1
|
Winden KD, Gisser I, Sahin M. Using cortical organoids to understand the pathogenesis of malformations of cortical development. Front Neurosci 2025; 18:1522652. [PMID: 39881808 PMCID: PMC11774837 DOI: 10.3389/fnins.2024.1522652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Malformations of cortical development encompass a broad range of disorders associated with abnormalities in corticogenesis. Widespread abnormalities in neuronal formation or migration can lead to small head size or microcephaly with disorganized placement of cell types. Specific, localized malformations are termed focal cortical dysplasias (FCD). Neurodevelopmental disorders are common in all types of malformations of cortical development with the most prominent being refractory epilepsy, behavioral disorders such as autism spectrum disorder (ASD), and learning disorders. Several genetic pathways have been associated with these disorders from control of cell cycle and cytoskeletal dynamics in global malformations to variants in growth factor signaling pathways, especially those interacting with the mechanistic target of rapamycin (mTOR), in FCDs. Despite advances in understanding these disorders, the underlying developmental pathways that lead to lesion formation and mechanisms through which defects in cortical development cause specific neurological symptoms often remains unclear. One limitation is the difficulty in modeling these disorders, as animal models frequently do not faithfully mirror the human phenotype. To circumvent this obstacle, many investigators have turned to three-dimensional human stem cell models of the brain, known as organoids, because they recapitulate early neurodevelopmental processes. High throughput analysis of these organoids presents a promising opportunity to model pathophysiological processes across the breadth of malformations of cortical development. In this review, we highlight advances in understanding the pathophysiology of brain malformations using organoid models.
Collapse
Affiliation(s)
| | | | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Synaptic Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221810058. [PMID: 34576223 PMCID: PMC8466868 DOI: 10.3390/ijms221810058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/- mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/- mice.
Collapse
|
3
|
Karalis V, Bateup HS. Current Approaches and Future Directions for the Treatment of mTORopathies. Dev Neurosci 2021; 43:143-158. [PMID: 33910214 PMCID: PMC8440338 DOI: 10.1159/000515672] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase at the center of an evolutionarily conserved signaling pathway that orchestrates cell growth and metabolism. mTOR responds to an array of intra- and extracellular stimuli and in turn controls multiple cellular anabolic and catabolic processes. Aberrant mTOR activity is associated with numerous diseases, with particularly profound impact on the nervous system. mTOR is found in two protein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which are governed by different upstream regulators and have distinct cellular actions. Mutations in genes encoding for mTOR regulators result in a collection of neurodevelopmental disorders known as mTORopathies. While these disorders can affect multiple organs, neuropsychiatric conditions such as epilepsy, intellectual disability, and autism spectrum disorder have a major impact on quality of life. The neuropsychiatric aspects of mTORopathies have been particularly challenging to treat in a clinical setting. Current therapeutic approaches center on rapamycin and its analogs, drugs that are administered systemically to inhibit mTOR activity. While these drugs show some clinical efficacy, adverse side effects, incomplete suppression of mTOR targets, and lack of specificity for mTORC1 or mTORC2 may limit their utility. An increased understanding of the neurobiology of mTOR and the underlying molecular, cellular, and circuit mechanisms of mTOR-related disorders will facilitate the development of improved therapeutics. Animal models of mTORopathies have helped unravel the consequences of mTOR pathway mutations in specific brain cell types and developmental stages, revealing an array of disease-related phenotypes. In this review, we discuss current progress and potential future directions for the therapeutic treatment of mTORopathies with a focus on findings from genetic mouse models.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
4
|
Kútna V, O'Leary VB, Newman E, Hoschl C, Ovsepian SV. Revisiting Brain Tuberous Sclerosis Complex in Rat and Human: Shared Molecular and Cellular Pathology Leads to Distinct Neurophysiological and Behavioral Phenotypes. Neurotherapeutics 2021; 18:845-858. [PMID: 33398801 PMCID: PMC8423952 DOI: 10.1007/s13311-020-01000-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a dominant autosomal genetic disorder caused by loss-of-function mutations in TSC1 and TSC2, which lead to constitutive activation of the mammalian target of rapamycin C1 (mTORC1) with its decoupling from regulatory inputs. Because mTORC1 integrates an array of molecular signals controlling protein synthesis and energy metabolism, its unrestrained activation inflates cell growth and division, resulting in the development of benign tumors in the brain and other organs. In humans, brain malformations typically manifest through a range of neuropsychiatric symptoms, among which mental retardation, intellectual disabilities with signs of autism, and refractory seizures, which are the most prominent. TSC in the rat brain presents the first-rate approximation of cellular and molecular pathology of the human brain, showing many instructive characteristics. Nevertheless, the developmental profile and distribution of lesions in the rat brain, with neurophysiological and behavioral manifestation, deviate considerably from humans, raising numerous research and translational questions. In this study, we revisit brain TSC in human and Eker rats to relate their histopathological, electrophysiological, and neurobehavioral characteristics. We discuss shared and distinct aspects of the pathology and consider factors contributing to phenotypic discrepancies. Given the shared genetic cause and molecular pathology, phenotypic deviations suggest an incomplete understanding of the disease. Narrowing the knowledge gap in the future should not only improve the characterization of the TSC rat model but also explain considerable variability in the clinical manifestation of the disease in humans.
Collapse
Affiliation(s)
- Viera Kútna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Ehren Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic.
| |
Collapse
|
5
|
Rajamani KT, Wagner S, Grinevich V, Harony-Nicolas H. Oxytocin as a Modulator of Synaptic Plasticity: Implications for Neurodevelopmental Disorders. Front Synaptic Neurosci 2018; 10:17. [PMID: 29970997 PMCID: PMC6018411 DOI: 10.3389/fnsyn.2018.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 01/23/2023] Open
Abstract
The neuropeptide oxytocin (OXT) is a crucial mediator of parturition and milk ejection and a major modulator of various social behaviors, including social recognition, aggression and parenting. In the past decade, there has been significant excitement around the possible use of OXT to treat behavioral deficits in neurodevelopmental disorders, including autism spectrum disorder (ASD). Yet, despite the fast move to clinical trials with OXT, little attention has been paid to the possibility that the OXT system in the brain is perturbed in these disorders and to what extent such perturbations may contribute to social behavior deficits. Large-scale whole-exome sequencing studies in subjects with ASD, along with biochemical and electrophysiological studies in animal models of the disorder, indicate several risk genes that play an essential role in brain synapses, suggesting that deficits in synaptic activity and plasticity underlie the pathophysiology in a considerable portion of these cases. OXT has been repeatedly shown, both in vitro and in vivo, to modify synaptic properties and plasticity and to modulate neural activity in circuits that regulate social behavior. Together, these findings led us to hypothesize that failure of the OXT system during early development, as a direct or indirect consequence of genetic mutations, may impact social behavior by altering synaptic activity and plasticity. In this article, we review the evidence that support our hypothesis.
Collapse
Affiliation(s)
- Keerthi Thirtamara Rajamani
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,The Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides at German Cancer Research Center (DKFZ), Central Institute of Mental Health and Cell Networks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany
| | - Hala Harony-Nicolas
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,The Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| |
Collapse
|
6
|
Grill B, Murphey RK, Borgen MA. The PHR proteins: intracellular signaling hubs in neuronal development and axon degeneration. Neural Dev 2016; 11:8. [PMID: 27008623 PMCID: PMC4806438 DOI: 10.1186/s13064-016-0063-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
During development, a coordinated and integrated series of events must be accomplished in order to generate functional neural circuits. Axons must navigate toward target cells, build synaptic connections, and terminate outgrowth. The PHR proteins (consisting of mammalian Phr1/MYCBP2, Drosophila Highwire and C. elegans RPM-1) function in each of these events in development. Here, we review PHR function across species, as well as the myriad of signaling pathways PHR proteins regulate. These findings collectively suggest that the PHR proteins are intracellular signaling hubs, a concept we explore in depth. Consistent with prominent developmental functions, genetic links have begun to emerge between PHR signaling networks and neurodevelopmental disorders, such as autism, schizophrenia and intellectual disability. Finally, we discuss the recent and important finding that PHR proteins regulate axon degeneration, which has further heightened interest in this fascinating group of molecules.
Collapse
Affiliation(s)
- Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA.
| | - Rodney K Murphey
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
7
|
Banerjee A, Luong JA, Ho A, Saib AO, Ploski JE. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment. Mol Autism 2016; 7:16. [PMID: 26929812 PMCID: PMC4770673 DOI: 10.1186/s13229-016-0077-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Autism spectrum disorders (ASDs) represent a heterogeneous group of disorders with a wide range of behavioral impairments including social and communication deficits. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety, and some studies indicate that a subset of ASD individuals have a reduced ability to be fear conditioned. Deciphering the molecular basis of ASD has been considerably challenging and it currently remains poorly understood. In this study we examined the molecular basis of autism-like impairments in an environmentally induced animal model of ASD, where pregnant rats are exposed to the known teratogen, valproic acid (VPA), on day 12.5 of gestation and the subsequent progeny exhibit ASD-like symptoms. We focused our analysis on the basal and lateral nucleus of the amygdala (BLA), a region of the brain found to be associated with ASD pathology. Methods We performed whole genome gene expression analysis on the BLA using DNA microarrays to examine differences in gene expression within the amygdala of VPA-exposed animals. We validated one VPA-dysregulated candidate gene (Homer1a) using both quantitative PCR (qRT-PCR) and western blot. Finally, we overexpressed Homer1a within the basal and lateral amygdala of naïve animals utilizing adeno-associated viruses (AAV) and subsequently examined these animals in a battery of behavioral tests associated with ASD, including auditory fear conditioning, social interaction and open field. Results Our microarray data indicated that Homer1a was one of the genes which exhibited a significant upregulation within the amygdala. We observed an increase in Homer1a messenger RNA (mRNA) and protein in multiple cohorts of VPA-exposed animals indicating that dysregulation of Homer1a levels might underlie some of the symptoms exhibited by VPA-exposed animals. To test this hypothesis, we overexpressed Homer1a within BLA neurons utilizing a viral-mediated approach and found that overexpression of Homer1a impaired auditory fear conditioning and reduced social interaction, while having no influence on open-field behavior. Conclusions This study indicates that dysregulation of amygdala Homer1a might contribute to some autism-like symptoms induced by VPA exposure. These findings are interesting in part because Homer1a influences the functioning of Shank3, metabotropic glutamate receptors (mGluR5), and Homer1, and these proteins have previously been associated with ASD, indicating that these differing models of ASD may have a similar molecular basis. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0077-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Cell Biology, Emory University, 615 Michael St. WBRB #415, Atlanta, GA 30322 USA
| | - Jonathan A Luong
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Anthony Ho
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Aeshah O Saib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| |
Collapse
|
8
|
Kirschstein T, Köhling R. Animal models of tumour-associated epilepsy. J Neurosci Methods 2015; 260:109-17. [PMID: 26092434 DOI: 10.1016/j.jneumeth.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/26/2023]
Abstract
Brain tumours cause a sizeable proportion of epilepsies in adulthood, and actually can be etiologically responsible also for childhood epilepsies. Conversely, seizures are often first clinical signs of a brain tumour. Nevertheless, several issues of brain-tumour associated seizures and epilepsies are far from understood, or clarified regarding clinical consensus. These include both the specific mechanisms of epileptogenesis related to different tumour types, the possible relationship between malignancy and seizure emergence, the interaction between tumour mass and surrounding neuronal networks, and - not least - the best treatment options depending on different tumour types. To investigate these issues, experimental models of tumour-induced epilepsies are necessary. This review concentrates on the description of currently used models, focusing on methodological aspects. It highlights advantages and shortcomings of these models, and identifies future experimental challenges.
Collapse
Affiliation(s)
- Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany.
| |
Collapse
|
9
|
Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett 2015; 601:30-40. [PMID: 25578949 DOI: 10.1016/j.neulet.2015.01.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 01/22/2023]
Abstract
The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target.
Collapse
Affiliation(s)
- Mary Phillips
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Zhou W, Dong L, Wang N, Shi JY, Yang JJ, Zuo ZY, Zhou ZQ. Akt mediates GSK-3β phosphorylation in the rat prefrontal cortex during the process of ketamine exerting rapid antidepressant actions. Neuroimmunomodulation 2014; 21:183-8. [PMID: 24504086 DOI: 10.1159/000356517] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022] Open
Abstract
Ketamine may produce rapid and sustained antidepressant effects. Despite the fact that the detailed underlying mechanism remains unknown, recent studies have suggested the involvement of the mammalian target of rapamycin (mTOR) pathway and glycogen synthase kinase-3 (GSK-3) signal, respectively, in the process of ketamine exerting antidepressant actions. This study aimed to investigate the mechanism by which ketamine phosphorylates GSK-3β in the rat prefrontal cortex (PFC) via applying vehicle or the antagonists of mTOR signalling pathway proteins including PI3K/Akt, mTOR and p70S6 kinase to the rats in the forced swimming test (FST) prior to ketamine administration, and subsequently observing the levels of phosphorylated GSK-3β, mTOR and p70S6K in rat PFC as well as the immobility time of rats in the FST. Our results revealed that compared to treatment with vehicle, ketamine increased the levels of phosphorylated GSK-3β in rat PFC (p < 0.05), which was attenuated by PI3K/Akt antagonist pretreatment (p < 0.05), but could not be affected by mTOR antagonist or p70S6K antagonist pretreatment. In addition, all the antagonists reversed the ketamine-induced increases in the phosphorylation of mTOR and p70S6K (p < 0.05). They also all abolished the rapid-acting antidepressant actions of ketamine demonstrated by the increased immobility time of rats in the FST. In conclusion, Akt mediates the phosphorylation of GSK-3β in rat PFC during the process of ketamine exerting rapid antidepressant actions.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Picker JD, Walsh CA. New innovations: therapeutic opportunities for intellectual disabilities. Ann Neurol 2013; 74:382-90. [PMID: 24038210 DOI: 10.1002/ana.24002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
Abstract
Intellectual disability is common and is associated with significant morbidity. Until the latter half of the 20th century, there were no efficacious treatments. Following initial breakthroughs associated with newborn screening and metabolic corrections, little progress was made until recently. With improved understanding of genetic and cellular mechanisms, novel treatment options are beginning to appear for a number of specific conditions. Fragile X and tuberous sclerosis offer paradigms for the development of targeted therapeutics, but advances in understanding of other disorders such as Down syndrome and Rett syndrome, for example, are also resulting in promising treatment directions. In addition, better understanding of the underlying neurobiology is leading to novel developments in enzyme replacement for storage disorders and adjunctive therapies for metabolic disorders, as well as potentially more generalizable approaches that target dysfunctional cell regulation via RNA and chromatin. Physiologic therapies, including deep brain stimulation and transcranial magnetic stimulation, offer yet another direction to enhance cognitive functioning. Current options and evolving opportunities for the intellectually disabled are reviewed and exemplified.
Collapse
Affiliation(s)
- Jonathan D Picker
- Division of Genetics, Boston Children's Hospital, and Howard Hughes Medical Institute, Boston, MA; Departments of Pediatrics and Neurology,, Harvard Medical School, Boston, MA
| | | |
Collapse
|
12
|
Lippman-Bell JJ, Rakhade SN, Klein PM, Obeid M, Jackson MC, Joseph A, Jensen FE. AMPA receptor antagonist NBQX attenuates later-life epileptic seizures and autistic-like social deficits following neonatal seizures. Epilepsia 2013; 54:1922-32. [PMID: 24117347 DOI: 10.1111/epi.12378] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE To determine whether AMPA receptor (AMPAR) antagonist NBQX can prevent early mammalian target of rapamycin (mTOR) pathway activation and long-term sequelae following neonatal seizures in rats, including later-life spontaneous recurrent seizures, CA3 mossy fiber sprouting, and autistic-like social deficits. METHODS Long-Evans rats experienced hypoxia-induced neonatal seizures (HS) at postnatal day (P)10. NBQX (20 mg/kg) was administered immediately following HS (every 12 h × 4 doses). Twelve hours post-HS, we assessed mTOR activation marker phosphorylated p70-S6 kinase (p-p70S6K) in hippocampus and cortex of vehicle (HS + V) or NBQX-treated post-HS rats (HS + N) versus littermate controls (C + V). Spontaneous seizure activity was compared between groups by epidural cortical electroencephalography (EEG) at P70-100. Aberrant mossy fiber sprouting was measured using Timm staining. Finally, we assessed behavior between P30 and P38. KEY FINDINGS Postseizure NBQX treatment significantly attenuated seizure-induced increases in p-p70S6K in the hippocampus (p < 0.01) and cortex (p < 0.001). Although spontaneous recurrent seizures increased in adulthood in HS + V rats compared to controls (3.22 ± 1 seizures/h; p = 0.03), NBQX significantly attenuated later-life seizures (0.14 ± 0.1 seizures/h; p = 0.046). HS + N rats showed less aberrant mossy fiber sprouting (115 ± 8.0%) than vehicle-treated post-HS rats (174 ± 10%, p = 0.004), compared to controls (normalized to 100%). Finally, NBQX treatment prevented alterations in later-life social behavior; post-HS rats showed significantly decreased preference for a novel over a familiar rat (71.0 ± 12 s) compared to controls (99.0 ± 15.6 s; p < 0.01), whereas HS + N rats showed social novelty preference similar to controls (114.3 ± 14.1 s). SIGNIFICANCE Brief NBQX administration during the 48 h postseizure in P10 Long-Evans rats suppresses transient mTOR pathway activation and attenuates spontaneous recurrent seizures, social preference deficits, and mossy fiber sprouting observed in vehicle-treated adult rats after early life seizures. These results suggest that acute AMPAR antagonist treatment during the latent period immediately following neonatal HS can modify seizure-induced activation of mTOR, reduce the frequency of later-life seizures, and protect against CA3 mossy fiber sprouting and autistic-like social deficits.
Collapse
Affiliation(s)
- Jocelyn J Lippman-Bell
- Department of Neurology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, U.S.A; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | | | | | | | | | | | | |
Collapse
|
13
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|