1
|
Klein M, Hilts AS, Fennessy RT, Trattnig N, Stehrer-Polášek T, Rittmann SKMR, Fink C. Markerless mutagenesis enables isoleucine biosynthesis solely from threonine in Methanothermobacter marburgensis. Microbiol Spectr 2025:e0306824. [PMID: 40243305 DOI: 10.1128/spectrum.03068-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The archaeal model microorganism Methanothermobacter marburgensis has been studied for methane production for decades. However, genetic modifications are required to harness M. marburgensis for the generation of novel archaeal cell factories for industrial-scale production of commodity and high-value chemicals. Only the development of tools for genetic engineering opens up this possibility. Here, we present the establishment of the first markerless mutagenesis system for genetic modification of M. marburgensis. This system allows the recycling of positive selection markers and enables multiple sequential gene deletions or integrations. As a demonstration, we clarified the postulated isoleucine biosynthesis pathway directly from pyruvate via citramalate synthase (CimA). In doing so, we identified a putative CimA in M. marburgensis and deleted the CimA coding gene, resulting in auxotrophy for isoleucine. The complementation of cimA initiated through constitutive expression led to prototrophic growth similar to the wild type, demonstrating that cimA is essential for pyruvate-derived isoleucine biosynthesis in M. marburgensis. As it has been shown vice versa in Escherichia coli before, we were able to complement isoleucine biosynthesis with the integration of a synthetic isoleucine biosynthesis pathway from threonine for the first time in a methanogenic archaeon. This was achieved via genome integration of the characterized thermostable threonine deaminase from Geobacillus stearothermophilus. The successful integration of an alternative pathway for isoleucine production paves the road for future application of multi-gene biosynthetic pathways to overproduce industrially relevant chemicals. IMPORTANCE The autotrophic, hydrogenotrophic methanogen Methanothermobacter marburgensis is one of the best-studied model organisms in the field of thermophilic archaea. The fact that M. marburgensis shows robust growth and scalability in bioreactor systems makes it a highly suitable candidate for industrial-scale bioprocesses. Additionally, the reported study provides the tools for genetic engineering that enable sequential genome modification in M. marburgensis. Scalable bioreactor cultivation, the ability to genetically engineer, and the recent discovery of natural amino acid secretion in M. marburgensis set the cornerstone for the generation of the first cell factories in archaeal biotechnology to economically produce carbon dioxide-derived commodity and high-value chemicals at industrial scale.
Collapse
Affiliation(s)
| | - Angus S Hilts
- Arkeon GmbH, Tulln a.d. Donau, Austria
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | | | | | | | - Simon K-M R Rittmann
- Arkeon GmbH, Tulln a.d. Donau, Austria
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | | |
Collapse
|
2
|
Magalhães CP, Duarte MS, Pereira MA, Stams AJM, Cavaleiro AJ. Facultative anaerobic bacteria enable syntrophic fatty acids degradation under micro-aerobic conditions. BIORESOURCE TECHNOLOGY 2025; 417:131829. [PMID: 39547298 DOI: 10.1016/j.biortech.2024.131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Trace amounts of oxygen stimulate facultative anaerobic bacteria (FAB) within anaerobic bioreactors, which was shown to correlate with enhanced methane production from long-chain fatty acids. The relationship between FAB and fatty acid-degrading syntrophic communities under micro-aerobic conditions is still unclear. In this work, two syntrophic co-cultures, Syntrophomonas wolfei + Methanospirillum hungatei and Syntrophomonas zehnderi + Methanobacterium formicicum, were assembled and incubated with short, medium and long-chain fatty acids, with 0-10 % O2, in the presence and absence of FAB, here represented by Pseudomonas spp. Without Pseudomonas, the syntrophic activity was inhibited by 79 % at 0.5 % O2, but with Pseudomonas, the syntrophic co-cultures successfully converted the fatty acids to methane with up to 2 % O2. These findings underscore the pivotal role of FAB in the protection of syntrophic fatty acid-degrading communities under micro-aerobic conditions and emphasizes its significance in real-scale anaerobic digesters where strictly anaerobic conditions may not consistently be maintained.
Collapse
Affiliation(s)
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - M Alcina Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Alfons J M Stams
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Akimoto S, Tsubota J, Angelidaki I, Hidaka T, Fujiwara T. Pilot-scale in-situ biomethanation of sewage sludge: Effects of gas recirculation method. BIORESOURCE TECHNOLOGY 2024; 413:131524. [PMID: 39321937 DOI: 10.1016/j.biortech.2024.131524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The methanation efficiency and operational stability of a 2 m3 pilot-scale in-situ biomethanation reactor were investigated using on-site sewage sludge as the substrate, at a wastewater treatment plant. In parallel, a laboratory-scale study was conducted. Hydrogen conversion efficiencies of 96.7 and 97.5 %, and average methane contents of 84.2 and 83.2 % were obtained, for the laboratory and pilot experiments, respectively. The pilot-scale digester was operated at various conditions for 137 d, of which the last 30 d were stable with a high biomethanation efficiency and an average pH of 8.2. Gas recirculation increased the hydrogen conversion efficiency. When hydrogen injection and gas recirculation were applied separately, a 96 % lower gas recirculation rate was needed to achieve the same hydrogen conversion efficiency, compared to a mixture of hydrogen injection and gas recirculation in the same line. These findings may facilitate the selection of suitable gas recirculation concepts for practical biomethanation applications.
Collapse
Affiliation(s)
- Shinya Akimoto
- Energy Technology Laboratories, Osaka Gas Co., Ltd., Osaka 554-0051, Japan.
| | - Jun Tsubota
- Energy Technology Laboratories, Osaka Gas Co., Ltd., Osaka 554-0051, Japan
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Taira Hidaka
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan
| | - Taku Fujiwara
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
4
|
Mühling L, Baur T, Molitor B. Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39363002 DOI: 10.1007/10_2024_270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology. This technology converts hydrogen from water electrolysis and carbon dioxide into renewable natural gas (i.e., methane). The application of methanogenic archaea in bioproduction beyond methane has been demonstrated in only a few instances and is limited to mesophilic species for which genetic engineering tools are available. In this chapter, we discuss recent developments for those existing genetically tractable systems and the inclusion of novel genetic tools for thermophilic methanogenic species. We then give an overview of recombinant bioproduction with mesophilic methanogenic archaea and thermophilic non-methanogenic microbes. This is the basis for discussing putative products with thermophilic methanogenic archaea, specifically the species Methanothermobacter thermautotrophicus. We give estimates of potential conversion efficiencies for those putative products based on a genome-scale metabolic model for M. thermautotrophicus.
Collapse
Affiliation(s)
- Lucas Mühling
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Tina Baur
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Karavaeva V, Sousa FL. Navigating the archaeal frontier: insights and projections from bioinformatic pipelines. Front Microbiol 2024; 15:1433224. [PMID: 39380680 PMCID: PMC11459464 DOI: 10.3389/fmicb.2024.1433224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Archaea continues to be one of the least investigated domains of life, and in recent years, the advent of metagenomics has led to the discovery of many new lineages at the phylum level. For the majority, only automatic genomic annotations can provide information regarding their metabolic potential and role in the environment. Here, genomic data from 2,978 archaeal genomes was used to perform automatic annotations using bioinformatics tools, alongside synteny analysis. These automatic classifications were done to assess how good these different tools perform in relation to archaeal data. Our study revealed that even with lowered cutoffs, several functional models do not capture the recently discovered archaeal diversity. Moreover, our investigation revealed that a significant portion of archaeal genomes, approximately 42%, remain uncharacterized. In comparison, within 3,235 bacterial genomes, a diverse range of unclassified proteins is obtained, with well-studied organisms like Escherichia coli having a substantially lower proportion of uncharacterized regions, ranging from <5 to 25%, and less studied lineages being comparable to archaea with the range of 35-40% of unclassified regions. Leveraging this analysis, we were able to identify metabolic protein markers, thereby providing insights into the metabolism of the archaea in our dataset. Our findings underscore a substantial gap between automatic classification tools and the comprehensive mapping of archaeal metabolism. Despite advances in computational approaches, a significant portion of archaeal genomes remains unexplored, highlighting the need for extensive experimental validation in this domain, as well as more refined annotation methods. This study contributes to a better understanding of archaeal metabolism and underscores the importance of further research in elucidating the functional potential of archaeal genomes.
Collapse
Affiliation(s)
- Val Karavaeva
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Biderre-Petit C, Mbarki M, Courtine D, Benarab Y, Vial C, Fontanille P, Dubessay P, Keramati M, Jouan-Dufournel I, Monjot A, Guez JS, Fadhlaoui K. Comparison of methane yield of a novel strain of Methanothermobacter marburgensis in pure and mixed adapted culture derived from a methanation bubble column bioreactor. BIORESOURCE TECHNOLOGY 2024; 406:131021. [PMID: 38909868 DOI: 10.1016/j.biortech.2024.131021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The ongoing discussion regarding the use of mixed or pure cultures of hydrogenotrophic methanogenic archaea in Power-to-Methane (P2M) bioprocess applications persists, with each option presenting its own advantages and disadvantages. To address this issue, a comparison of methane (CH4) yield between a novel methanogenic archaeon belonging to the species Methanothermobacter marburgensis (strain Clermont) isolated from a biological methanation column, and the community from which it originated, was conducted. This comparison included the type strain M. marburgensis str. Marburg. The evaluation also examined how exposure to oxygen (O2) for up to 240 min impacted the CH4 yield across these cultures. While both Methanothermobacter strains exhibit comparable CH4 yield, slightly higher than that of the mixed adapted culture under non-O2-exposed conditions, strain Clermont does not display the lag time observed for strain Marburg.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France.
| | - Mariem Mbarki
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Damien Courtine
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Yanis Benarab
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Christophe Vial
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Pierre Fontanille
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Misagh Keramati
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Isabelle Jouan-Dufournel
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Arthur Monjot
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Jean Sébastien Guez
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Khaled Fadhlaoui
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France; Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
7
|
Sutherland‐Smith AJ, Carbone V, Schofield LR, Cronin B, Duin EC, Ronimus RS. The crystal structure of methanogen McrD, a methyl-coenzyme M reductase-associated protein. FEBS Open Bio 2024; 14:1222-1229. [PMID: 38877345 PMCID: PMC11301259 DOI: 10.1002/2211-5463.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Methyl-coenzyme M reductase (MCR) is a multi-subunit (α2β2γ2) enzyme responsible for methane formation via its unique F430 cofactor. The genes responsible for producing MCR (mcrA, mcrB and mcrG) are typically colocated with two other highly conserved genes mcrC and mcrD. We present here the high-resolution crystal structure for McrD from a human gut methanogen Methanomassiliicoccus luminyensis strain B10. The structure reveals that McrD comprises a ferredoxin-like domain assembled into an α + β barrel-like dimer with conformational flexibility exhibited by a functional loop. The description of the M. luminyensis McrD crystal structure contributes to our understanding of this key conserved methanogen protein typically responsible for promoting MCR activity and the production of methane, a greenhouse gas.
Collapse
Affiliation(s)
| | | | | | - Bryan Cronin
- Department of Chemistry and BiochemistryAuburn UniversityALUSA
| | - Evert C. Duin
- Department of Chemistry and BiochemistryAuburn UniversityALUSA
| | | |
Collapse
|
8
|
Nomura S, Paczia N, Kahnt J, Shima S. Isolation of an H 2-dependent electron-bifurcating CO 2-reducing megacomplex with MvhB polyferredoxin from Methanothermobacter marburgensis. FEBS J 2024; 291:2449-2460. [PMID: 38468562 DOI: 10.1111/febs.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
In the hydrogenotrophic methanogenic pathway, formylmethanofuran dehydrogenase (Fmd) catalyzes the formation of formylmethanofuran through reducing CO2. Heterodisulfide reductase (Hdr) provides two low potential electrons for the Fmd reaction using a flavin-based electron-bifurcating mechanism. [NiFe]-hydrogenase (Mvh) or formate dehydrogenase (Fdh) complexes with Hdr and provides electrons to Hdr from H2 and formate, or the reduced form of F420, respectively. Recently, an Fdh-Hdr complex was purified as a 3-MDa megacomplex that contained Fmd, and its three-dimensional structure was elucidated by cryo-electron microscopy. In contrast, the Mvh-Hdr complex has been characterized only as a complex without Fmd. Here, we report the isolation and characterization of a 1-MDa Mvh-Hdr-Fmd megacomplex from Methanothermobacter marburgensis. After anion-exchange and hydrophobic chromatography was performed, the proteins with Hdr activity eluted in the 1- and 0.5-MDa fractions during size exclusion chromatography. Considering the apparent molecular mass and the protein profile in the fractions, the 1-MDa megacomplex was determined to be a dimeric Mvh-Hdr-Fmd complex. The megacomplex fraction contained a polyferredoxin subunit MvhB, which contains 12 [4Fe-4S]-clusters. MvhB polyferredoxin has never been identified in the previously purified Mvh-Hdr and Fmd preparations, suggesting that MvhB polyferredoxin is stabilized by the binding between Mvh-Hdr and Fmd in the Mvh-Hdr-Fmd complex. The purified Mvh-Hdr-Fmd megacomplex catalyzed electron-bifurcating reduction of [13C]-CO2 to form [13C]-formylmethanofuran in the absence of extrinsic ferredoxin. These results demonstrated that the subunits in the Mvh-Hdr-Fmd megacomplex are electronically connected for the reduction of CO2, which likely involves MvhB polyferredoxin as an electron relay.
Collapse
Affiliation(s)
- Shunsuke Nomura
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
9
|
Andreides D, Lopez Marin MA, Zabranska J. Selective syngas fermentation to acetate under acidic and psychrophilic conditions using mixed anaerobic culture. BIORESOURCE TECHNOLOGY 2024; 394:130235. [PMID: 38141884 DOI: 10.1016/j.biortech.2023.130235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Syngas fermentation to acetate offers a promising solution for its valorisation, particularly when syngas contains a high N2 concentration, which otherwise impedes the utilisation of syngas biomethanation gaseous product in cogeneration or upgrading units. In this study, continuous lab-scale syngas fermentation assessing the effects of acidic pH and psychrophilic conditions (28 °C and 20 °C) on bioconversion efficiency and anaerobic consortium diversity was studied. The results showed that as temperature and pH decrease, acetate yield increases. The highest H2 and CO consumption rates were observed at 20 °C and pH 4.5, reaching 48.4 mmol/(L·d) and 31.5 mmol/(L·d), respectively, and methanogenic activity was not completely suppressed. The microbial community composition indicated an enhanced abundance of acetate-producing bacteria and hydrogenotrophic methanogens at 28 °C. The PICRUSt2 prediction of metabolic potential indicated that temperature and pH changes appear to have a more pronounced impact on acetotrophic methanogenesis genes than carbon dioxide-based methanogenesis genes.
Collapse
Affiliation(s)
- Dominik Andreides
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technicka 1905, 166 28 Prague, Czech Republic.
| | - Marco A Lopez Marin
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technicka 1905, 166 28 Prague, Czech Republic
| | - Jana Zabranska
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technicka 1905, 166 28 Prague, Czech Republic
| |
Collapse
|
10
|
Gaspari M, Ghiotto G, Centurion VB, Kotsopoulos T, Santinello D, Campanaro S, Treu L, Kougias PG. Decoding Microbial Responses to Ammonia Shock Loads in Biogas Reactors through Metagenomics and Metatranscriptomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:591-602. [PMID: 38112274 PMCID: PMC10785759 DOI: 10.1021/acs.est.3c07840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
The presence of elevated ammonia levels is widely recognized as a significant contributor to process inhibition in biogas production, posing a common challenge for biogas plant operators. The present study employed a combination of biochemical, genome-centric metagenomic and metatranscriptomic data to investigate the response of the biogas microbiome to two shock loads induced by single pulses of elevated ammonia concentrations (i.e., 1.5 g NH4+/LR and 5 g NH4+/LR). The analysis revealed a microbial community of high complexity consisting of 364 Metagenome Assembled Genomes (MAGs). The hydrogenotrophic pathway was the primary route for methane production during the entire experiment, confirming its efficiency even at high ammonia concentrations. Additionally, metatranscriptomic analysis uncovered a metabolic shift in the methanogens Methanothrix sp. MA6 and Methanosarcina flavescens MX5, which switched their metabolism from the acetoclastic to the CO2 reduction route during the second shock. Furthermore, multiple genes associated with mechanisms for maintaining osmotic balance in the cell were upregulated, emphasizing the critical role of osmoprotection in the rapid response to the presence of ammonia. Finally, this study offers insights into the transcriptional response of an anaerobic digestion community, specifically focusing on the mechanisms involved in recovering from ammonia-induced stress.
Collapse
Affiliation(s)
- Maria Gaspari
- Soil
and Water Resources Institute, Hellenic Agricultural Organisation
Dimitra, Thermi, Thessaloniki 57001, Greece
- Department
of Hydraulics, Soil Science and Agricultural Engineering, School of
Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Gabriele Ghiotto
- Department
of Biology, University of Padova, Padova 35121, Italy
| | | | - Thomas Kotsopoulos
- Department
of Hydraulics, Soil Science and Agricultural Engineering, School of
Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | - Laura Treu
- Department
of Biology, University of Padova, Padova 35121, Italy
| | - Panagiotis G. Kougias
- Soil
and Water Resources Institute, Hellenic Agricultural Organisation
Dimitra, Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
11
|
Casini I, McCubbin T, Esquivel-Elizondo S, Luque GG, Evseeva D, Fink C, Beblawy S, Youngblut ND, Aristilde L, Huson DH, Dräger A, Ley RE, Marcellin E, Angenent LT, Molitor B. An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter. iScience 2023; 26:108016. [PMID: 37854702 PMCID: PMC10579436 DOI: 10.1016/j.isci.2023.108016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three Methanothermobacter strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates. Using an integrated systems biology approach, we identified differences in formate anabolism between the strains and revealed that formate anabolism influences the diversion of carbon between biomass and methane. This finding, together with the omics datasets and the metabolic models we generated, can be implemented for biotechnological applications of Methanothermobacter in power-to-gas technology, and as a perspective, for value-added chemical production.
Collapse
Affiliation(s)
- Isabella Casini
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sofia Esquivel-Elizondo
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Guillermo G. Luque
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Daria Evseeva
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Christian Fink
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Sebastian Beblawy
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Nicholas D. Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Daniel H. Huson
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Largus T. Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- AG Angenent, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10D, 8000 Aarhus C, Denmark
- The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Mock MP, Ochi R, Bieringer M, Bieringer T, Brotsack R, Leyer S. Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis. Microorganisms 2023; 11:2533. [PMID: 37894191 PMCID: PMC10608875 DOI: 10.3390/microorganisms11102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation-reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until now, sodium sulfide (Na2S) has been used mainly for this purpose based on earlier published articles at the beginning of anaerobic microbiology research. In a continuation of earlier investigations, in this study, the usage of alternative reducing agents like sodium dithionite (Na2S2O4) and L-Cysteine-HCl shows that similar results can be obtained with fewer environmental and hazardous impacts. Therefore, a newly developed comparison method was used for the cultivation of Methanothermobacter marburgensis. The median methane evolution rate (MER) for the alternatives was similar compared to Na2S at different concentrations (0.5, 0.25 and 0.1 g/L). However, the use of 0.25 g/L Na2S2O4 or 0.1 g/L L-Cys-HCl led to stable MER values over consecutive batches compared to Na2S. It was also shown that a lower concentration of reducing agent leads to a higher MER. In conclusion, Na2S2O4 or L-Cys-HCl can be used as a non-corrosive and non-toxic reducing agent for ex situ biological methanation. Economically, Na2S2O4 is cheaper, which is particularly interesting for scale-up purposes.
Collapse
Affiliation(s)
- Maximilian Peter Mock
- Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany; (M.P.M.)
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, 1359 Luxembourg, Luxembourg;
| | - Rayen Ochi
- Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany; (M.P.M.)
- European Campus Rottal-Inn, Deggendorf Institut of Technology, Max-Breiherr-Straße 32, 84347 Pfarrkirchen, Germany
| | - Maria Bieringer
- Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany; (M.P.M.)
| | - Tim Bieringer
- Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany; (M.P.M.)
| | - Raimund Brotsack
- Technology Centre Energy, University of Applied Sciences Landshut, Wiesenweg 1, 94099 Ruhstorf an der Rott, Germany; (M.P.M.)
- European Campus Rottal-Inn, Deggendorf Institut of Technology, Max-Breiherr-Straße 32, 84347 Pfarrkirchen, Germany
| | - Stephan Leyer
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, 1359 Luxembourg, Luxembourg;
| |
Collapse
|
13
|
Choi W, Maharjan A, Im HG, Park JY, Park JT, Park JH. Identification and Characterization of HEPN-MNT Type II TA System from Methanothermobacter thermautotrophicus ΔH. J Microbiol 2023; 61:411-421. [PMID: 37071293 DOI: 10.1007/s12275-023-00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/19/2023]
Abstract
Toxin-antitoxin (TA) systems are widespread in bacteria and archaea plasmids and genomes to regulate DNA replication, gene transcription, or protein translation. Higher eukaryotic and prokaryotic nucleotide-binding (HEPN) and minimal nucleotidyltransferase (MNT) domains are prevalent in prokaryotic genomes and constitute TA pairs. However, three gene pairs (MTH304/305, 408/409, and 463/464) of Methanothermobacter thermautotropicus ΔH HEPN-MNT family have not been studied as TA systems. Among these candidates, our study characterizes the MTH463/MTH464 TA system. MTH463 expression inhibited Escherichia coli growth, whereas MTH464 did not and blocked MTH463 instead. Using site-directed MTH463 mutagenesis, we determined that amino acids R99G, H104A, and Y106A from the R[ɸX]4-6H motif are involved with MTH463 cell toxicity. Furthermore, we established that purified MTH463 could degrade MS2 phage RNA, whereas purified MTH464 neutralized MTH463 activity in vitro. Our results indicate that the endonuclease toxin MTH463 (encoding a HEPN domain) and its cognate antitoxin MTH464 (encoding the MNT domain) may act as a type II TA system in M. thermautotropicus ΔH. This study provides initial and essential information studying TA system functions, primarily archaea HEPN-MNT family.
Collapse
Affiliation(s)
- Wonho Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong, 27909, Republic of Korea
| | - Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hae Gang Im
- BIORCHESTRA Co., LTD., Daejeon, 34013, Republic of Korea
| | - Ji-Young Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
14
|
Prem EM, Schwarzenberger A, Markt R, Wagner AO. Effects of phenyl acids on different degradation phases during thermophilic anaerobic digestion. Front Microbiol 2023; 14:1087043. [PMID: 37089573 PMCID: PMC10113666 DOI: 10.3389/fmicb.2023.1087043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Aromatic compounds like phenyl acids (PA) can accumulate during anaerobic digestion (AD) of organic wastes due to an increased entry of lignocellulose, secondary plant metabolites or proteins, and thermodynamic challenges in degrading the benzene ring. The effects of aromatic compounds can be various - from being highly toxic to be stimulating for methanogenesis - depending on many parameters like inoculum or molecular characteristics of the aromatic compound. To contribute to a better understanding of the consequences of PA exposure during AD, the aim was to evaluate the effects of 10 mM PA on microbial communities degrading different, degradation phase-specific substrates in thermophilic batch reactors within 28 days: Microcrystalline cellulose (MCC, promoting hydrolytic to methanogenic microorganisms), butyrate or propionate (promoting syntrophic volatile fatty acid (VFA) oxidisers to methanogens), or acetate (promoting syntrophic acetate oxidisers to methanogens). Methane production, VFA concentrations and pH were evaluated, and microbial communities and extracellular polymeric substances (EPS) were assessed. The toxicity of PA depended on the type of substrate which in turn determined the (i) microbial diversity and composition and (ii) EPS quantity and quality. Compared with the respective controls, methane production in MCC reactors was less impaired by PA than in butyrate, propionate and acetate reactors which showed reductions in methane production of up to 93%. In contrast to the controls, acetate concentrations were high in all PA reactors at the end of incubation thus acetate was a bottle-neck intermediate in those reactors. Considerable differences in EPS quantity and quality could be found among substrates but not among PA variants of each substrate. Methanosarcina spp. was the dominant methanogen in VFA reactors without PA exposure and was inhibited when PA were present. VFA oxidisers and Methanothermobacter spp. were abundant in VFA assays with PA exposure as well as in all MCC reactors. As MCC assays showed higher methane yields, a higher microbial diversity and a higher EPS quantity and quality than VFA reactors when exposed to PA, we conclude that EPS in MCC reactors might have been beneficial for absorbing/neutralising phenyl acids and keeping (more susceptible) microorganisms shielded in granules or biofilms.
Collapse
Affiliation(s)
- Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
15
|
Prondzinsky P, Toyoda S, McGlynn SE. The methanogen core and pangenome: conservation and variability across biology's growth temperature extremes. DNA Res 2023; 30:dsac048. [PMID: 36454681 PMCID: PMC9886072 DOI: 10.1093/dnares/dsac048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Temperature is a key variable in biological processes. However, a complete understanding of biological temperature adaptation is lacking, in part because of the unique constraints among different evolutionary lineages and physiological groups. Here we compared the genomes of cultivated psychrotolerant and thermotolerant methanogens, which are physiologically related and span growth temperatures from -2.5°C to 122°C. Despite being phylogenetically distributed amongst three phyla in the archaea, the genomic core of cultivated methanogens comprises about one-third of a given genome, while the genome fraction shared by any two organisms decreases with increasing phylogenetic distance between them. Increased methanogenic growth temperature is associated with reduced genome size, and thermotolerant organisms-which are distributed across the archaeal tree-have larger core genome fractions, suggesting that genome size is governed by temperature rather than phylogeny. Thermotolerant methanogens are enriched in metal and other transporters, and psychrotolerant methanogens are enriched in proteins related to structure and motility. Observed amino acid compositional differences between temperature groups include proteome charge, polarity and unfolding entropy. Our results suggest that in the methanogens, shared physiology maintains a large, conserved genomic core even across large phylogenetic distances and biology's temperature extremes.
Collapse
Affiliation(s)
- Paula Prondzinsky
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8550 Tokyo, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Sakae Toyoda
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Shawn Erin McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8550 Tokyo, Japan
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| |
Collapse
|
16
|
Adam PS, Kolyfetis GE, Bornemann TLV, Vorgias CE, Probst AJ. Genomic remnants of ancestral methanogenesis and hydrogenotrophy in Archaea drive anaerobic carbon cycling. SCIENCE ADVANCES 2022; 8:eabm9651. [PMID: 36332026 PMCID: PMC9635834 DOI: 10.1126/sciadv.abm9651] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/19/2022] [Indexed: 05/19/2023]
Abstract
Anaerobic methane metabolism is among the hallmarks of Archaea, originating very early in their evolution. Here, we show that the ancestor of methane metabolizers was an autotrophic CO2-reducing hydrogenotrophic methanogen that possessed the two main complexes, methyl-CoM reductase (Mcr) and tetrahydromethanopterin-CoM methyltransferase (Mtr), the anaplerotic hydrogenases Eha and Ehb, and a set of other genes collectively called "methanogenesis markers" but could not oxidize alkanes. Overturning recent inferences, we demonstrate that methyl-dependent hydrogenotrophic methanogenesis has emerged multiple times independently, either due to a loss of Mtr while Mcr is inherited vertically or from an ancient lateral acquisition of Mcr. Even if Mcr is lost, Mtr, Eha, Ehb, and the markers can persist, resulting in mixotrophic metabolisms centered around the Wood-Ljungdahl pathway. Through their methanogenesis remnants, Thorarchaeia and two newly reconstructed order-level lineages in Archaeoglobi and Bathyarchaeia act as metabolically versatile players in carbon cycling of anoxic environments across the globe.
Collapse
Affiliation(s)
- Panagiotis S. Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Corresponding author.
| | - George E. Kolyfetis
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Till L. V. Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Alexander J. Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Environmental Metagenomics, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
17
|
Spietz RL, Payne D, Szilagyi R, Boyd ES. Reductive biomining of pyrite by methanogens. Trends Microbiol 2022; 30:1072-1083. [PMID: 35624031 DOI: 10.1016/j.tim.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/13/2023]
Abstract
Pyrite (FeS2) is the most abundant iron sulfide mineral in Earth's crust. Until recently, FeS2 has been considered a sink for iron (Fe) and sulfur (S) at low temperature in the absence of oxygen or oxidative weathering, making these elements unavailable to biology. However, anaerobic methanogens can transfer electrons extracellularly to reduce FeS2 via direct contact with the mineral. Reduction of FeS2 occurs through a multistep process that generates aqueous sulfide (HS-) and FeS2-associated pyrrhotite (Fe1-xS). Subsequent dissolution of Fe1-xS provides Fe(II)(aq), but not HS-, that rapidly complexes with HS-(aq) generated from FeS2 reduction to form soluble iron sulfur clusters [nFeS(aq)]. Cells assimilate nFeS(aq) to meet Fe/S nutritional demands by mobilizing and hyperaccumulating Fe and S from FeS2. As such, reductive dissolution of FeS2 by methanogens has important implications for element cycling in anoxic habitats, both today and in the geologic past.
Collapse
Affiliation(s)
- Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Robert Szilagyi
- Department of Chemistry, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
18
|
Brazelton WJ, McGonigle JM, Motamedi S, Pendleton HL, Twing KI, Miller BC, Lowe WJ, Hoffman AM, Prator CA, Chadwick GL, Anderson RE, Thomas E, Butterfield DA, Aquino KA, Früh-Green GL, Schrenk MO, Lang SQ. Metabolic Strategies Shared by Basement Residents of the Lost City Hydrothermal Field. Appl Environ Microbiol 2022; 88:e0092922. [PMID: 35950875 PMCID: PMC9469722 DOI: 10.1128/aem.00929-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions. IMPORTANCE The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy and carbon from Earth's mantle. Uplift of mantle rocks into the seafloor can trigger a process known as serpentinization that releases molecular hydrogen (H2) and creates unusual environmental conditions where simple organic carbon molecules are more stable than dissolved inorganic carbon. This study provides an initial glimpse into the kinds of microbes that live deep within the seafloor where serpentinization takes place, by sampling hydrothermal fluids exiting from the Lost City chimneys. The metabolic strategies that these microbes appear to be using are also shared by microbes that inhabit other sites of serpentinization, including continental subsurface environments and natural springs. Therefore, the results of this study contribute to a broader, interdisciplinary effort to understand the general principles and mechanisms by which serpentinization-associated processes can support life on Earth and perhaps other worlds.
Collapse
Affiliation(s)
| | - Julia M. McGonigle
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Shahrzad Motamedi
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Katrina I. Twing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Briggs C. Miller
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - William J. Lowe
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Cecilia A. Prator
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Grayson L. Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Elaina Thomas
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - David A. Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington, USA
| | | | | | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Susan Q. Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
19
|
Wang C, Lai Z, Huang G, Pan H. Current State of [Fe]‐Hydrogenase and Its Biomimetic Models. Chemistry 2022; 28:e202201499. [DOI: 10.1002/chem.202201499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC) State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing P. R. China
| | - Zhenli Lai
- Key Laboratory of Development and Application of Rural Renewable Energy Biogas Institute of Ministry of Agriculture and Rural Affairs Section 4–13, Renmin South Road 610041 Chengdu P. R. China
| | - Gangfeng Huang
- Key Laboratory of Development and Application of Rural Renewable Energy Biogas Institute of Ministry of Agriculture and Rural Affairs Section 4–13, Renmin South Road 610041 Chengdu P. R. China
| | - Hui‐Jie Pan
- Chemistry and Biomedicine Innovation Center (ChemBIC) State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing P. R. China
| |
Collapse
|
20
|
Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO2. ENERGIES 2022. [DOI: 10.3390/en15114064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a major contributor to climate change, yet it is also an undervalued source of carbon that could be recycled and represents an opportunity to generate renewable energy. In this context, PtX technologies would allow for CO2 valorization into renewable fuels while reducing greenhouse gas (GHG) emissions. With this work we want to provide an up-to-date overview of biomethanation as a PtX technology by considering the biological aspects and the main parameters affecting its application and scalability at an industrial level. Particular attention will be paid to the concept of CO2-streams valorization and to the integration of the process with renewable energies. Aspects related to new promising technologies such as in situ, ex situ, hybrid biomethanation and the concept of underground methanation will be discussed, also in connection with recent application cases. Furthermore, the technical and economic feasibility will be critically analyzed to highlight current options and limitations for implementing a sustainable process.
Collapse
|
21
|
Tanabe TS, Dahl C. HMS-S-S: a tool for the identification of sulfur metabolism-related genes and analysis of operon structures in genome and metagenome assemblies. Mol Ecol Resour 2022; 22:2758-2774. [PMID: 35579058 DOI: 10.1111/1755-0998.13642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Sulfur compounds are used in a variety of biological processes including respiration and photosynthesis. Sulfide and sulfur compounds of intermediary oxidation state can serve as electron donors for lithotrophic growth while sulfate, thiosulfate and sulfur are used as electron acceptors in anaerobic respiration. The biochemistry underlying the manifold transformations of inorganic sulfur compounds occurring in sulfur metabolizing prokaryotes is astonishingly complex and knowledge about it has immensely increased over the last years. The advent of next-generation sequencing approaches as well as the significant increase of data availability in public databases has driven focus of environmental microbiology to probing the metabolic capacity of microbial communities by analysis of this sequence data. To facilitate these analyses, we created HMS-S-S, a comprehensive equivalogous hidden Markov model (HMM)-supported tool. Protein sequences related to sulfur compound oxidation, reduction, transport and intracellular transfer are efficiently detected and related enzymes involved in dissimilatory sulfur oxidation as opposed to sulfur compound reduction can be confidently distinguished. HMM search results are coupled to corresponding genes, which allows analysis of co-occurrence, synteny and genomic neighborhood. The HMMs were validated on an annotated test dataset and by cross-validation. We also proved its performance by exploring meta-assembled genomes isolated from samples from environments with active sulfur cycling, including members of the cable bacteria, novel Acidobacteria and assemblies from a sulfur-rich glacier, and were able to replicate and extend previous reports.
Collapse
Affiliation(s)
- Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
22
|
Gendron A, Allen KD. Overview of Diverse Methyl/Alkyl-Coenzyme M Reductases and Considerations for Their Potential Heterologous Expression. Front Microbiol 2022; 13:867342. [PMID: 35547147 PMCID: PMC9081873 DOI: 10.3389/fmicb.2022.867342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Methyl-coenzyme M reductase (MCR) is an archaeal enzyme that catalyzes the final step of methanogenesis and the first step in the anaerobic oxidation of methane, the energy metabolisms of methanogens and anaerobic methanotrophs (ANME), respectively. Variants of MCR, known as alkyl-coenzyme M reductases, are involved in the anaerobic oxidation of short-chain alkanes including ethane, propane, and butane as well as the catabolism of long-chain alkanes from oil reservoirs. MCR is a dimer of heterotrimers (encoded by mcrABG) and requires the nickel-containing tetrapyrrole prosthetic group known as coenzyme F430. MCR houses a series of unusual post-translational modifications within its active site whose identities vary depending on the organism and whose functions remain unclear. Methanogenic MCRs are encoded in a highly conserved mcrBDCGA gene cluster, which encodes two accessory proteins, McrD and McrC, that are believed to be involved in the assembly and activation of MCR, respectively. The requirement of a unique and complex coenzyme, various unusual post-translational modifications, and many remaining questions surrounding assembly and activation of MCR largely limit in vitro experiments to native enzymes with recombinant methods only recently appearing. Production of MCRs in a heterologous host is an important step toward developing optimized biocatalytic systems for methane production as well as for bioconversion of methane and other alkanes into value-added compounds. This review will first summarize MCR catalysis and structure, followed by a discussion of advances and challenges related to the production of diverse MCRs in a heterologous host.
Collapse
Affiliation(s)
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
23
|
Deconstructing Methanosarcina acetivorans into an acetogenic archaeon. Proc Natl Acad Sci U S A 2022; 119:2113853119. [PMID: 34992140 PMCID: PMC8764690 DOI: 10.1073/pnas.2113853119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
The reductive acetyl-coenzyme A (acetyl-CoA) pathway is the only carbon fixation pathway that can also be used for energy conservation like it is known for acetogenic bacteria. In methanogenic archaea, this pathway is extended with one route toward acetyl-CoA formation for anabolism and another route toward methane formation for catabolism. Which of these traits is ancestral in evolution has not been resolved. By diverging virtually all substrate carbon from methanogenesis to flow through acetyl-CoA, Methanosarcina acetivorans can be converted to an acetogenic organism. Being able to deconstruct methanogenic into the seemingly simpler acetogenic energy metabolism provides compelling evidence that methanogens are not nearly as metabolically limited as previously thought and suggests that methanogenesis might have evolved from the acetyl-CoA pathway. The reductive acetyl-coenzyme A (acetyl-CoA) pathway, whereby carbon dioxide is sequentially reduced to acetyl-CoA via coenzyme-bound C1 intermediates, is the only autotrophic pathway that can at the same time be the means for energy conservation. A conceptually similar metabolism and a key process in the global carbon cycle is methanogenesis, the biogenic formation of methane. All known methanogenic archaea depend on methanogenesis to sustain growth and use the reductive acetyl-CoA pathway for autotrophic carbon fixation. Here, we converted a methanogen into an acetogen and show that Methanosarcina acetivorans can dispense with methanogenesis for energy conservation completely. By targeted disruption of the methanogenic pathway, followed by adaptive evolution, a strain was created that sustained growth via carbon monoxide–dependent acetogenesis. A minute flux (less than 0.2% of the carbon monoxide consumed) through the methane-liberating reaction remained essential, indicating that currently living methanogens utilize metabolites of this reaction also for anabolic purposes. These results suggest that the metabolic flexibility of methanogenic archaea might be much greater than currently known. Also, our ability to deconstruct a methanogen into an acetogen by merely removing cellular functions provides experimental support for the notion that methanogenesis could have evolved from the reductive acetyl-coenzyme A pathway.
Collapse
|
24
|
A Shuttle-Vector System Allows Heterologous Gene Expression in the Thermophilic Methanogen Methanothermobacter thermautotrophicus ΔH. mBio 2021; 12:e0276621. [PMID: 34809461 PMCID: PMC8609365 DOI: 10.1128/mbio.02766-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thermophilic Methanothermobacter spp. are used as model microbes to study the physiology and biochemistry of the conversion of molecular hydrogen and carbon dioxide into methane (i.e., hydrogenotrophic methanogenesis). Yet, a genetic system for these model microbes was missing despite intensive work for four decades. Here, we report the successful implementation of genetic tools for Methanothermobacter thermautotrophicus ΔH. We developed shuttle vectors that replicated in Escherichia coli and M. thermautotrophicus ΔH. For M. thermautotrophicus ΔH, a thermostable neomycin resistance cassette served as the selectable marker for positive selection with neomycin, and the cryptic plasmid pME2001 from Methanothermobacter marburgensis served as the replicon. The shuttle-vector DNA was transferred from E. coli into M. thermautotrophicus ΔH via interdomain conjugation. After the successful validation of DNA transfer and positive selection in M. thermautotrophicus ΔH, we demonstrated heterologous gene expression of a thermostable β-galactosidase-encoding gene (bgaB) from Geobacillus stearothermophilus under the expression control of four distinct synthetic and native promoters. In quantitative in-vitro enzyme activity assay, we found significantly different β-galactosidase activity with these distinct promoters. With a formate dehydrogenase operon-encoding shuttle vector, we allowed growth of M. thermautotrophicus ΔH on formate as the sole growth substrate, while this was not possible for the empty-vector control.
Collapse
|
25
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
26
|
Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs. J Bacteriol 2021; 203:e0011721. [PMID: 34124941 PMCID: PMC8351635 DOI: 10.1128/jb.00117-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Archaeal methanogens, methanotrophs, and alkanotrophs have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, traffic, deploy, and store these elements. Here, we examined the distribution of homologs of proteins mediating key steps in Fe/S metabolism in model microorganisms, including iron(II) sensing/uptake (FeoAB), sulfide extraction from cysteine (SufS), and the biosynthesis of iron-sulfur [Fe-S] clusters (SufBCDE), siroheme (Pch2 dehydrogenase), protoheme (AhbABCD), cytochrome c (Cyt c) (CcmCF), and iron storage/detoxification (Bfr, FtrA, and IssA), among 326 publicly available, complete or metagenome-assembled genomes of archaeal methanogens/methanotrophs/alkanotrophs. The results indicate several prevalent but nonuniversal features, including FeoB, SufBC, and the biosynthetic apparatus for the basic tetrapyrrole scaffold, as well as its siroheme (and F430) derivatives. However, several early-diverging genomes lacked SufS and pathways to synthesize and deploy heme. Genomes encoding complete versus incomplete heme biosynthetic pathways exhibited equivalent prevalences of [Fe-S] cluster binding proteins, suggesting an expansion of catalytic capabilities rather than substitution of heme for [Fe-S] in the former group. Several strains with heme binding proteins lacked heme biosynthesis capabilities, while other strains with siroheme biosynthesis capability lacked homologs of known siroheme binding proteins, indicating heme auxotrophy and unknown siroheme biochemistry, respectively. While ferritin proteins involved in ferric oxide storage were widespread, those involved in storing Fe as thioferrate were unevenly distributed. Collectively, the results suggest that differences in the mechanisms of Fe and S acquisition, deployment, and storage have accompanied the diversification of methanogens/methanotrophs/alkanotrophs, possibly in response to differential availability of these elements as these organisms evolved. IMPORTANCE Archaeal methanogens, methanotrophs, and alkanotrophs, argued to be among the most ancient forms of life, have a high demand for iron (Fe) and sulfur (S) for cofactor biosynthesis, among other uses. Here, using comparative bioinformatic approaches applied to 326 genomes, we show that major differences in Fe/S acquisition, trafficking, deployment, and storage exist in this group. Variation in these characters was generally congruent with the phylogenetic placement of these genomes, indicating that variation in Fe/S usage and deployment has contributed to the diversification and ecology of these organisms. However, incongruency was observed among the distribution of cofactor biosynthesis pathways and known protein destinations for those cofactors, suggesting auxotrophy or yet-to-be-discovered pathways for cofactor biosynthesis.
Collapse
|
27
|
Examining pathways of iron and sulfur acquisition, trafficking, deployment, and storage in mineral-grown methanogen cells. J Bacteriol 2021; 203:e0014621. [PMID: 34251867 PMCID: PMC8516115 DOI: 10.1128/jb.00146-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanogens have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, deploy, and store these elements and how this, in turn, affects their physiology. Methanogens were recently shown to reduce pyrite (FeS2) generating aqueous iron-sulfide (FeS(aq)) clusters that are likely assimilated as a source of Fe and S. Here, we compare the phenotype of Methanococcus voltae when grown with FeS2 or ferrous iron (Fe(II)) and sulfide (HS-). FeS2-grown cells are 33% smaller yet have 193% more Fe than Fe(II)/HS--grown cells. Whole cell EPR revealed similar distributions of paramagnetic Fe, although FeS2-grown cells showed a broad spectral feature attributed to intracellular thioferrate-like nanoparticles. Differential proteomic analyses showed similar expression of core methanogenesis enzymes, indicating that Fe and S source does not substantively alter the energy metabolism of cells. However, a homolog of the Fe(II) transporter FeoB and its putative transcriptional regulator DtxR were up-expressed in FeS2-grown cells, suggesting that cells sense Fe(II) limitation. Two homologs of IssA, a protein putatively involved in coordinating thioferrate nanoparticles, were also up-expressed in FeS2-grown cells. We interpret these data to indicate that, in FeS2-grown cells, DtxR cannot sense Fe(II) and therefore cannot down-regulate FeoB. We suggest this is due to the transport of Fe(II) complexed with sulfide (FeS(aq)) leading to excess Fe that is sequestered by IssA as a thioferrate-like species. This model provides a framework for the design of targeted experiments aimed at further characterizing Fe acquisition and homeostasis in M. voltae and other methanogens. IMPORTANCE FeS2 is the most abundant sulfide mineral in the Earth's crust and is common in environments inhabited by methanogenic archaea. FeS2 can be reduced by methanogens, yielding aqueous FeS(aq) clusters that are thought to be a source of Fe and S. Here, we show that growth of Methanococcus voltae on FeS2 results in smaller cell size and higher Fe content per cell, with Fe likely stored intracellularly as thioferrate-like nanoparticles. Fe(II) transporters and storage proteins were up-regulated in FeS2-grown cells. These responses are interpreted to result from cells incorrectly sensing Fe(II) limitation due to assimilation of Fe(II) as FeS(aq). These findings have implications for our understanding of how Fe/S availability influences methanogen physiology and the biogeochemical cycling of these elements.
Collapse
|
28
|
Watanabe T, Shima S. MvhB-type Polyferredoxin as an Electron-transfer Chain in Putative Redox-enzyme Complexes. CHEM LETT 2021. [DOI: 10.1246/cl.200774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Watanabe
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0819, Japan
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| |
Collapse
|
29
|
Yu D, Zhang J, Chulu B, Yang M, Nopens I, Wei Y. Ammonia stress decreased biomarker genes of acetoclastic methanogenesis and second peak of production rates during anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2020; 317:124012. [PMID: 32822891 DOI: 10.1016/j.biortech.2020.124012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Research shows that anaerobic digestion could acclimate to ammonia stress; however, the acclimation remained unaddressed. In this study, evolution of microbial community, functional gene, and pathway was linked with apparent kinetic and performance in unacclimated inoculum under ammonia stress, to deepen understanding of the acclimation. The second peak in production rate demonstrated crucial kinetic changes under ammonia stress. The methane loss was mainly protein in residual COD. Metagenomic showed initial inhibition in all methane metabolism pathways under ammonia stress, and recovery in acetate uptake was the key to ammonia acclimation. The acclimation was found in alternative pathway of Acetyl-CoA (CH3CO-S-CoA) synthesis from acetate, accompanying by syntrophic methanogenesis. Ammonia inhibited acetoclastic methanogenesis by competing CH3-CO-Pi with pta and formed speculative sediment CH3-CO-PO4[NH4]2. Biomarker of methanogenesis kinetic was suggested as mcr, hdr, and mch. The biomarker could indicate acclimation stages to ammonia, empowering anaerobic digestion by early warning of methane loss.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Gent B-9000, Belgium
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buhe Chulu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Gent B-9000, Belgium
| | - Ingmar Nopens
- BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Gent B-9000, Belgium
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Zinke LA, Evans PN, Santos-Medellín C, Schroeder AL, Parks DH, Varner RK, Rich VI, Tyson GW, Emerson JB. Evidence for non-methanogenic metabolisms in globally distributed archaeal clades basal to the Methanomassiliicoccales. Environ Microbiol 2020; 23:340-357. [PMID: 33185945 DOI: 10.1111/1462-2920.15316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Recent discoveries of mcr and mcr-like genes in genomes from diverse archaeal lineages suggest that methane metabolism is an ancient pathway with a complicated evolutionary history. One conventional view is that methanogenesis is an ancestral metabolism of the class Thermoplasmata. Through comparative genomic analysis of 12 Thermoplasmata metagenome-assembled genomes (MAGs) basal to the Methanomassiliicoccales, we show that these microorganisms do not encode the genes required for methanogenesis. Further analysis of 770 Ca. Thermoplasmatota genomes/MAGs found no evidence of mcrA homologues outside of the Methanomassiliicoccales. Together, these results suggest that methanogenesis was laterally acquired by an ancestor of the Methanomassiliicoccales. The 12 analysed MAGs include representatives from four orders basal to the Methanomassiliicoccales, including a high-quality MAG that likely represents a new order, Ca. Lunaplasma lacustris ord. nov. sp. nov. These MAGs are predicted to use diverse energy conservation pathways, including heterotrophy, sulfur and hydrogen metabolism, denitrification, and fermentation. Two lineages are widespread among anoxic, sedimentary environments, whereas Ca. Lunaplasma lacustris has thus far only been detected in alpine caves and subarctic lake sediments. These findings advance our understanding of the metabolic potential, ecology, and global distribution of the Thermoplasmata and provide insight into the evolutionary history of methanogenesis within the Ca. Thermoplasmatota.
Collapse
Affiliation(s)
- Laura A Zinke
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | | | - Alena L Schroeder
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Donovan H Parks
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Ruth K Varner
- Earth Systems Research Center, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH, USA.,Department of Earth Sciences, University of New Hampshire, Durham, NH, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, Qld, 4102, Australia
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA
| |
Collapse
|
31
|
Genomic Evidence for Formate Metabolism by Chloroflexi as the Key to Unlocking Deep Carbon in Lost City Microbial Ecosystems. Appl Environ Microbiol 2020; 86:AEM.02583-19. [PMID: 32033949 PMCID: PMC7117926 DOI: 10.1128/aem.02583-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Primitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also potential extraterrestrial rock-powered ecosystems. The microscopic life covering the towering chimney structures at the Lost City has been previously documented, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor. The Lost City hydrothermal field on the Mid-Atlantic Ridge supports dense microbial life on the lofty calcium carbonate chimney structures. The vent field is fueled by chemical reactions between the ultramafic rock under the chimneys and ambient seawater. These serpentinization reactions provide reducing power (as hydrogen gas) and organic compounds that can serve as microbial food; the most abundant of these are methane and formate. Previous studies have characterized the interior of the chimneys as a single-species biofilm inhabited by the Lost City Methanosarcinales, but they also indicated that this methanogen is unable to metabolize formate. The new metagenomic results presented here indicate that carbon cycling in these Lost City chimney biofilms could depend on the metabolism of formate by Chloroflexi populations. Additionally, we present evidence for metabolically diverse, formate-utilizing Sulfurovum populations and new genomic and phylogenetic insights into the unique Lost City Methanosarcinales. IMPORTANCE Primitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also potential extraterrestrial rock-powered ecosystems. The microscopic life covering the towering chimney structures at the Lost City has been previously documented, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor.
Collapse
|
32
|
Effect of N2 on Biological Methanation in a Continuous Stirred-Tank Reactor with Methanothermobacter marburgensis. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this contribution, the effect of the presence of a presumed inert gas like N2 in the feed gas on the biological methanation of hydrogen and carbon dioxide with Methanothermobacter marburgensis was investigated. N2 can be found as a component besides CO2 in possible feed gases like mine gas, weak gas, or steel mill gas. To determine whether there is an effect on the biological methanation of CO2 and H2 from renewable sources or not, the process was investigated using feed gases containing CO2, H2, and N2 in different ratios, depending on the CO2 content. A possible effect can be a lowered conversion rate of CO2 and H2 to CH4. Feed gases containing up to 47N2 were investigated. The conversion of hydrogen and carbon dioxide was possible with a conversion rate of up to 91 but was limited by the amount of H2 when feeding a stoichiometric ratio of 4:1 and not by adding N2 to the feed gas.
Collapse
|
33
|
Perona-Vico E, Blasco-Gómez R, Colprim J, Puig S, Bañeras L. [NiFe]-hydrogenases are constitutively expressed in an enriched Methanobacterium sp. population during electromethanogenesis. PLoS One 2019; 14:e0215029. [PMID: 30973887 PMCID: PMC6459506 DOI: 10.1371/journal.pone.0215029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/25/2019] [Indexed: 01/18/2023] Open
Abstract
Electromethanogenesis is the bioreduction of carbon dioxide (CO2) to methane (CH4) utilizing an electrode as electron donor. Some studies have reported the active participation of Methanobacterium sp. in electron capturing, although no conclusive results are available. In this study, we aimed at determining short-time changes in the expression levels of [NiFe]-hydrogenases (Eha, Ehb and Mvh), heterodisulfide reductase (Hdr), coenzyme F420-reducing [NiFe]-hydrogenase (Frh), and hydrogenase maturation protein (HypD), according to the electron flow in independently connected carbon cloth cathodes poised at– 800 mV vs. standard hydrogen electrode (SHE). Amplicon massive sequencing of cathode biofilm confirmed the presence of an enriched Methanobacterium sp. population (>70% of sequence reads), which remained in an active state (78% of cDNA reads), tagging this archaeon as the main methane producer in the system. Quantitative RT-PCR determinations of ehaB, ehbL, mvhA, hdrA, frhA, and hypD genes resulted in only slight (up to 1.5 fold) changes for four out of six genes analyzed when cells were exposed to open (disconnected) or closed (connected) electric circuit events. The presented results suggested that suspected mechanisms for electron capturing were not regulated at the transcriptional level in Methanobacterium sp. for short time exposures of the cells to connected-disconnected circuits. Additional tests are needed in order to confirm proteins that participate in electron capturing in Methanobacterium sp.
Collapse
Affiliation(s)
- Elisabet Perona-Vico
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Girona, Spain
- * E-mail: (LB); (EPV)
| | | | - Jesús Colprim
- LEQUiA, Institute of the Environment, University of Girona, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Girona, Spain
| | - Lluis Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Girona, Spain
- * E-mail: (LB); (EPV)
| |
Collapse
|
34
|
Thauer RK. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes. Biochemistry 2019; 58:5198-5220. [PMID: 30951290 PMCID: PMC6941323 DOI: 10.1021/acs.biochem.9b00164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methyl-coenzyme
M reductase (MCR) catalyzes the methane-forming
step in methanogenic archaea. The active enzyme harbors the nickel(I)
hydrocorphin coenzyme F-430 as a prosthetic group and catalyzes the
reversible reduction of methyl-coenzyme M (CH3–S-CoM)
with coenzyme B (HS-CoM) to methane and CoM-S–S-CoB. MCR is
also involved in anaerobic methane oxidation in reverse of methanogenesis
and most probably in the anaerobic oxidation of ethane, propane, and
butane. The challenging question is how the unreactive CH3–S thioether bond in methyl-coenzyme M and the even more unreactive
C–H bond in methane and the other hydrocarbons are anaerobically
cleaved. A key to the answer is the negative redox potential (Eo′) of the Ni(II)F-430/Ni(I)F-430 couple
below −600 mV and the radical nature of Ni(I)F-430. However,
the negative one-electron redox potential is also the Achilles heel
of MCR; it makes the nickel enzyme one of the most O2-sensitive
enzymes known to date. Even under physiological conditions, the Ni(I)
in MCR is oxidized to the Ni(II) or Ni(III) states, e.g., when in
the cells the redox potential (E′) of the
CoM-S–S-CoB/HS-CoM and HS-CoB couple (Eo′ = −140 mV) gets too high. Methanogens therefore
harbor an enzyme system for the reactivation of inactivated MCR in
an ATP-dependent reduction reaction. Purification of active MCR in
the Ni(I) oxidation state is very challenging and has been achieved
in only a few laboratories. This perspective reviews the function,
structure, and properties of MCR, what is known and not known about
the catalytic mechanism, how the inactive enzyme is reactivated, and
what remains to be discovered.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Strasse 10 , Marburg 35043 , Germany
| |
Collapse
|
35
|
Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol 2019; 4:603-613. [PMID: 30833729 PMCID: PMC6453112 DOI: 10.1038/s41564-019-0363-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022]
Abstract
Methanogenesis is an ancient metabolism of key ecological relevance, with direct impact on the evolution of Earth’s climate. Recent results suggest that the diversity of methane metabolisms and their derivations have probably been vastly underestimated. Here, by probing thousands of publicly available metagenomes for homologues of methyl-coenzyme M reductase complex (MCR), we have obtained ten metagenome-assembled genomes (MAGs) belonging to potential methanogenic, anaerobic methanotrophic and short-chain alkane oxidizing archaea. Five of these MAGs represent under-sampled (e.g., Verstraetearchaeota, Methanonatronarchaeia, ANME-1) or previously genomically undescribed (ANME-2c) archaeal lineages. The remaining five MAGs correspond to lineages that are only distantly related to previously known methanogens and span the entire archaeal phylogeny. Comprehensive comparative annotation significantly expands the metabolic diversity and energy conservation systems of MCR-bearing archaea. It also suggests the potential existence of a yet uncharacterized type of methanogenesis linked to short-chain alkane/fatty acid oxidation in a previously undescribed class of archaea (‘Ca. Methanoliparia’). We redefine a common core of marker genes specific to methanogenic, anaerobic methanotrophic and short-chain alkane-oxidizing archaea, and propose a possible scenario for the evolutionary and functional transitions that led to the emergence of such metabolic diversity.
Collapse
|
36
|
Functional annotation of operome from Methanothermobacter thermautotrophicus ΔH: An insight to metabolic gap filling. Int J Biol Macromol 2018; 123:350-362. [PMID: 30445075 DOI: 10.1016/j.ijbiomac.2018.11.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Methanothermobacter thermautotrophicus ΔH (MTH) is a potential methanogen known to reduce CO2 with H2 for producing methane biofuel in thermophilic digesters. The genome of this organism contains ~50.5% conserved hypothetical proteins (HPs; operome) whose function is still not determined precisely. Here, we employed a combined bioinformatics approach to annotate a precise function to HPs and categorize them as enzymes, binding proteins, and transport proteins. Results of our study show that 315 (35.6%) HPs have exhibited well-defined functions contributing imperative roles in diverse cellular metabolism. Some of them are responsible for stress-response mechanisms and cell cycle, membrane transport, and regulatory processes. The genome-neighborhood analysis found five important gene clusters (dsr, ehb, kaiC, cmr, and gas) involving in the energetic metabolism and defense systems. MTH operome contains 223 enzymes with 15 metabolic subsystems, 15 cell cycle proteins, 17 transcriptional regulators and 33 binding proteins. Functional annotation of its operome is thus more fundamental to a profound understanding of the molecular and cellular machinery at systems-level.
Collapse
|
37
|
Bu F, Dong N, Kumar Khanal S, Xie L, Zhou Q. Effects of CO on hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions: Microbial community and biomethanation pathways. BIORESOURCE TECHNOLOGY 2018; 266:364-373. [PMID: 29982059 DOI: 10.1016/j.biortech.2018.03.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Coke oven gas is considered as a potential hydrogen source for biogas bio-upgrading. In this study, the effects of CO on biomethanation performance and microbial community structure of hydrogenotrophic mixed cultures were investigated under thermophilic (55 °C) and extreme-thermophilic (70 °C) conditions. 5% (v/v) CO did not inhibit hydrogenotrophic methanogenesis during semi-continuous operation, and 83-97% CO conversion to CH4 was achieved. Methanothermobacter thermoautotrophicus was the dominant methanogen at both temperatures and was the main functional archaea associated with CO biomethanation. Specific methanogenic activity test results showed that long-term 5% CO acclimation shortened the lag phase from 5 h to 1 h at 55 °C and 15 h to 3 h at 70 °C. CO2 was the preferred carbon source over CO for hydrogenotrophic methanogens and CO consumption only started when CO2 was completely depleted. M. thermoautotrophicus dominated mixed cultures showed a great potential in simultaneous hydrogenotrophic methanogenesis and CO biomethanation.
Collapse
Affiliation(s)
- Fan Bu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Nanshi Dong
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA
| | - Li Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
38
|
Liu C, Mao L, Zheng X, Yuan J, Hu B, Cai Y, Xie H, Peng X, Ding X. Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H 2 and CO 2 under different temperature conditions. Microbiologyopen 2018; 8:e00715. [PMID: 30260585 PMCID: PMC6528648 DOI: 10.1002/mbo3.715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/22/2022] Open
Abstract
The growth of all methanogens is limited to a specific temperature range. However, Methanothermobacter thermautotrophicus can be found in a variety of natural and artificial environments, the temperatures of which sometimes even exceed the temperature growth ranges of thermophiles. As a result, the extent to which methane production and survival are affected by temperature remains unclear. To investigate the mechanisms of methanogenesis that Archaea have evolved to cope with drastic temperature shifts, the responses of Methanothermobacter thermautotrophicus to temperature were investigated under a high temperature growth (71°C) and cold shock (4°C) using Isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that methane formation is decreased and that protein folding and degradation are increased in both high‐ and low‐temperature treatments. In addition, proteins predicted to be involved in processing environmental information processing and in cell membrane/wall/envelope biogenesis may play key roles in affecting methane formation and enhancing the response of M. thermautotrophicus to temperature stress. Analysis of the genomic locations of the genes corresponding to these temperature‐dependent proteins predicted that 77 of the genes likely to form 32 gene clusters. Here, we assess the response of M. thermautotrophicus to different temperatures and provide a new level of understanding of methane formation and cellular putative adaptive responses.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Lihui Mao
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xiongmin Zheng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiangan Yuan
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Beijuan Hu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xiaojue Peng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xia Ding
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Biology Experimental Teaching Demonstration, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
39
|
Comparative Genomic Analysis of Members of the Genera Methanosphaera and Methanobrevibacter Reveals Distinct Clades with Specific Potential Metabolic Functions. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:7609847. [PMID: 30210264 PMCID: PMC6120340 DOI: 10.1155/2018/7609847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Methanobrevibacter and Methanosphaera species represent some of the most prevalent methanogenic archaea in the gastrointestinal tract of animals and humans and play an important role in this environment. The aim of this study was to identify genomic features that are shared or specific for members of each genus with a special emphasis of the analysis on the assimilation of nitrogen and acetate and the utilization of methanol and ethanol for methanogenesis. Here, draft genome sequences of Methanobrevibacter thaueri strain DSM 11995T, Methanobrevibacter woesei strain DSM 11979T, and Methanosphaera cuniculi strain 4103T are reported and compared to those of 16 other Methanobrevibacter and Methanosphaera genomes, including genomes of the 13 currently available types of strains of the two genera. The comparative genome analyses indicate that among other genes, the absence of molybdopterin cofactor biosynthesis is conserved in Methanosphaera species but reveals also that the three species share a core set of more than 300 genes that distinguishes the genus Methanosphaera from the genus Methanobrevibacter. Multilocus sequence analysis shows that the genus Methanobrevibacter can be subdivided into clades, potentially new genera, which may display characteristic specific metabolic features. These features include not only the potential ability of nitrogen fixation and acetate assimilation in a clade comprised of Methanobrevibacter species from the termite gut and Methanobrevibacter arboriphilus strains but also the potential capability to utilize ethanol and methanol in a clade comprising Methanobrevibacter wolinii strain DSM 11976T, Mbb. sp. AbM4, and Mbb. boviskoreani strain DSM 25824T.
Collapse
|
40
|
Zhou X, Stevens MJA, Neuenschwander S, Schwarm A, Kreuzer M, Bratus-Neuenschwander A, Zeitz JO. The transcriptome response of the ruminal methanogen Methanobrevibacter ruminantium strain M1 to the inhibitor lauric acid. BMC Res Notes 2018; 11:135. [PMID: 29454387 PMCID: PMC5816558 DOI: 10.1186/s13104-018-3242-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/09/2018] [Indexed: 01/08/2023] Open
Abstract
Objective Lauric acid (C12) is a medium-chain fatty acid that inhibits growth and production of the greenhouse gas methane by rumen methanogens such as Methanobrevibacter ruminantium. To understand the inhibitory mechanism of C12, a transcriptome analysis was performed in M. ruminantium strain M1 (DSM 1093) using RNA-Seq. Results Pure cell cultures in the exponential growth phase were treated with 0.4 mg/ml C12, dissolved in dimethyl sulfoxide (DMSO), for 1 h and transcriptomic changes were compared to DMSO-only treated cells (final DMSO concentration 0.2%). Exposure to C12 resulted in differential expression of 163 of the 2280 genes in the M1 genome (maximum log2-fold change 6.6). Remarkably, C12 hardly affected the expression of genes involved in methanogenesis. Instead, most affected genes encode cell-surface associated proteins (adhesion-like proteins, membrane-associated transporters and hydrogenases), and proteins involved in detoxification or DNA-repair processes. Enrichment analysis on the genes regulated in the C12-treated group showed a significant enrichment for categories ‘cell surface’ and ‘mobile elements’ (activated by C12), and for the categories ‘regulation’ and ‘protein fate’ (represssed). These results are useful to generate and test specific hypotheses on the mechanism how C12 affects rumen methanogens. Electronic supplementary material The online version of this article (10.1186/s13104-018-3242-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuan Zhou
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Marc J A Stevens
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.,Institute for Food Hygiene and Safety, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Stefan Neuenschwander
- Institute of Agricultural Sciences, ETH Zurich, Tannenstrasse 1, 8092, Zurich, Switzerland
| | - Angela Schwarm
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Michael Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Anna Bratus-Neuenschwander
- Institute of Agricultural Sciences, ETH Zurich, Tannenstrasse 1, 8092, Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Johanna O Zeitz
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland. .,Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
41
|
Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field. Sci Rep 2018; 8:755. [PMID: 29335466 PMCID: PMC5768773 DOI: 10.1038/s41598-017-19002-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/19/2017] [Indexed: 01/15/2023] Open
Abstract
Hydrogen produced during water-rock serpentinization reactions can drive the synthesis of organic compounds both biotically and abiotically. We investigated abiotic carbon production and microbial metabolic pathways at the high energy but low diversity serpentinite-hosted Lost City hydrothermal field. Compound-specific 14C data demonstrates that formate is mantle-derived and abiotic in some locations and has an additional, seawater-derived component in others. Lipids produced by the dominant member of the archaeal community, the Lost City Methanosarcinales, largely lack 14C, but metagenomic evidence suggests they cannot use formate for methanogenesis. Instead, sulfate-reducing bacteria may be the primary consumers of formate in Lost City chimneys. Paradoxically, the archaeal phylotype that numerically dominates the chimney microbial communities appears ill suited to live in pure hydrothermal fluids without the co-occurrence of organisms that can liberate CO2. Considering the lack of dissolved inorganic carbon in such systems, the ability to utilize formate may be a key trait for survival in pristine serpentinite-hosted environments.
Collapse
|
42
|
Auffret MD, Stewart R, Dewhurst RJ, Duthie CA, Rooke JA, Wallace RJ, Freeman TC, Snelling TJ, Watson M, Roehe R. Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets. Front Microbiol 2018; 8:2642. [PMID: 29375511 PMCID: PMC5767246 DOI: 10.3389/fmicb.2017.02642] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023] Open
Abstract
Previous shotgun metagenomic analyses of ruminal digesta identified some microbial information that might be useful as biomarkers to select cattle that emit less methane (CH4), which is a potent greenhouse gas. It is known that methane production (g/kgDMI) and to an extent the microbial community is heritable and therefore biomarkers can offer a method of selecting cattle for low methane emitting phenotypes. In this study a wider range of Bos Taurus cattle, varying in breed and diet, was investigated to determine microbial communities and genetic markers associated with high/low CH4 emissions. Digesta samples were taken from 50 beef cattle, comprising four cattle breeds, receiving two basal diets containing different proportions of concentrate and also including feed additives (nitrate or lipid), that may influence methane emissions. A combination of partial least square analysis and network analysis enabled the identification of the most significant and robust biomarkers of CH4 emissions (VIP > 0.8) across diets and breeds when comparing all potential biomarkers together. Genes associated with the hydrogenotrophic methanogenesis pathway converting carbon dioxide to methane, provided the dominant biomarkers of CH4 emissions and methanogens were the microbial populations most closely correlated with CH4 emissions and identified by metagenomics. Moreover, these genes grouped together as confirmed by network analysis for each independent experiment and when combined. Finally, the genes involved in the methane synthesis pathway explained a higher proportion of variation in CH4 emissions by PLS analysis compared to phylogenetic parameters or functional genes. These results confirmed the reproducibility of the analysis and the advantage to use these genes as robust biomarkers of CH4 emissions. Volatile fatty acid concentrations and ratios were significantly correlated with CH4, but these factors were not identified as robust enough for predictive purposes. Moreover, the methanotrophic Methylomonas genus was found to be negatively correlated with CH4. Finally, this study confirmed the importance of using robust and applicable biomarkers from the microbiome as a proxy of CH4 emissions across diverse production systems and environments.
Collapse
Affiliation(s)
- Marc D. Auffret
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - Robert Stewart
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard J. Dewhurst
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - Carol-Anne Duthie
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - John A. Rooke
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - Robert J. Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Tom C. Freeman
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy J. Snelling
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| |
Collapse
|
43
|
Barros VGD, Duda RM, Vantini JDS, Omori WP, Ferro MIT, Oliveira RAD. Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. BIORESOURCE TECHNOLOGY 2017; 244:371-381. [PMID: 28783564 DOI: 10.1016/j.biortech.2017.07.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Biogas production from sugarcane vinasse has enormous economic, energy, and environmental management potential. However, methane production stability and biodigested vinasse quality remain key issues, requiring better nutrient and alkalinity availability, operational strategies, and knowledge of reactor microbiota. This study demonstrates increased methane production from vinasse through the use of sugarcane filter cake and improved effluent recirculation, with elevated organic loading rates (OLR) and good reactor stability. We used UASB reactors in a two-stage configuration, with OLRs up to 45gCODL-1d-1, and obtained methane production as high as 3LL-1d-1. Quantitative PCR indicated balanced amounts of bacteria and archaea in the sludge (109-1010copiesg-1VS), and of the predominant archaea orders, Methanobacteriales and Methanosarcinales (106-108copiesg-1VS). 16S rDNA sequencing also indicated the thermophilic Thermotogae as the most abundant class of bacteria in the sludge.
Collapse
Affiliation(s)
- Valciney Gomes de Barros
- Post-Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil; Laboratory of Environmental Sanitation, Department of Rural Engineering, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Rose Maria Duda
- Laboratory of Environmental Sanitation, Department of Rural Engineering, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil; Faculty of Technology "Nilo de Stéfani", Jaboticabal, SP, Brazil
| | - Juliana da Silva Vantini
- Post-Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil; Laboratory of Biochemistry and Molecular Biology, Department of Technology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Wellington Pine Omori
- Post-Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Maria Inês Tiraboschi Ferro
- Post-Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil; Laboratory of Biochemistry and Molecular Biology, Department of Technology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Roberto Alves de Oliveira
- Post-Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil; Laboratory of Environmental Sanitation, Department of Rural Engineering, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil.
| |
Collapse
|
44
|
Abdel Azim A, Pruckner C, Kolar P, Taubner RS, Fino D, Saracco G, Sousa FL, Rittmann SKMR. The physiology of trace elements in biological methane production. BIORESOURCE TECHNOLOGY 2017. [PMID: 28628982 DOI: 10.1016/j.biortech.2017.05.211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trace element (TE) requirements of Methanothermobacter okinawensis and Methanothermobacter marburgensis were examined in silico, and using closed batch and fed-batch cultivation experiments. In silico analysis revealed genomic differences among the transport systems and enzymes related to the archaeal Wood-Ljungdahl pathway of these two methanogens. M. okinawensis responded to rising concentrations of TE by increasing specific growth rate (µ) and volumetric productivity (MER) during closed batch cultivation, and can grow and produce methane (CH4) during fed-batch cultivation. M. marburgensis showed higher µ and MER during fed-batch cultivation and was therefore prioritized for subsequent optimization of CO2-based biological CH4 production. Multiple-parameter cultivation dependency on growth and productivity of M. marburgensis was finally examined using exponential fed-batch cultivation at different medium-, TE- and sulphide dilution rates, and different gas inflow rates. MER of 476mmolL-1h-1 and µ of 0.69h-1 were eventually obtained during exponential fed-batch cultivations employing M. marburgensis.
Collapse
Affiliation(s)
- Annalisa Abdel Azim
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Vienna, Austria; Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Christian Pruckner
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Vienna, Austria
| | - Philipp Kolar
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Vienna, Austria
| | - Ruth-Sophie Taubner
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Vienna, Austria; Institute of Astrophysics, Universität Wien, Vienna, Austria
| | - Debora Fino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Guido Saracco
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy; Centre for Sustainable Future Technologies (CSF@PoliTo), Istituto Italiano di Tecnologia (IIT), Turin, Italy
| | - Filipa L Sousa
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Vienna, Austria
| | - Simon K-M R Rittmann
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Vienna, Austria.
| |
Collapse
|
45
|
Gilmore SP, Henske JK, Sexton JA, Solomon KV, Seppälä S, Yoo JI, Huyett LM, Pressman A, Cogan JZ, Kivenson V, Peng X, Tan Y, Valentine DL, O'Malley MA. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation. BMC Genomics 2017; 18:639. [PMID: 28826405 PMCID: PMC5563889 DOI: 10.1186/s12864-017-4036-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. RESULTS Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis of the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. CONCLUSIONS Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO2 and formate are common electron carriers in microbial communities.
Collapse
Affiliation(s)
- Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Jessica A Sexton
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.,Present Address: Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Justin I Yoo
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Lauren M Huyett
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Abe Pressman
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - James Z Cogan
- Biology Program, College of Creative Studies, University of California, Santa Barbara, California, USA
| | - Veronika Kivenson
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Xuefeng Peng
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.,Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California, USA
| | - YerPeng Tan
- California NanoScience Institute, University of California, Santa Barbara, California, USA
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.
| |
Collapse
|
46
|
Poehlein A, Daniel R, Seedorf H. The Draft Genome of the Non-Host-Associated Methanobrevibacter arboriphilus Strain DH1 Encodes a Large Repertoire of Adhesin-Like Proteins. ARCHAEA (VANCOUVER, B.C.) 2017; 2017:4097425. [PMID: 28634433 PMCID: PMC5467289 DOI: 10.1155/2017/4097425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/22/2017] [Indexed: 01/02/2023]
Abstract
Methanobrevibacter arboriphilus strain DH1 is an autotrophic methanogen that was isolated from the wetwood of methane-emitting trees. This species has been of considerable interest for its unusual oxygen tolerance and has been studied as a model organism for more than four decades. Strain DH1 is closely related to other host-associated Methanobrevibacter species from intestinal tracts of animals and the rumen, making this strain an interesting candidate for comparative analysis to identify factors important for colonizing intestinal environments. Here, the genome sequence of M. arboriphilus strain DH1 is reported. The draft genome is composed of 2.445.031 bp with an average GC content of 25.44% and predicted to harbour 1964 protein-encoding genes. Among the predicted genes, there are also more than 50 putative genes for the so-called adhesin-like proteins (ALPs). The presence of ALP-encoding genes in the genome of this non-host-associated methanogen strongly suggests that target surfaces for ALPs other than host tissues also need to be considered as potential interaction partners. The high abundance of ALPs may also indicate that these types of proteins are more characteristic for specific phylogenetic groups of methanogens rather than being indicative for a particular environment the methanogens thrives in.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Henning Seedorf
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117604
| |
Collapse
|
47
|
Kouzuma A, Tsutsumi M, Ishii S, Ueno Y, Abe T, Watanabe K. Non-autotrophic methanogens dominate in anaerobic digesters. Sci Rep 2017; 7:1510. [PMID: 28473726 PMCID: PMC5431450 DOI: 10.1038/s41598-017-01752-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
Anaerobic digesters are man-made habitats for fermentative and methanogenic microbes, and are characterized by extremely high concentrations of organics. However, little is known about how microbes adapt to such habitats. In the present study, we report phylogenetic, metagenomic, and metatranscriptomic analyses of microbiomes in thermophilic packed-bed digesters fed acetate as the major substrate, and we have shown that acetoclastic and hydrogenotrophic methanogens that utilize acetate as a carbon source dominate there. Deep sequencing and precise binning of the metagenomes reconstructed complete genomes for two dominant methanogens affiliated with the genera Methanosarcina and Methanothermobacter, along with 37 draft genomes. The reconstructed Methanosarcina genome was almost identical to that of a thermophilic acetoclastic methanogen Methanosarcina thermophila TM-1, indicating its cosmopolitan distribution in thermophilic digesters. The reconstructed Methanothermobacter (designated as Met2) was closely related to Methanothermobacter tenebrarum, a non-autotrophic hydrogenotrophic methanogen that grows in the presence of acetate. Met2 lacks the Cdh complex required for CO2 fixation, suggesting that it requires organic molecules, such as acetate, as carbon sources. Although the metagenomic analysis also detected autotrophic methanogens, they were less than 1% in abundance of Met2. These results suggested that non-autotrophic methanogens preferentially grow in anaerobic digesters containing high concentrations of organics.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Maho Tsutsumi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shun'ichi Ishii
- R&D Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Yoshiyuki Ueno
- Kajima Technical Research Institute, Chofu, Tokyo, 182-0036, Japan
| | - Takashi Abe
- Graduate School of Science and Technology, Niigata University, Niigata, Niigata, 950-2181, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
48
|
Savvas S, Donnelly J, Patterson TP, Dinsdale R, Esteves SR. Closed nutrient recycling via microbial catabolism in an eco-engineered self regenerating mixed anaerobic microbiome for hydrogenotrophic methanogenesis. BIORESOURCE TECHNOLOGY 2017; 227:93-101. [PMID: 28013141 DOI: 10.1016/j.biortech.2016.12.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
A novel eco-engineered mixed anaerobic culture was successfully demonstrated for the first time to be capable of continuous regeneration in nutrient limiting conditions. Microbial catabolism has been found to support a closed system of nutrients able to enrich a culture of lithotrophic methanogens and provide microbial cell recycling. After enrichment, the hydrogenotrophic species was the dominating methanogens while a bacterial substratum was responsible for the redistribution of nutrients. q-PCR results indicated that 7% of the total population was responsible for the direct conversion of the gases. The efficiency of H2/CO2 conversion to CH4 reached 100% at a gassing rate of above 60v/v/d. The pH of the culture media was effectively sustained at optimal levels (pH 7-8) through a buffering system created by the dissolved CO2. The novel approach can reduce the process nutrient/metal requirement and enhance the environmental and financial performance of hydrogenotrophic methanogenesis for renewable energy storage.
Collapse
Affiliation(s)
- Savvas Savvas
- Wales Centre of Excellence for Anaerobic Digestion, University of South Wales, Pontypridd CF37 1DL, Wales, UK; Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, Wales, UK.
| | - Joanne Donnelly
- Wales Centre of Excellence for Anaerobic Digestion, University of South Wales, Pontypridd CF37 1DL, Wales, UK; Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, Wales, UK
| | - Tim P Patterson
- Wales Centre of Excellence for Anaerobic Digestion, University of South Wales, Pontypridd CF37 1DL, Wales, UK; Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, Wales, UK
| | - Richard Dinsdale
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, Wales, UK
| | - Sandra R Esteves
- Wales Centre of Excellence for Anaerobic Digestion, University of South Wales, Pontypridd CF37 1DL, Wales, UK; Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, Wales, UK
| |
Collapse
|
49
|
Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis. J Bacteriol 2016; 198:3379-3390. [PMID: 27736793 PMCID: PMC5116941 DOI: 10.1128/jb.00571-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/22/2016] [Indexed: 02/03/2023] Open
Abstract
Hydrogenotrophic methanogenesis occurs in multiple environments, ranging from the intestinal tracts of animals to anaerobic sediments and hot springs. Energy conservation in hydrogenotrophic methanogens was long a mystery; only within the last decade was it reported that net energy conservation for growth depends on electron bifurcation. In this work, we focus on Methanococcus maripaludis, a well-studied hydrogenotrophic marine methanogen. To better understand hydrogenotrophic methanogenesis and compare it with methylotrophic methanogenesis that utilizes oxidative phosphorylation rather than electron bifurcation, we have built iMR539, a genome scale metabolic reconstruction that accounts for 539 of the 1,722 protein-coding genes of M. maripaludis strain S2. Our reconstructed metabolic network uses recent literature to not only represent the central electron bifurcation reaction but also incorporate vital biosynthesis and assimilation pathways, including unique cofactor and coenzyme syntheses. We show that our model accurately predicts experimental growth and gene knockout data, with 93% accuracy and a Matthews correlation coefficient of 0.78. Furthermore, we use our metabolic network reconstruction to probe the implications of electron bifurcation by showing its essentiality, as well as investigating the infeasibility of aceticlastic methanogenesis in the network. Additionally, we demonstrate a method of applying thermodynamic constraints to a metabolic model to quickly estimate overall free-energy changes between what comes in and out of the cell. Finally, we describe a novel reconstruction-specific computational toolbox we created to improve usability. Together, our results provide a computational network for exploring hydrogenotrophic methanogenesis and confirm the importance of electron bifurcation in this process. IMPORTANCE Understanding and applying hydrogenotrophic methanogenesis is a promising avenue for developing new bioenergy technologies around methane gas. Although a significant portion of biological methane is generated through this environmentally ubiquitous pathway, existing methanogen models portray the more traditional energy conservation mechanisms that are found in other methanogens. We have constructed a genome scale metabolic network of Methanococcus maripaludis that explicitly accounts for all major reactions involved in hydrogenotrophic methanogenesis. Our reconstruction demonstrates the importance of electron bifurcation in central metabolism, providing both a window into hydrogenotrophic methanogenesis and a hypothesis-generating platform to fuel metabolic engineering efforts.
Collapse
|
50
|
Bharathi M, Chellapandi P. Intergenomic evolution and metabolic cross-talk between rumen and thermophilic autotrophic methanogenic archaea. Mol Phylogenet Evol 2016; 107:293-304. [PMID: 27864137 DOI: 10.1016/j.ympev.2016.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/17/2016] [Accepted: 11/13/2016] [Indexed: 02/01/2023]
Abstract
Methanobrevibacter ruminantium M1 (MRU) is a rumen methanogenic archaean that can be able to utilize formate and CO2/H2 as growth substrates. Extensive analysis on the evolutionary genomic contexts considered herein to unravel its intergenomic relationship and metabolic adjustment acquired from the genomic content of Methanothermobacter thermautotrophicus ΔH. We demonstrated its intergenomic distance, genome function, synteny homologs and gene families, origin of replication, and methanogenesis to reveal the evolutionary relationships between Methanobrevibacter and Methanothermobacter. Comparison of the phylogenetic and metabolic markers was suggested for its archaeal metabolic core lineage that might have evolved from Methanothermobacter. Orthologous genes involved in its hydrogenotrophic methanogenesis might be acquired from intergenomic ancestry of Methanothermobacter via Methanobacterium formicicum. Formate dehydrogenase (fdhAB) coding gene cluster and carbon monoxide dehydrogenase (cooF) coding gene might have evolved from duplication events within Methanobrevibacter-Methanothermobacter lineage, and fdhCD gene cluster acquired from bacterial origins. Genome-wide metabolic survey found the existence of four novel pathways viz. l-tyrosine catabolism, mevalonate pathway II, acyl-carrier protein metabolism II and glutathione redox reactions II in MRU. Finding of these pathways suggested that MRU has shown a metabolic potential to tolerate molecular oxygen, antimicrobial metabolite biosynthesis and atypical lipid composition in cell wall, which was acquainted by metabolic cross-talk with mammalian bacterial origins. We conclude that coevolution of genomic contents between Methanobrevibacter and Methanothermobacter provides a clue to understand the metabolic adaptation of MRU in the rumen at different environmental niches.
Collapse
Affiliation(s)
- M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|