golub LM, Vernal R, Kantarci A. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front Immunol 2019; 10:1664. [PMID: 31379856 PMCID: PMC6657671 DOI: 10.3389/fimmu.2019.01664] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.
Collapse
Affiliation(s)
- Carla Alvarez
- Forsyth Institute, Cambridge, MA, United States
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, San Jose's Hospital and Clínica Las Condes, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Dominique Heymann
- INSERM, UMR 1232, LabCT, CRCINA, Institut de Cancérologie de l'Ouest, Université de Nantes, Université d'Angers, Saint-Herblain, France
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | | |
Collapse
|
26
|
Rey V, Menendez ST, Estupiñan O, Rodriguez A, Santos L, Tornin J, Martinez-Cruzado L, Castillo D, Ordoñez GR, Costilla S, Alvarez-Fernandez C, Astudillo A, Braña A, Rodriguez R. New Chondrosarcoma Cell Lines with Preserved Stem Cell Properties to Study the Genomic Drift During In Vitro/In Vivo Growth. J Clin Med 2019; 8:jcm8040455. [PMID: 30987403 PMCID: PMC6518242 DOI: 10.3390/jcm8040455] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
For the cancer genomics era, there is a need for clinically annotated close-to-patient cell lines suitable to investigate altered pathways and serve as high-throughput drug-screening platforms. This is particularly important for drug-resistant tumors like chondrosarcoma which has few models available. Here we established and characterized new cell lines derived from two secondary (CDS06 and CDS11) and one dedifferentiated (CDS-17) chondrosarcomas as well as another line derived from a CDS-17-generated xenograft (T-CDS17). These lines displayed cancer stem cell-related and invasive features and were able to initiate subcutaneous and/or orthotopic animal models. Different mutations in Isocitrate Dehydrogenase-1 (IDH1), Isocitrate Dehydrogenase-2 (IDH2), and Tumor Supressor P53 (TP53) and deletion of Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) were detected both in cell lines and tumor samples. In addition, other mutations in TP53 and the amplification of Mouse Double Minute 2 homolog (MDM2) arose during cell culture in CDS17 cells. Whole exome sequencing analysis of CDS17, T-CDS17, and matched patient samples confirmed that cell lines kept the most relevant mutations of the tumor, uncovered new mutations and revealed structural variants that emerged during in vitro/in vivo growth. Altogether, this work expanded the panel of clinically and genetically-annotated chondrosarcoma lines amenable for in vivo studies and cancer stem cell (CSC) characterization. Moreover, it provided clues of the genetic drift of chondrosarcoma cells during the adaptation to grow conditions.
Collapse
Affiliation(s)
- Veronica Rey
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
- University Institute of Oncology of Asturias, 33011 Oviedo, Spain.
| | - Sofia T Menendez
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
- University Institute of Oncology of Asturias, 33011 Oviedo, Spain.
- CIBER in Oncology (CIBERONC), 28029 Madrid, Spain.
| | - Oscar Estupiñan
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
- University Institute of Oncology of Asturias, 33011 Oviedo, Spain.
- CIBER in Oncology (CIBERONC), 28029 Madrid, Spain.
| | - Aida Rodriguez
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
| | - Laura Santos
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
| | - Juan Tornin
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
| | - Lucia Martinez-Cruzado
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
| | - David Castillo
- Disease Research and Medicine (DREAMgenics) S.L., 33011 Oviedo, Spain.
| | - Gonzalo R Ordoñez
- Disease Research and Medicine (DREAMgenics) S.L., 33011 Oviedo, Spain.
| | - Serafin Costilla
- Department of Radiology of the Servicio de Radiología of the University Central Hospital of Asturias, 33011 Oviedo, Spain.
| | - Carlos Alvarez-Fernandez
- Department of Medical Oncology of the Servicio de Radiología of the University Central Hospital of Asturias, 33011 Oviedo, Spain.
| | - Aurora Astudillo
- Department of Pathology of the Servicio de Radiología of the University Central Hospital of Asturias, 33011 Oviedo, Spain.
| | - Alejandro Braña
- Department of Traumatology of the University Central Hospital of Asturias, 33011 Oviedo, Spain.
| | - Rene Rodriguez
- University Central Hospital of Asturias-Health and Research Institute of Asturias (ISPA), 33011 Oviedo, Spain.
- University Institute of Oncology of Asturias, 33011 Oviedo, Spain.
- CIBER in Oncology (CIBERONC), 28029 Madrid, Spain.
| |
Collapse
|
27
|
Structure-activity relationship study of hypoxia-activated prodrugs for proteoglycan-targeted chemotherapy in chondrosarcoma. Eur J Med Chem 2018; 158:51-67. [DOI: 10.1016/j.ejmech.2018.08.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
|
28
|
Mery B, Espenel S, Guy JB, Rancoule C, Vallard A, Aloy MT, Rodriguez-Lafrasse C, Magné N. Biological aspects of chondrosarcoma: Leaps and hurdles. Crit Rev Oncol Hematol 2018; 126:32-36. [DOI: 10.1016/j.critrevonc.2018.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/31/2018] [Accepted: 03/21/2018] [Indexed: 01/12/2023] Open
|
29
|
Brown HK, Schiavone K, Gouin F, Heymann MF, Heymann D. Biology of Bone Sarcomas and New Therapeutic Developments. Calcif Tissue Int 2018; 102:174-195. [PMID: 29238848 PMCID: PMC5805807 DOI: 10.1007/s00223-017-0372-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Bone sarcomas are tumours belonging to the family of mesenchymal tumours and constitute a highly heterogeneous tumour group. The three main bone sarcomas are osteosarcoma, Ewing sarcoma and chondrosarcoma each subdivided in diverse histological entities. They are clinically characterised by a relatively high morbidity and mortality, especially in children and adolescents. Although these tumours are histologically, molecularly and genetically heterogeneous, they share a common involvement of the local microenvironment in their pathogenesis. This review gives a brief overview of their specificities and summarises the main therapeutic advances in the field of bone sarcoma.
Collapse
Affiliation(s)
- Hannah K Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Kristina Schiavone
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - François Gouin
- European Associated Laboratory, "Sarcoma Research Unit", Faculty of Medicine, INSERM, UMR1238, INSERM, Nantes, France
- Faculty of Medicine, University of Nantes, 44035, Nantes, France
| | - Marie-Françoise Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- Institut de Cancérologie de l'Ouest, site René Gauducheau, INSERM, UMR 1232, 44805, Saint-Herblain, France
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Dominique Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- Faculty of Medicine, University of Nantes, 44035, Nantes, France.
- Institut de Cancérologie de l'Ouest, site René Gauducheau, INSERM, UMR 1232, 44805, Saint-Herblain, France.
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
30
|
Boehme KA, Schleicher SB, Traub F, Rolauffs B. Chondrosarcoma: A Rare Misfortune in Aging Human Cartilage? The Role of Stem and Progenitor Cells in Proliferation, Malignant Degeneration and Therapeutic Resistance. Int J Mol Sci 2018; 19:ijms19010311. [PMID: 29361725 PMCID: PMC5796255 DOI: 10.3390/ijms19010311] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Unlike other malignant bone tumors including osteosarcomas and Ewing sarcomas with a peak incidence in adolescents and young adults, conventional and dedifferentiated chondrosarcomas mainly affect people in the 4th to 7th decade of life. To date, the cell type of chondrosarcoma origin is not clearly defined. However, it seems that mesenchymal stem and progenitor cells (MSPC) in the bone marrow facing a pro-proliferative as well as predominantly chondrogenic differentiation milieu, as is implicated in early stage osteoarthritis (OA) at that age, are the source of chondrosarcoma genesis. But how can MSPC become malignant? Indeed, only one person in 1,000,000 will develop a chondrosarcoma, whereas the incidence of OA is a thousandfold higher. This means a rare coincidence of factors allowing escape from senescence and apoptosis together with induction of angiogenesis and migration is needed to generate a chondrosarcoma. At early stages, chondrosarcomas are still assumed to be an intermediate type of tumor which rarely metastasizes. Unfortunately, advanced stages show a pronounced resistance both against chemo- and radiation-therapy and frequently metastasize. In this review, we elucidate signaling pathways involved in the genesis and therapeutic resistance of chondrosarcomas with a focus on MSPC compared to signaling in articular cartilage (AC).
Collapse
Affiliation(s)
- Karen A Boehme
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| | - Sabine B Schleicher
- Department of Hematology and Oncology, Eberhard Karls University Tuebingen, Children's Hospital, 72076 Tuebingen, Germany.
| | - Frank Traub
- Department of Orthopedic Surgery, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| |
Collapse
|
31
|
Tsai C, Yang D, Lin C, Chen T, Tang C, Huang Y. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression. Mol Oncol 2017; 11:1380-1398. [PMID: 28672103 PMCID: PMC5623823 DOI: 10.1002/1878-0261.12106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Chondrosarcoma is the second most common primary malignancy form of bone cancer, exhibiting resistance to chemotherapy and radiation therapy as well as developing high metastasis ability in late‐stage tumors. Thus, understanding the metastatic processes of chondrosarcoma is considered a strategy for the treatment of this disease. Sphingosine 1‐phosphate (S1P), a bioactive sphingolipid, is produced intracellularly by sphingosine kinase (SphK) and is regarded as a second signaling molecule that regulates inflammation, proliferation, angiogenesis, and metastasis. However, the effect of S1P on chondrosarcoma remains uncertain. As demonstrated by the transwell, immunoblotting, and real‐time PCR analyses, we found that S1P inhibited cell migration and MMP‐2 expression through the upregulation of the tissue inhibitor of metalloproteinase‐3 (TIMP‐3) expression in human chondrosarcoma cells. Additionally, we also showed that microRNA (miRNA)‐101, which targets the 3′ untranslated region (3′UTR) of TIMP‐3, decreased significantly following S1P treatment. After transfection with miR‐101 mimics, the S1P‐regulated cell migration and TIMP‐3 expression were both reversed. Furthermore, we also showed that the S1P‐inhibited cell migration is mediated through the c‐Src/MEK/ERK signaling axis. Meanwhile, the in vivo study indicated that overexpression of SphK1 decreases chondrosarcoma metastasis to the lungs. Our results illustrate the clinical significance between SphK1, TIMP‐3, and miR‐101 in human chondrosarcoma patients. Taken together, our results suggest that S1P and miR‐101 may prove to be potential therapeutic targets for future chondrosarcoma treatment.
Collapse
Affiliation(s)
- Chun‐Hao Tsai
- School of MedicineChina Medical UniversityTaichungTaiwan
- Department of Orthopedic SurgeryChina Medical University HospitalTaichungTaiwan
| | - Dong‐Ying Yang
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
| | - Chih‐Yang Lin
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
| | - Tsung‐Ming Chen
- Department of PharmacologyChina Medical UniversityTaichungTaiwan
- Department and Graduate Institute of AquacultureNational Kaohsiung Marine UniversityKaohsiungTaiwan
| | - Chih‐Hsin Tang
- Department of Orthopedic SurgeryChina Medical University HospitalTaichungTaiwan
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
- Department of BiotechnologyCollege of Medical and Health ScienceAsia UniversityTaichungTaiwan
| | - Yuan‐Li Huang
- Department of BiotechnologyCollege of Medical and Health ScienceAsia UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| |
Collapse
|
32
|
Bao X, Ren T, Huang Y, Wang S, Zhang F, Liu K, Zheng B, Guo W. Induction of the mesenchymal to epithelial transition by demethylation-activated microRNA-125b is involved in the anti-migration/invasion effects of arsenic trioxide on human chondrosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:129. [PMID: 27576314 PMCID: PMC5006509 DOI: 10.1186/s13046-016-0407-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
Background In addition to treating acute promyelocytic leukemia, arsenic trioxide (ATO) suppresses other solid tumors, including chondrosarcoma. However, the effects of ATO on metastasis in chondrosarcoma cells, and the underlying molecular mechanisms remain unclear. Methods The effects of ATO on the migratory and invasive capacities of chondrosarcoma cells were investigated by Wound healing, Transwell and EMT assays. The expression of miR-125b in human chondrosarcoma tissues and cell lines was detected by real-time PCR analysis. Bisulfite sequencing analysis (BSP) was used to detect the effects of ATO on the expression of miR-125b. The gain-of-function and loss-of-function experiments were performed on chondrosarcoma cell lines to investigate the effects of miR-125b on chondrosarcoma invasion, and to determine whether signal transducer and activator of transcription 3(Stat3) mediates these effects. Dual-luciferase reporter assay was used to identify whether Stat3 is a direct target of miR-125b. Results MiR-125b was significantly downregulated in human metastatic chondrosarcoma tissues and cell lines but not in non-metastatic chondrosarcoma tissues. ATO up-regulates the expression of miR-125b by the demethylation of DNA. ATO induces MET and attenuates the invasive capacities of chondrosarcoma cells through miR-125b. Stat3 was verified as a direct target of miR-125b, which is involved in ATO regulating EMT-associated traits. Conclusions These findings, for the first time, provides evidence that the miR-125b-mediated inhibition of Stat3 is involved in the ATO-induced attenuation of metastasis in chondrosarcoma cells.
Collapse
Affiliation(s)
- Xing Bao
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Fan Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Bingxin Zheng
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China.
| |
Collapse
|
33
|
Abstract
Oncogenic events combined with a favourable environment are the two main factors in the oncological process. The tumour microenvironment is composed of a complex, interconnected network of protagonists, including soluble factors such as cytokines, extracellular matrix components, interacting with fibroblasts, endothelial cells, immune cells and various specific cell types depending on the location of the cancer cells (e.g. pulmonary epithelium, osteoblasts). This diversity defines specific "niches" (e.g. vascular, immune, bone niches) involved in tumour growth and the metastatic process. These actors communicate together by direct intercellular communications and/or in an autocrine/paracrine/endocrine manner involving cytokines and growth factors. Among these glycoproteins, RANKL (receptor activator nuclear factor-κB ligand) and its receptor RANK (receptor activator nuclear factor), members of the TNF and TNFR superfamilies, have stimulated the interest of the scientific community. RANK is frequently expressed by cancer cells in contrast with RANKL which is frequently detected in the tumour microenvironment and together they participate in every step in cancer development. Their activities are markedly regulated by osteoprotegerin (OPG, a soluble decoy receptor) and its ligands, and by LGR4, a membrane receptor able to bind RANKL. The aim of the present review is to provide an overview of the functional implication of the RANK/RANKL system in cancer development, and to underline the most recent clinical studies.
Collapse
|
34
|
Abstract
MicroRNA molecules have a variety of roles in cellular development and proliferation processes, including normal osteogenesis. These effects are exerted through post-translational inhibition of target genes. Altered miRNA expression has been demonstrated in several cancers, both in the tumor tissue and in the peripheral circulation. This may influence carcinogenesis if the specific miRNA targets are encoded by tumor suppressor genes or oncogenes. To date, most research investigating the role of microRNAs and primary bone tumors has focused on osteosarcoma and Ewing sarcoma. Several microRNAs including the miR-34 family have been implicated in osteosarcoma tumorigenesis via effects on the Notch signaling pathway. Progression, invasion, and metastasis of osteosarcoma tumor cells is also influenced by microRNA expression. In addition, microRNA expression may affect the response to chemotherapy in osteosarcoma and thus hold potential for future use as either a prognostic indicator or a therapeutic target. The EWS-FLI1 fusion protein produced in Ewing sarcoma has been shown to induce changes in miRNA expression. MicroRNA expression profiling may have some potential for prediction of disease progression and survival in Ewing sarcoma. There is limited evidence to support a role for microRNAs in other primary bone tumors, either malignant or benign; however, early work is suggestive of involvement in chondrosarcoma, multiple osteochondromatosis, and giant cell tumors of bone.
Collapse
|
35
|
Lye KL, Nordin N, Vidyadaran S, Thilakavathy K. Mesenchymal stem cells: From stem cells to sarcomas. Cell Biol Int 2016; 40:610-8. [PMID: 26992453 DOI: 10.1002/cbin.10603] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have garnered vast interests in clinical settings, especially in regenerative medicine due to their unique properties-they are reliably isolated and expanded from various tissue sources; they are able to differentiate into mesodermal tissues such as bones, cartilages, adipose tissues, and muscles; and they have unique immunosuppressive properties. However, there are some concerns pertaining to the role of MSCs in the human body. On one hand, they are crucial component in the regeneration and repair of the human body. On the contrary, they are shown to transform into sarcomas. Although the exact mechanisms are still unknown, many new leads have pointed to the belief that MSCs do play a role in sarcomagenesis. This review focuses on the current updates and findings of the role of MSCs in their transformation process into sarcomas.
Collapse
Affiliation(s)
- Kwan Liang Lye
- Medical Genetics Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Karuppiah Thilakavathy
- Medical Genetics Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
36
|
Pérez-Velázquez J, Gevertz JL, Karolak A, Rejniak KA. Microenvironmental Niches and Sanctuaries: A Route to Acquired Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 936:149-164. [PMID: 27739047 DOI: 10.1007/978-3-319-42023-3_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A tumor vasculature that is functionally abnormal results in irregular gradients of metabolites and drugs within the tumor tissue. Recently, significant efforts have been committed to experimentally examine how cellular response to anti-cancer treatments varies based on the environment in which the cells are grown. In vitro studies point to specific conditions in which tumor cells can remain dormant and survive the treatment. In vivo results suggest that cells can escape the effects of drug therapy in tissue regions that are poorly penetrated by the drugs. Better understanding how the tumor microenvironments influence the emergence of drug resistance in both primary and metastatic tumors may improve drug development and the design of more effective therapeutic protocols. This chapter presents a hybrid agent-based model of the growth of tumor micrometastases and explores how microenvironmental factors can contribute to the development of acquired resistance in response to a DNA damaging drug. The specific microenvironments of interest in this work are tumor hypoxic niches and tumor normoxic sanctuaries with poor drug penetration. We aim to quantify how spatial constraints of limited drug transport and quiescent cell survival contribute to the development of drug resistant tumors.
Collapse
Affiliation(s)
- Judith Pérez-Velázquez
- Mathematical Modeling of Biological Systems, Centre for Mathematical Science, Technical University of Munich, Garching, Germany.
| | - Jana L Gevertz
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, USA
| | - Aleksandra Karolak
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
37
|
Lim HJ, Yang JL. Regulatory roles and therapeutic potential of microRNA in sarcoma. Crit Rev Oncol Hematol 2016; 97:118-30. [DOI: 10.1016/j.critrevonc.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 07/15/2015] [Accepted: 08/04/2015] [Indexed: 02/01/2023] Open
|
38
|
Redini F, Heymann D. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma. Front Oncol 2015; 5:279. [PMID: 26779435 PMCID: PMC4688361 DOI: 10.3389/fonc.2015.00279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022] Open
Abstract
Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the “vicious cycle” concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable “niche” for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.
Collapse
Affiliation(s)
- Françoise Redini
- INSERM UMR_S 957, Nantes, France; Equipe labellisée Ligue contre le Cancer 2012, Nantes, France; Laboratoire de Physiopathologie de la Résorption osseuse et Thérapie des tumeurs osseuses primitives, Faculté de Médecine, Nantes, France
| | - Dominique Heymann
- INSERM UMR_S 957, Nantes, France; Equipe labellisée Ligue contre le Cancer 2012, Nantes, France; Laboratoire de Physiopathologie de la Résorption osseuse et Thérapie des tumeurs osseuses primitives, Faculté de Médecine, Nantes, France; CHU Hôtel-Dieu, Nantes, France
| |
Collapse
|
39
|
Ségaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol 2015; 4:1-12. [PMID: 26579483 PMCID: PMC4620971 DOI: 10.1016/j.jbo.2015.01.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 01/13/2023] Open
Abstract
Bone cancers are characterised by the development of tumour cells in bone sites, associated with a dysregulation of their environment. In the last two decades, numerous therapeutic strategies have been developed to target the cancer cells or tumour niche. As the crosstalk between these two entities is tightly controlled by the release of polypeptide mediators activating signalling pathways through several receptor tyrosine kinases (RTKs), RTK inhibitors have been designed. These inhibitors have shown exciting clinical impacts, such as imatinib mesylate, which has become a reference treatment for chronic myeloid leukaemia and gastrointestinal tumours. The present review gives an overview of the main molecular and functional characteristics of RTKs, and focuses on the clinical applications that are envisaged and already assessed for the treatment of bone sarcomas and bone metastases.
Collapse
Affiliation(s)
- Aude I Ségaliny
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marta Tellez-Gabriel
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marie-Françoise Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| |
Collapse
|
40
|
Otero JE, Stevens JW, Malandra AE, Fredericks DC, Odgren PR, Buckwalter JA, Morcuende J. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction. J Orthop Res 2014; 32:1562-71. [PMID: 25125336 DOI: 10.1002/jor.22714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/14/2014] [Indexed: 02/04/2023]
Abstract
Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients.
Collapse
Affiliation(s)
- Jesse E Otero
- Department of Orthopaedic Surgery, University of Iowa, 200 Hawkins Drive, 01051 JPP, Iowa City, Iowa, 52242
| | | | | | | | | | | | | |
Collapse
|
41
|
Mutsaers AJ, Walkley CR. Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells? Bone 2014; 62:56-63. [PMID: 24530473 DOI: 10.1016/j.bone.2014.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/14/2014] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
Osteosarcoma is a disease with many complex genetic abnormalities but few well defined genetic drivers of tumor initiation and evolution. The disease is diagnosed and defined through the observation of malignant osteoblastic cells that produce osteoid, however the exact cell of origin for this cancer remains to be definitively defined. Evidence exists to support a mesenchymal stem cell as well as committed osteoblast precursors as the cell of origin. Increasing numbers of experimental models have begun to shed light on to the likely cell population that gives rise to OS in vivo with the weight of evidence favoring an osteoblastic population as the cell of origin. As more information is gathered regarding osteosarcoma initiating cells and how they may relate to the cell of origin we will derive a better understanding of the development of this disease which may ultimately lead to clinical improvements through more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Anthony J Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Carl R Walkley
- Stem Cell Regulation Unit and ACRF Rational Drug Discovery Centre, St. Vincent's Institute, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
42
|
Landowski TH, Gard J, Pond E, Pond GD, Nagle RB, Geffre CP, Cress AE. Targeting integrin α6 stimulates curative-type bone metastasis lesions in a xenograft model. Mol Cancer Ther 2014; 13:1558-66. [PMID: 24739392 DOI: 10.1158/1535-7163.mct-13-0962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Laminin-binding integrin receptors are key mediators of epithelial cell migration and tumor metastasis. Recent studies have demonstrated a role for the α6 integrin (ITGA6/CD49f) in maintaining stem cell compartments within normal bone marrow and in residency of tumors metastatic to bone. In this study, we tested a function-blocking antibody specific for ITGA6, called J8H, to determine if preexisting cancer lesions in bone could be slowed and/or animal survival improved. Human prostate tumors were established by intracardiac injection into male SCID mice and treatment with J8H antibody was initiated after 1 week. Tumor progression was monitored by micro-computed tomography (CT) imaging of skeletal lesions. Animals that received weekly injections of the anti-ITGA6 antibody showed radiographic progression in only 40% of osseous tumors (femur or tibia), compared with control animals, where 80% of the lesions (femur or tibia) showed progression at 5 weeks. Kaplan-Meier survival analysis demonstrated a significant survival advantage for J8H-treated animals. Unexpectedly, CT image analysis revealed an increased proportion of bone lesions displaying a sclerotic rim of new bone formation, encapsulating the arrested lytic lesions in animals that received the anti-ITGA6 antibody treatment. Histopathology of the sclerotic lesions demonstrated well-circumscribed tumor within bone, surrounded by fibrosis. These data suggest that systemic targeting of the ITGA6-dependent function of established tumors in bone may offer a noncytotoxic approach to arrest the osteolytic progression of metastatic prostate cancer, thereby providing a new therapeutic strategy for advanced disease.
Collapse
Affiliation(s)
- Terry H Landowski
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, ArizonaAuthors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Jaime Gard
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Erika Pond
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Gerald D Pond
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Raymond B Nagle
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, ArizonaAuthors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Christopher P Geffre
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Anne E Cress
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, ArizonaAuthors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| |
Collapse
|
43
|
Abstract
Micro ribonucleic acids (miRNAs) are small non-coding RNA segments that have a role in the regulation of normal cellular development and proliferation including normal osteogenesis. They exert their effects through inhibition of specific target genes at the post-transcriptional level. Many miRNAs have altered expression levels in cancer (either increased or decreased depending on the specific miRNA). Altered miRNA expression profiles have been identified in several malignancies including primary bone tumors such as osteosarcoma and Ewing’s sarcoma. It is thought that they may function as tumor suppressor genes or oncogenes and hence when dysregulated contribute to the initiation and progression of malignancy. miRNAs are also thought to have a role in the development of bone metastases in other malignancies. In addition, evidence increasingly suggests that miRNAs may play a part in determining the response to chemotherapy in the treatment of osteosarcoma. These molecules are readily detectable in tissues, both fresh and formalin fixed paraffin embedded and, more recently, in blood. Although there are fewer published studies regarding circulating miRNA profiles, they appear to reflect changes in tissue expression. Thus miRNAs may serve as potential indicators of disease presence but more importantly, may have a role in disease characterization or as potential therapeutic targets. This review gives a brief overview of miRNA biochemistry and explores the evidence to date implicating these small molecules in the pathogenesis of bone tumors.
Collapse
Affiliation(s)
- Mary Nugent
- Department of Orthopaedic Surgery, Cappagh National Orthopaedic Hospital, Finglas, Dublin, Ireland
| |
Collapse
|
44
|
Update on Targets and Novel Treatment Options for High-Grade Osteosarcoma and Chondrosarcoma. Hematol Oncol Clin North Am 2013; 27:1021-48. [DOI: 10.1016/j.hoc.2013.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Monderer D, Luseau A, Bellec A, David E, Ponsolle S, Saiagh S, Bercegeay S, Piloquet P, Denis MG, Lodé L, Rédini F, Biger M, Heymann D, Heymann MF, Le Bot R, Gouin F, Blanchard F. New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance. J Transl Med 2013; 93:1100-14. [PMID: 23958880 DOI: 10.1038/labinvest.2013.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 12/23/2022] Open
Abstract
Chondrosarcomas are cartilage-forming, poorly vascularized tumors. They represent the second malignant primary bone tumor of adults after osteosarcoma, but in contrast to osteosarcoma they are resistant to chemotherapy and radiotherapy, surgical excision remaining the only therapeutic option. Few cell lines and animal models are available, and the mechanisms behind their chemoresistance remain largely unknown. Our goal was to establish new cell lines and animal cancer models from human chondrosarcoma biopsies to study their chemoresistance. Between 2007 and 2012, 10 chondrosarcoma biopsies were collected and used for cell culture and transplantation into nude mice. Only one transplanted biopsy and one injected cell line has engrafted successfully leading to conventional central high-grade chondrosarcoma similar to the original biopsies. In culture, two new stable cell lines were obtained, one from a dedifferentiated and one from a grade III conventional central chondrosarcoma biopsy. Their genetic characterization revealed triploid karyotypes, mutations in IDH1, IDH2, and TP53, deletion in CDKN2A and/or MDM2 amplification. These cell lines expressed mesenchymal membrane markers (CD44, 73, 90, 105) and were able to produce a hyaline cartilaginous matrix when cultured in chondrogenic three-dimensional (3D) pellets. Using a high-throughput quantitative RT-PCR approach, we observed that cell lines cultured in monolayer had lost expression of several genes implicated in cartilage development (COL2A1, COMP, ACAN) but restored their expression in 3D cultures. Chondrosarcoma cells in monolayer were sensitive to several conventional chemotherapeutic agents but became resistant to low doses of mafosfamide or doxorubicin when cultured in 3D pellets, in parallel with an altered nucleic accumulation of the drug. Our results indicate that the cartilaginous matrix produced by chondrosarcoma cells may impair diffusion of several drugs and thus contribute to chemoresistance. Therefore, 3D chondrogenic cell pellets constitute a more relevant model to study chondrosarcoma chemoresistance and may be a valuable alternative to animal experimentations.
Collapse
Affiliation(s)
- David Monderer
- 1] INSERM, UMR 957, Equipe Labellisée LIGUE 2012, Nantes, France [2] Université de Nantes, Nantes Atlantique Universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France [3] Atlantic Bone Screen (ABS), St Herblain, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
van Oosterwijk JG, van Ruler MAJH, Briaire-de Bruijn IH, Herpers B, Gelderblom H, van de Water B, Bovée JVMG. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells. Br J Cancer 2013; 109:1214-22. [PMID: 23922104 PMCID: PMC3778302 DOI: 10.1038/bjc.2013.451] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. METHODS We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. RESULTS Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). CONCLUSION These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations.
Collapse
Affiliation(s)
- J G van Oosterwijk
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - M A J H van Ruler
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - I H Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - B Herpers
- Division of Toxicology, Leiden/Amsterdam Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - H Gelderblom
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - B van de Water
- Division of Toxicology, Leiden/Amsterdam Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - J V M G Bovée
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
47
|
Targeted therapies for bone sarcomas. BONEKEY REPORTS 2013; 2:378. [PMID: 24422100 DOI: 10.1038/bonekey.2013.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 02/08/2023]
Abstract
Bone sarcomas include a very large number of tumour subtypes, which originate form bone and more particularly from mesenchymal stem cell lineage. Osteosarcoma, Ewing's sarcoma and chondrosarcoma, the three main bone sarcoma entities develop in a favourable microenvironment composed by bone cells, blood vessels, immune cells, based on the 'seed and soil theory'. Current therapy associates surgery and chemotherapy, however, bone sarcomas remain diseases with high morbidity and mortality especially in children and adolescents. In the past decade, various new therapeutic approaches emerged and target the tumour niche or/and directly the tumour cells by acting on signalling/metabolic pathways involved in cell proliferation, apoptosis or drug resistance. The present review gives a brief overview from basic to clinical assessment of the main targeted therapies of bone sarcoma cells.
Collapse
|
48
|
Anti-RANKL therapy for bone tumours: Basic, pre-clinical and clinical evidences. J Bone Oncol 2012; 1:2-11. [PMID: 26909248 PMCID: PMC4723324 DOI: 10.1016/j.jbo.2012.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/28/2012] [Indexed: 01/24/2023] Open
Abstract
Bone remodelling is related to coordinated phases of bone resorption and bone apposition allowing the maintenance of bone integrity, the phosphocalcic homoeostasis all along the life and consequently the bone adaptation to mechanical constraints or/and to endocrine fluctuations. Unfortunately, bone is a frequent site of tumour development originated from bone cell lineages (primary bone tumours: bone sarcomas) or from nonosseous origins (bone metastases: carcinomas). These tumour cells disrupt the balance between osteoblast and osteoclast activities resulting in a disturbed bone remodelling weakening the bone tissue, in a strongly altered bone microenvironment and consequently facilitating the tumour growth. At the early stage of tumour development, osteoclast differentiation and recruitment of mature osteoclasts are strongly activated resulting in a strong bone matrix degradation and release of numerous growth factors initially stored into this organic/calcified matrix. In turn these soluble factors stimulate the proliferation of tumour cells and exacerbate their migration and their ability to initiate metastases. Because Receptor Activator of NFκB Ligand (RANKL) is absolutely required for in vivo osteoclastogenesis, its role in the bone tumour growth has been immediately pointed out and has consequently allowed the development of new targeted therapies of these malignant diseases. The present review summarises the role of RANKL in the bone tumour microenvironment, the most recent pre-clinical and clinical evidences of its targeting in bone metastases and bone sarcomas. The following sections position RANKL targeted therapy among the other anti-resorptive therapies available and underline the future directions which are currently under investigations.
Collapse
|
49
|
Searching for molecular targets in sarcoma. Biochem Pharmacol 2012; 84:1-10. [PMID: 22387046 DOI: 10.1016/j.bcp.2012.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/18/2022]
Abstract
Sarcoma are about 1% of cancers. Within that 1% are widely varied tumors now divided into types and subtypes. Sarcoma occur in patients of all ages with frequency spread evenly over the human age range. Although the specific cell of origin of many sarcoma remains unclear, sarcoma are all tumors of mesenchymal origin. The mesenchymal stem cell, a pluripotent cell, which gives rise to varied differentiated cells including osteocytes, adipocytes, chondrocytes, muscle cells, fibroblasts, neural cells and stromal cells, is the most likely ultimate cell of origin for sarcoma. When mesenchymal stem cell genetics go awry and malignant transformation occurs sarcoma including osteosarcoma, Ewing's sarcoma, chondrosarcoma, rhabdomyosarcoma, synovial sarcoma fibrosarcoma, liposarcoma and many others can initiate. Our knowledge of sarcoma genetics is increasing rapidly. Two general groups, sarcoma arising from chromosomal translocations and sarcoma with very complex genetics, can be identified. Genes that are frequently mutated in sarcoma include TP53, NF1, PIK3CA, HDAC1, IDH1 and 2, KDR, KIT and MED12. Genes that are frequently amplified in sarcoma include CDK4, YEATS4, HMGA2, MDM2, JUN, DNM3, FLT4, MYCN, MAP3K5, GLI1 and the microRNAs miR-214 and miR-199a2. Genes that are upregulated in sarcoma include MUC4, CD24, FOXL1, ANGPTL2, HIF1α, MDK, cMET, TIMP-2, PRL, PCSK1, IGFR-1, TIE1, KDR, TEK, FLT1 and several microRNAs. While some alterations occur in specific subtypes of sarcoma, others cross several sarcoma types. Discovering and developing new therapeutic approaches for these relentless diseases is critical. The detailed knowledge of sarcoma genetics may allow development of sarcoma subtype-targeted therapeutics.
Collapse
|