1
|
Hunger J, Schregel K, Boztepe B, Agardy DA, Turco V, Karimian-Jazi K, Weidenfeld I, Streibel Y, Fischer M, Sturm V, Santarella-Mellwig R, Kilian M, Jähne K, Sahm K, Wick W, Bunse L, Heiland S, Bunse T, Bendszus M, Platten M, Breckwoldt MO. In vivo nanoparticle-based T cell imaging can predict therapy response towards adoptive T cell therapy in experimental glioma. Theranostics 2023; 13:5170-5182. [PMID: 37908732 PMCID: PMC10614679 DOI: 10.7150/thno.87248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/09/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Intrinsic brain tumors, such as gliomas are largely resistant to immunotherapies including immune checkpoint blockade. Adoptive cell therapies (ACT) including chimeric antigen receptor (CAR) or T cell receptor (TCR)-transgenic T cell therapy targeting glioma-associated antigens are an emerging field in glioma immunotherapy. However, imaging techniques for non-invasive monitoring of adoptively transferred T cells homing to the glioma microenvironment are currently lacking. Methods: Ultrasmall iron oxide nanoparticles (NP) can be visualized non-invasively by magnetic resonance imaging (MRI) and dedicated MRI sequences such as T2* mapping. Here, we develop a protocol for efficient ex vivo labeling of murine and human TCR-transgenic and CAR T cells with iron oxide NPs. We assess labeling efficiency and T cell functionality by flow cytometry and transmission electron microscopy (TEM). NP labeled T cells are visualized by MRI at 9.4 T in vivo after adoptive T cell transfer and correlated with 3D models of cleared brains obtained by light sheet microscopy (LSM). Results: NP are incorporated into T cells in subcellular cytoplasmic vesicles with high labeling efficiency without interfering with T cell viability, proliferation and effector function as assessed by cytokine secretion and antigen-specific killing assays in vitro. We further demonstrate that adoptively transferred T cells can be longitudinally monitored intratumorally by high field MRI at 9.4 Tesla in a murine glioma model with high sensitivity. We find that T cell influx and homogenous spatial distribution of T cells within the TME as assessed by T2* imaging predicts tumor response to ACT whereas incomplete T cell coverage results in treatment resistance. Conclusion: This study showcases a rational for monitoring adoptive T cell therapies non-invasively by iron oxide NP in gliomas to track intratumoral T cell influx and ultimately predict treatment outcome.
Collapse
Affiliation(s)
- Jessica Hunger
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Schregel
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Berin Boztepe
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Alexander Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Verena Turco
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | | | - Ina Weidenfeld
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Yannik Streibel
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Sturm
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Michael Kilian
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Kristine Jähne
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Katharina Sahm
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, DKTK within DKFZ, Heidelberg, Germany
- Department of Neurology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Lukas Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Sabine Heiland
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Martin Bendszus
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| | - Michael O. Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Brune N, Mues B, Buhl EM, Hintzen KW, Jockenhoevel S, Cornelissen CG, Slabu I, Thiebes AL. Dual Labeling of Primary Cells with Fluorescent Gadolinium Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1869. [PMID: 37368300 DOI: 10.3390/nano13121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The interest in mesenchymal stromal cells as a therapy option is increasing rapidly. To improve their implementation, location, and distribution, the properties of these must be investigated. Therefore, cells can be labeled with nanoparticles as a dual contrast agent for fluorescence and magnetic resonance imaging (MRI). In this study, a more efficient protocol for an easy synthesis of rose bengal-dextran-coated gadolinium oxide (Gd2O3-dex-RB) nanoparticles within only 4 h was established. Nanoparticles were characterized by zeta potential measurements, photometric measurements, fluorescence and transmission electron microscopy, and MRI. In vitro cell experiments with SK-MEL-28 and primary adipose-derived mesenchymal stromal cells (ASC), nanoparticle internalization, fluorescence and MRI properties, and cell proliferation were performed. The synthesis of Gd2O3-dex-RB nanoparticles was successful, and they were proven to show adequate signaling in fluorescence microscopy and MRI. Nanoparticles were internalized into SK-MEL-28 and ASC via endocytosis. Labeled cells showed sufficient fluorescence and MRI signal. Labeling concentrations of up to 4 mM and 8 mM for ASC and SK-MEL-28, respectively, did not interfere with cell viability and proliferation. Gd2O3-dex-RB nanoparticles are a feasible contrast agent to track cells via fluorescence microscopy and MRI. Fluorescence microscopy is a suitable method to track cells in in vitro experiments with smaller samples.
Collapse
Affiliation(s)
- Nadine Brune
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Benedikt Mues
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Eva Miriam Buhl
- Institute of Pathology, Electron Microscopy Facility, University Clinic Aachen, 52074 Aachen, Germany
| | - Kai-Wolfgang Hintzen
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- DWI-Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
| | - Stefan Jockenhoevel
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, 6167 RD Geleen, The Netherlands
| | - Christian G Cornelissen
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Department of Pneumology and Internal Intensive Care Medicine, Medical Clinic V, University Clinic Aachen, 52074 Aachen, Germany
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Anja Lena Thiebes
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, 6167 RD Geleen, The Netherlands
| |
Collapse
|
3
|
Cheng HLM. A primer on in vivo cell tracking using MRI. Front Med (Lausanne) 2023; 10:1193459. [PMID: 37324153 PMCID: PMC10264782 DOI: 10.3389/fmed.2023.1193459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Cell tracking by in vivo magnetic resonance imaging (MRI) offers a collection of multiple advantages over other imaging modalities, including high spatial resolution, unlimited depth penetration, 3D visualization, lack of ionizing radiation, and the potential for long-term cell monitoring. Three decades of innovation in both contrast agent chemistry and imaging physics have built an expansive array of probes and methods to track cells non-invasively across a diverse range of applications. In this review, we describe both established and emerging MRI cell tracking approaches and the variety of mechanisms available for contrast generation. Emphasis is given to the advantages, practical limitations, and persistent challenges of each approach, incorporating quantitative comparisons where possible. Toward the end of this review, we take a deeper dive into three key application areas - tracking cancer metastasis, immunotherapy for cancer, and stem cell regeneration - and discuss the cell tracking techniques most suitable to each.
Collapse
Affiliation(s)
- Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, ON, Canada
| |
Collapse
|
4
|
Wang L, Sun X. Mesoporous Silica Hybridized With Gadolinium(III) Nanoplatform for Targeted Magnetic Imaging-Guided Photothermal Breast Cancer Therapy. Dose Response 2020; 18:1559325820902314. [PMID: 32284692 PMCID: PMC7119237 DOI: 10.1177/1559325820902314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022] Open
Abstract
Achieving drug target accumulation in antitumor tissue, simultaneous diagnostic imaging, and optimal release behavior with treatment needs a best chemotherapy procedure involving receptive switch of drug delivery. Constructed on mesoporous silica nanoparticles, which are crossed with multiscale charming nanoparticles for magnetic resonance imaging (MRI)-aided and alternate magnetic field (AMF) response chemotherapy for breast cancer, we report in this work the assembly of a new theranostics drug conveyance process. Hydrothermal processes (gadolinium(III) oxide nanoparticles [Gd-NPs]) and heat decomposition process (radical size uFe-NPs) were used to prepare superparamagnetic Gd-NPs with multiscale sizes. Gadolinium(III) oxide nanoparticles act as an AMF-responsive heat mediator, while ultra-Fe nanoparticles (uFe-NPs) act as an MRI T2 contrast mediator. Nanoparticles of the mesoporous silica with radially oriented mesochannels were further grown in situ on the surfaces of the Gd-NPs, and the uFe-NPs anticancer drug doxorubicin can be easily incorporated in the mesochannels. To provide better targeting capabilities for the as-synthesized biotin-loaded nanohybrids, the particle surfaces are updated with biotin (Bt). This optimized drug conveyance method based on nanocomposites of SiO2 demonstrated great efficiency of medication charging and receptive properties of AMF stimulus release. However, tests of MRI in vitro showed an outstanding contrast effect in MRI with a high stimulation quality (299 mM−1 s−1). In contrast, the study of in vitro cytotoxicity assessment revealed that an MRI-directed stimulus-mediated theranostics tool can be used as a drug conveyance device to efficiently treat breast cancer.
Collapse
Affiliation(s)
- Longqing Wang
- Department of Gastrointestinal and Mammary Surgery, General Hospital of Fushun Liaoning Health Industry Group, Fushun, China
| | - Xiaofeng Sun
- Department of Ultrasound, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Sui Y, Li Y, Li Y, Jin H, Zheng Y, Huang W, Chen S. Tumor-specific design of PEGylated gadolinium-based nanoscale particles: Facile synthesis, characterization, and improved magnetic resonance imaging of metastasis lung cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111669. [PMID: 31739258 DOI: 10.1016/j.jphotobiol.2019.111669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Herein we report the synthesis and characterization of the antifouling Gadolinium oxide (Gd2O3) nanoparticles (NPs) modified with PEG with improved biocompatibility for MR imaging purposes. In this report, using the solvothermal decomposition of Gadolinium (III) in the presence of Na3cit, monitored by surface modification with PEG and L-Cys. The synthesized nanoparticles were confirmed by the TEM, DLS and UV-Visible spectroscopy. The morphological results show normal distance across of the flawless Gd2O3-PEG-Cys-NPs show 7.9 ± 0.4 nm, discretely, with a thin size exchange. This infers the surface adjustment does not obviously alteration the center size of the Gd2O3-NPs when contrasted with the perfect sodium citrate-balanced out Gd2O3-NPs. The Gd2O3-PEG-L-Cys-NPs are highly stable at room temperature, water dispersible and importantly less cytotoxic at high concentration of the NPs. The T1-weighted MR phantasm readings evidentially displayed that the formed PEG coated Gd2O3-PEG and Gd2O3-PEG-Cys-NPs with and without Cys may be performed as the promising T1-weighted MR imaging. The NPs displays no signs of toxicity against the human blood, which represents the biocompatibility for the human medicine applications. The Gd2O3-PEG-Cys-NPs shows relatively, high r1 acceptable cytocompatibility, target specific cancer cells and activate the dual mode MR imaging of lung metastasis cancer model in vitro. The development of versatile zwitterion functionalized Gd2O3 may be promising as an active nanoparticle probe for improved multi-model of MR imaging agents for various cancer diseases.
Collapse
Affiliation(s)
- Yuan Sui
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Yuzhou Li
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Yiming Li
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Hongrui Jin
- Department of Magnetic Resonance, First Affiliated Hospital of Zhengzhou University, PR China
| | - Yinshi Zheng
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Wenqi Huang
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Shuo Chen
- Department of Lung, Spleen and Stomach, Nanping People's Hospital, No. 29 Jiefang Road, Nanping District, Nanping 353000, Fujian Province, PR China.
| |
Collapse
|
6
|
Shlapa Y, Solopan S, Bodnaruk A, Kulyk M, Kalita V, Tykhonenko-Polishchuk Y, Tovstolytkin A, Belous A. Effect of Synthesis Temperature on Structure and Magnetic Properties of (La,Nd) 0.7Sr 0.3MnO 3 Nanoparticles. NANOSCALE RESEARCH LETTERS 2017; 12:100. [PMID: 28181163 PMCID: PMC5307377 DOI: 10.1186/s11671-017-1884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Two sets of Nd-doped La0.7Sr0.3MnO3 nanoparticles were synthesized via sol-gel method with further heat treatment at 1073 and 1573 K, respectively. Crystallographic and magnetic properties of obtained nanoparticles were studied, and the effect of synthesis conditions on these properties was investigated. According to X-ray data, all particles crystallized in the distorted perovskite structure. Magnetic parameters, such as saturation magnetization, coercivity, Curie temperature, and specific loss power, which is released on the exposure of an ensemble of nanoparticles to AC magnetic field, were determined for both sets of samples. The correlation between the values of Curie temperature and maximal heating temperature under AC magnetic field was found. It was revealed that for the samples synthesized at 1573 K, the dependences of crystallographic and magnetic parameters on Nd content were monotonous, while for the samples synthesized at 1073 K, they were non-monotonous. It was concluded that Nd-doped La0.7Sr0.3MnO3 nanoparticles are promising materials for self-controlled magnetic hyperthermia applications, but the researchers should be aware of the unusual behavior of the particles synthesized at relatively low temperatures.
Collapse
Affiliation(s)
- Yulia Shlapa
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Ave., Kyiv, 03142 Ukraine
| | - Sergii Solopan
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Ave., Kyiv, 03142 Ukraine
| | - Andrii Bodnaruk
- Institute of Physics of the NAS of Ukraine, 46 Nauky Ave., Kyiv, 03028 Ukraine
| | - Mykola Kulyk
- Institute of Physics of the NAS of Ukraine, 46 Nauky Ave., Kyiv, 03028 Ukraine
| | - Viktor Kalita
- Institute of Physics of the NAS of Ukraine, 46 Nauky Ave., Kyiv, 03028 Ukraine
| | | | - Alexandr Tovstolytkin
- Institute of Magnetism of the NAS of Ukraine and MES of Ukraine, 36-b Vernadsky Blvd., Kyiv, 03680 Ukraine
| | - Anatolii Belous
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Ave., Kyiv, 03142 Ukraine
| |
Collapse
|
7
|
C19, a C-terminal peptide of CKLF1, decreases inflammation and proliferation of dermal capillaries in psoriasis. Sci Rep 2017; 7:13890. [PMID: 29066845 PMCID: PMC5655640 DOI: 10.1038/s41598-017-13799-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disease with undefined etiology. Chemokine-like factor 1 (CKLF1), a human cytokine that is a functional ligand for CCR4, displays chemotactic activities in a wide spectrum of leukocytes and plays an important role in psoriasis development. In previous study, our laboratory found that the expression of CKLF1 increased in psoriatic lesions. C19 as a CKLF1's C-terminal peptide has been reported to exert inhibitory effects on a variety of diseases. However, the protective roles of C19 in endothelial cells proliferation and inflammatory cells chemotaxis remain elusive in psoriasis. In this study we examined the protective effect of C19 on both the cellular model and the animal model. The effects of C19 on endothelial cells proliferation and inflammatory cells chemotaxis were investigated in cultured human umbilical vein endothelial cells (HUVECs) and imiquimod-induced psoriasiform inflammation of BALB/c mice based on techniques including immunohistochemical analysis, quantitative real-time PCR (qRT-PCR), western blot, transwell, and EdU assay. This study shows that CKLF1-C19 significantly protects against psoriasis by inhibiting the infiltration of inflammatory cells and proliferation of microvascular cells, possibly via inhibiting MAPK pathways.
Collapse
|
8
|
Dextran‐Coated Ultrasmall Gd
2
O
3
Nanoparticles as Potential T
1
MRI Contrast Agent. ChemistrySelect 2016. [DOI: 10.1002/slct.201600832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Tan Y, Wang Y, Li L, Xia J, Peng S, He Y. Chemokine-like factor 1-derived C-terminal peptides induce the proliferation of dermal microvascular endothelial cells in psoriasis. PLoS One 2015; 10:e0125073. [PMID: 25915746 PMCID: PMC4410955 DOI: 10.1371/journal.pone.0125073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/19/2015] [Indexed: 11/18/2022] Open
Abstract
Psoriasis is an inflammatory disease characterized by the abnormal proliferation of skin cells, including dermal microvascular endothelial cells. Recently, chemokine-like factor 1 (CKLF1) was found to participate in the local inflammation and cell proliferation. To explore its role in the pathogenesis of psoriasis, the expression of both CKLF1 and its receptor (CCR4) was determined in the psoriatic lesions. Also, the effect of the C-terminal peptides (C19 and C27) of CKLF1 on the proliferation of human umbilical vein endothelial cells was studied in vitro. By immunohistochemistry and immunofluorescence, the expression of both CKLF1 and CCR4 was determined in the psoriatic lesions. The effect of C-terminal peptides on human umbilical vein endothelial cells (HUVECs) was studied in vitro by the evaluation of cell proliferation and apoptosis. The in vivo assessment was performed accordingly through the subcutaneous injection peptides on BALB/c mice. The results showed that, by immunohistochemistry, both CKLF1 and CCR4 were increasingly expressed in psoriatic lesions as compared to normal skins. Moreover, the primary umbilical vein endothelial cells exhibited higher proliferation ratio under the C19 or C27 stimulation, which was even enhanced by the addition of psoriatic sera or TNF-α. Furthermore, the enhancement of peptide simulation was accompanied with the activation of ERK1/2-MAPKs pathway. In addition, such effect of C19 and C27 was mirrored by the hyperproliferation of cutaneous microvessels in BALB/c mice that were subcutaneously injected with the two peptides. Therefore, we concluded that CKLF1 plays a role in the pathogenesis of psoriasis by promoting the proliferation of microvascular endothelial cells that possibly correlates with ERK1/2-MAPKs activation.
Collapse
Affiliation(s)
- Yaqi Tan
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jinyu Xia
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shiguang Peng
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Wu X, Chen J, Wu M, Zhao JX. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 2015; 5:322-44. [PMID: 25699094 PMCID: PMC4329498 DOI: 10.7150/thno.10257] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023] Open
Abstract
Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment.
Collapse
Affiliation(s)
- Xu Wu
- 1. Department of Chemistry, School of Arts and Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Jiao Chen
- 1. Department of Chemistry, School of Arts and Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Min Wu
- 2. Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Julia Xiaojun Zhao
- 1. Department of Chemistry, School of Arts and Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
11
|
Di Corato R, Gazeau F, Le Visage C, Fayol D, Levitz P, Lux F, Letourneur D, Luciani N, Tillement O, Wilhelm C. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs. ACS NANO 2013; 7:7500-12. [PMID: 23924160 DOI: 10.1021/nn401095p] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recent advances in cell therapy and tissue engineering opened new windows for regenerative medicine, but still necessitate innovative noninvasive imaging technologies. We demonstrate that high-resolution magnetic resonance imaging (MRI) allows combining cellular-scale resolution with the ability to detect two cell types simultaneously at any tissue depth. Two contrast agents, based on iron oxide and gadolinium oxide rigid nanoplatforms, were used to "tattoo" endothelial cells and stem cells, respectively, with no impact on cell functions, including their capacity for differentiation. The labeled cells' contrast properties were optimized for simultaneous MRI detection: endothelial cells and stem cells seeded together in a polysaccharide-based scaffold material for tissue engineering appeared respectively in black and white and could be tracked, at the cellular level, both in vitro and in vivo. In addition, endothelial cells labeled with iron oxide nanoparticles could be remotely manipulated by applying a magnetic field, allowing the creation of vessel substitutes with in-depth detection of individual cellular components.
Collapse
Affiliation(s)
- Riccardo Di Corato
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Diderot , France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang Y, Xu C, Ow H. Commercial nanoparticles for stem cell labeling and tracking. Theranostics 2013; 3:544-60. [PMID: 23946821 PMCID: PMC3741604 DOI: 10.7150/thno.5634] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/03/2013] [Indexed: 11/05/2022] Open
Abstract
Stem cell therapy provides promising solutions for diseases and injuries that conventional medicines and therapies cannot effectively treat. To achieve its full therapeutic potentials, the homing process, survival, differentiation, and engraftment of stem cells post transplantation must be clearly understood. To address this need, non-invasive imaging technologies based on nanoparticles (NPs) have been developed to track transplanted stem cells. Here we summarize existing commercial NPs which can act as contrast agents of three commonly used imaging modalities, including fluorescence imaging, magnetic resonance imaging and photoacoustic imaging, for stem cell labeling and tracking. Specifically, we go through their technologies, industry distributors, applications and existing concerns in stem cell research. Finally, we provide an industry perspective on the potential challenges and future for the development of new NP products.
Collapse
Affiliation(s)
- Yaqi Wang
- 1. Hybrid Silica Technologies, Cambridge, Massachusetts, USA 02139
| | - Chenjie Xu
- 2. Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Hooisweng Ow
- 1. Hybrid Silica Technologies, Cambridge, Massachusetts, USA 02139
| |
Collapse
|
13
|
Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev 2013; 113:2842-62. [PMID: 23509854 PMCID: PMC5519293 DOI: 10.1021/cr300468w] [Citation(s) in RCA: 477] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Michael J. Donovan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|