1
|
Gianessi L, Magini A, Dominici R, Giovagnoli S, Dolcetta D. A Stable Micellar Formulation of RAD001 for Intracerebroventricular Delivery and the Treatment of Alzheimer's Disease and Other Neurological Disorders. Int J Mol Sci 2023; 24:17478. [PMID: 38139306 PMCID: PMC10744130 DOI: 10.3390/ijms242417478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
A large body of evidence, replicated in many mouse models of Alzheimer's disease (AD), supports the therapeutic efficacy of the oral mammalian target of rapamycin inhibitors (mTOR-Is). Our preliminary data show that intracerebroventricular (ICV) administration of everolimus (RAD001) soon after clinical onset greatly diminished cognitive impairment and the intracellular beta amyloid and neurofibrillary tangle load. However, RAD001 shows >90% degradation after 7 days in solution at body temperature, thus hampering the development of proper therapeutic regimens for patients. To overcome such a drawback, we developed a stable, liquid formulation of mTOR-Is by loading RAD001 into distearoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE-PEG2000) micelles using the thin layer evaporation method. The formulation showed efficient encapsulation of RAD001 and a homogeneous colloidal size and stabilised RAD001, with over 95% of activity preserved after 14 days at 37 °C with a total decay only occurring after 98 days. RAD001-loaded DSPE-PEG2000 micelles were unchanged when stored at 4 and 25 °C over the time period investigated. The obtained formulation may represent a suitable platform for expedited clinical translation and effective therapeutic regimens in AD and other neurological diseases.
Collapse
Affiliation(s)
- Laura Gianessi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy (S.G.)
| | | | - Roberto Dominici
- Department of Biochemistry, Desio Hospital, ASST-Brianza, 20832 Desio, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy (S.G.)
| | | |
Collapse
|
2
|
Stead SO, Kireta S, McInnes SJP, Kette FD, Sivanathan KN, Kim J, Cueto-Diaz EJ, Cunin F, Durand JO, Drogemuller CJ, Carroll RP, Voelcker NH, Coates PT. Murine and Non-Human Primate Dendritic Cell Targeting Nanoparticles for in Vivo Generation of Regulatory T-Cells. ACS NANO 2018; 12:6637-6647. [PMID: 29979572 DOI: 10.1021/acsnano.8b01625] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Porous silicon nanoparticles (pSiNP), modified to target dendritic cells (DC), provide an alternate strategy for the delivery of immunosuppressive drugs. Here, we aimed to develop a DC-targeting pSiNP displaying c-type lectin, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and CD11c monoclonal antibodies. The in vivo tracking of these fluorescent DC-targeting nanoparticles was assessed in both C57BL/6 mice and common marmosets ( Callithrix jacchus) by intravenous injection (20 mg/kg). Rapamycin and ovalbumin (OVA)323-339 peptide loaded pSiNP were employed to evaluate their ability to generate murine CD4+CD25+FoxP3+ regulatory T-cells in vivo within OVA sensitized mice. In vivo, pSiNP migrated to the liver, kidneys, lungs, and spleen in both mice and marmosets. Flow cytometry confirmed pSiNP uptake by splenic and peripheral blood DC when functionalized with targeting antibodies. C57BL/6 OVA sensitized mice injected with CD11c-pSiNP loaded with rapamycin + OVA323-339 produced a 5-fold higher number of splenic regulatory T-cells compared to control mice, at 40 days post-pSiNP injection. These results demonstrate the importance of the immobilized targeting antibodies to enhance cellular uptake and enable the in vivo generation of splenic regulatory T-cells.
Collapse
Affiliation(s)
- Sebastian O Stead
- Department of Medicine , University of Adelaide , Adelaide 5000 , Australia
| | - Svjetlana Kireta
- Central Northern Adelaide Renal and Transplantation Service (CNARTS) , The Royal Adelaide Hospital , Adelaide 5000 , Australia
| | - Steve J P McInnes
- Future Industries Institute , University of South Australia , Adelaide 5095 , Australia
| | - Francis D Kette
- Department of Medicine , University of Adelaide , Adelaide 5000 , Australia
| | - Kisha N Sivanathan
- Department of Medicine , University of Adelaide , Adelaide 5000 , Australia
| | - Juewan Kim
- Department of Medicine , University of Adelaide , Adelaide 5000 , Australia
| | - Eduardo J Cueto-Diaz
- Case 1701, UMR 5253 CNRS -ENSCM-UM , Institut Charles Gerhardt Montpellier , 34095 Montpellier , cedex 5, France
| | - Frederique Cunin
- Case 1701, UMR 5253 CNRS -ENSCM-UM , Institut Charles Gerhardt Montpellier , 34095 Montpellier , cedex 5, France
| | - Jean-Olivier Durand
- Case 1701, UMR 5253 CNRS -ENSCM-UM , Institut Charles Gerhardt Montpellier , 34095 Montpellier , cedex 5, France
| | - Christopher J Drogemuller
- Department of Medicine , University of Adelaide , Adelaide 5000 , Australia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS) , The Royal Adelaide Hospital , Adelaide 5000 , Australia
| | - Robert P Carroll
- Department of Medicine , University of Adelaide , Adelaide 5000 , Australia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS) , The Royal Adelaide Hospital , Adelaide 5000 , Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , Victoria 3169 , Australia
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , Clayton , Victoria 3168 , Australia
- Monash Institute of Medical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Patrick T Coates
- Department of Medicine , University of Adelaide , Adelaide 5000 , Australia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS) , The Royal Adelaide Hospital , Adelaide 5000 , Australia
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Ongoing research is constantly looking for means to modulate the immune system for long-lasting engraftment of pluripotent stem cells (PSC) during stem cell-based therapies. This study reviews data on in-vitro and in-vivo immunogenicity of embryonic and induced-PSC and describes how their immunological properties can be harnessed for tolerance induction in organ transplantation. RECENT FINDINGS Although PSC display immunomodulatory properties in vitro, they are capable of eliciting an immune response that leads to cell rejection when transplanted into immune-competent recipients. Nevertheless, long-term acceptance of PSC-derived cells/tissues in an allogeneic environment can be achieved using minimal host conditioning. Protocols for differentiating PSC towards haematopoietic stem cells, thymic epithelial precursors, dendritic cells, regulatory T cells and myeloid-derived suppressor cells are being developed, suggesting the possibility to use PSC-derived immunomodulatory cells to induce tolerance to a solid organ transplant. SUMMARY PSC and/or their derivatives possess unique immunological properties that allow for acceptance of PSC-derived tissue with minimal host conditioning. Investigators involved either in regenerative or in transplant medicine must join their efforts with the ultimate aim of using PSC as a source of donor-specific cells that would create a protolerogenic environment to achieve tolerance in solid organ transplantation.
Collapse
|
4
|
Fekete T, Pazmandi K, Szabo A, Bacsi A, Koncz G, Rajnavölgyi E. The antiviral immune response in human conventional dendritic cells is controlled by the mammalian target of rapamycin. J Leukoc Biol 2014; 96:579-89. [PMID: 25001862 DOI: 10.1189/jlb.2a0114-048rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type I and III IFNs are crucial, soluble components of potent antiviral responses. It has been explored recently that mTOR is involved in the regulation of IFN-α/β production by pDCs, albeit its role in the induction of IFN responses in cDCs remained unrevealed. In this study, we demonstrate that the PI3K/mTOR pathway is indispensable for eliciting intact type I and III IFN responses in moDCs stimulated with polyI:C. The inhibition of mTOR functionality by rapamycin impairs the pIRF3 and also a few members of the MAPK family, suggesting that mTOR contributes to the activation of multiple signaling pathways in the presence of viral antigens. Furthermore, rapamycin-treated moDCs show decreased capacity to prime IFN-γ secretion by naive CD8(+) T-lymphocytes. As in moDCs, mTOR-mediated regulation is also essential for the production of type I and III IFNs in circulating CD1c(+) DCs. To our best knowledge, these results demonstrate for the first time that mTOR has an impact on the functional activities of cDCs via modulating the outcome of IFN secretion.
Collapse
Affiliation(s)
- Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Pazmandi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Rajnavölgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|