1
|
Ramakrishnan K, Sanjeev D, Rehman N, Raju R. A Network Map of Intracellular Alpha-Fetoprotein Signalling in Hepatocellular Carcinoma. J Viral Hepat 2025; 32:e14035. [PMID: 39668590 DOI: 10.1111/jvh.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 12/14/2024]
Abstract
Alpha fetoprotein (AFP) is a glycoprotein of foetal origin belonging to the albumin protein family. Serum AFP is a long-conceived early-diagnostic biomarker for HCC with its elevated expression in different liver pathologies ranging from hepatitis viral infections to fibrosis, cirrhosis, and HCC. Beyond their utility as biomarkers, in support of its contribution to these clinical outcomes, the function of AFP as an immune suppressor and inducer of malignant transformation in HCC patients is well reported. Multiple reports show that AFP is secreted by hepatocytes, binds to its cognate receptor, AFP-receptor (AFPR), and exerts its actions. However, there is only limited information available in this context. There is an urgent need to gather more insight into the AFP signalling pathway and consider it a classical intracellular signalling pathway, among others. AFP is a highly potent intracellular molecule that has the potential to bind to many interactors like PTEN, Caspase, RAR, and so on. It has been shown that cellular AFP and secreted AFP have different roles in HCC pathophysiology, and a comprehensive map of the AFP signalling pathway is warranted for further theranostic applications.
Collapse
Affiliation(s)
| | - Diya Sanjeev
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
2
|
Smolinska V, Klimova D, Danisovic L, Harsanyi S. Synovial Fluid Markers and Extracellular Vesicles in Rheumatoid Arthritis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1945. [PMID: 39768826 PMCID: PMC11678482 DOI: 10.3390/medicina60121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
In recent years, numerous potential prognostic biomarkers for rheumatoid arthritis (RA) have been investigated. Despite these advancements, clinical practice primarily relies on autoantibody tests-for rheumatoid factor (RF) and anti-citrullinated protein antibody (anti-CCP)-alongside inflammatory markers, such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Expanding the repertoire of diagnostic and therapeutic biomarkers is critical for improving clinical outcomes in RA. Emerging evidence highlights the significance of synovial fluid biomarkers, including aggrecan, matrix metalloproteinases, glucosyl-galactosyl-pyridinoline, hyaluronic acid, S100 proteins, calprotectin, and various cytokines, as well as immunological markers. Additionally, specific components of extracellular vesicles, such as non-coding RNAs, heat shock proteins, and lipids, are gaining attention. This review focuses on molecular markers found in synovial fluid and extracellular vesicles, excluding clinical and imaging biomarkers, and explores their potential applications in the diagnosis and management of RA.
Collapse
Affiliation(s)
- Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Daniela Klimova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| |
Collapse
|
3
|
TWEAK and TNFα, Both TNF Ligand Family Members and Multiple Sclerosis-Related Cytokines, Induce Distinct Gene Response in Human Brain Microvascular Endothelial Cells. Genes (Basel) 2022; 13:genes13101714. [PMID: 36292599 PMCID: PMC9601571 DOI: 10.3390/genes13101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the TNF ligand family involved in various diseases including brain inflammatory pathologies such as multiple sclerosis. It has been demonstrated that TWEAK can induce cerebrovascular permeability in an in vitro model of the blood-brain barrier. The molecular mechanisms playing a role in TWEAK versus TNFα signaling on cerebral microvascular endothelial cells are not well defined. Therefore, we aimed to identify gene expression changes in cultures of human brain microvascular endothelial cells (hCMEC/D3) to address changes initiated by TWEAK exposure. Taken together, our studies highlighted that gene involved in leukocyte extravasation, notably claudin-5, were differentially modulated by TWEAK and TNFα. We identified differential gene expression of hCMEC/D3 cells at three timepoints following TWEAK versus TNFα stimulation and also found distinct modulations of several canonical pathways including the actin cytoskeleton, vascular endothelial growth factor (VEGF), Rho family GTPases, and phosphatase and tensin homolog (PTEN) pathways. To our knowledge, this is the first study to interrogate and compare the effects of TWEAK versus TNFα on gene expression in brain microvascular endothelial cells.
Collapse
|
4
|
Abstract
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.
Collapse
Affiliation(s)
- Wiktoria Ratajczak
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Sarah D Atkinson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK.
| |
Collapse
|
5
|
Road to Metastasis: The TWEAK Pathway as a Discriminant between Metastasizing and Non-Metastasizing Thick Melanomas. Int J Mol Sci 2021; 22:ijms221910568. [PMID: 34638912 PMCID: PMC8508767 DOI: 10.3390/ijms221910568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cutaneous melanoma (CM) is the most aggressive form of skin cancer, and its worldwide incidence is rapidly increasing. Early stages can be successfully treated by surgery, but once metastasis has occurred, the prognosis is poor. However, some 5-10% of thick (≥2 mm) melanomas do not follow this scenario and run an unpredictable course. Little is known about the factors that contribute to metastasis in some patient with thick melanomas and the lack thereof in thick melanoma patients who never develop metastatic disease. We were therefore interested to study differential gene expression and pathway analysis and compare non-metastatic and metastatic thick melanomas. We found that the TNF-like weak inducer of apoptosis (TWEAK) pathway was upregulated in thick non-metastasizing melanomas. MAP3K14 (NIK1), BIRC2 (cIAP1), RIPK1, CASP7, CASP8, and TNF play an important role in inhibiting proliferation and invasion of tumor cells via the activation of the non-canonical NF-κB signaling pathway. In particular, this pathway sensitizes melanoma cells to TNF-alpha and activates the apoptosis module of the TWEAK pathway in thick non-metastasizing melanomas. Hence, our study suggests a potential role of the TWEAK pathway in inhibiting thick melanoma from metastasis. Exploitation of these genes and the pathway they control may open future therapeutic avenues.
Collapse
|
6
|
Patankar JV, Müller TM, Kantham S, Acera MG, Mascia F, Scheibe K, Mahapatro M, Heichler C, Yu Y, Li W, Ruder B, Günther C, Leppkes M, Mathew MJ, Wirtz S, Neufert C, Kühl AA, Paquette J, Jacobson K, Atreya R, Zundler S, Neurath MF, Young RN, Becker C. E-type prostanoid receptor 4 drives resolution of intestinal inflammation by blocking epithelial necroptosis. Nat Cell Biol 2021; 23:796-807. [PMID: 34239062 DOI: 10.1038/s41556-021-00708-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases present with elevated levels of intestinal epithelial cell (IEC) death, which compromises the gut barrier, activating immune cells and triggering more IEC death. The endogenous signals that prevent IEC death and break this vicious cycle, allowing resolution of intestinal inflammation, remain largely unknown. Here we show that prostaglandin E2 signalling via the E-type prostanoid receptor 4 (EP4) on IECs represses epithelial necroptosis and induces resolution of colitis. We found that EP4 expression correlates with an improved IBD outcome and that EP4 activation induces a transcriptional signature consistent with resolution of intestinal inflammation. We further show that dysregulated necroptosis prevents resolution, and EP4 agonism suppresses necroptosis in human and mouse IECs. Mechanistically, EP4 signalling on IECs converges on receptor-interacting protein kinase 1 to suppress tumour necrosis factor-induced activation and membrane translocation of the necroptosis effector mixed-lineage kinase domain-like pseudokinase. In summary, our study indicates that EP4 promotes the resolution of colitis by suppressing IEC necroptosis.
Collapse
Affiliation(s)
- Jay V Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Tanja M Müller
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Srinivas Kantham
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Fabrizio Mascia
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kristina Scheibe
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christina Heichler
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Yuqiang Yu
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Mano J Mathew
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
- Allianstic Research Laboratory, EFREI Paris, Villejuif, France
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, iPATH.Berlin, Berlin, Germany
| | - Jay Paquette
- Centre for Drug Research and Development, Vancouver, BC, Canada
- adMare BioInnovations, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Raja Atreya
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Robert N Young
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
7
|
Xie H, Yuan C, Li JJ, Li ZY, Lu WC. Potential Molecular Mechanism of TNF Superfamily-Related Genes in Glioblastoma Multiforme Based on Transcriptome and Epigenome. Front Neurol 2021; 12:576382. [PMID: 33643183 PMCID: PMC7905170 DOI: 10.3389/fneur.2021.576382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to investigate the molecular mechanism of tumor necrosis factor (TNF) superfamily-related genes and potential therapeutic drugs for glioblastoma multiforme (GBM) patients based on transcriptome and epigenome. Methods: Gene expression data, corresponding clinical data, and methylation data of GBM samples and normal samples in the TCGA-GBM and GTEx datasets were downloaded. The TNF-related genes were obtained, respectively, from two groups in the TCGA dataset. Then, the TNF-related differentially expressed genes (DEGs) were investigated between two groups, followed by enrichment analysis. Moreover, TNF superfamily-related gene expression and upstream methylation regulation were investigated to explore candidate genes and the prognostic model. Finally, the protein expression level of candidate genes was performed, followed by drug prediction analysis. Results: A total of 41 DEGs including 4 ligands, 18 receptors, and 19 downstream signaling molecules were revealed between two groups. These DEGs were mainly enriched in pathways like TNF signaling and functions like response to TNF. A total of 5 methylation site-regulated prognosis-related genes including TNF Receptor Superfamily Member (TNFRSF) 12A, TNFRSF11B, and CD40 were explored. The prognosis model constructed by 5 genes showed a well-prediction effect on the current dataset and verification dataset. Finally, drug prediction analysis showed that zoledronic acid (ZA)-TNFRSF11B was the unique drug–gene relation in both two databases. Conclusion: Methylation-driven gene TNFRSF12A might participate in the development of GBM via response to the TNF biological process and TNF signaling pathway and significantly associated with prognosis. ZA that targets TNFRSF11B expression might be a potential effective drug for clinical treatment of GBM.
Collapse
Affiliation(s)
- Hui Xie
- Department of Histology and Embryology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Ce Yuan
- Graduate Program in Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
| | - Jin-Jiang Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhao-Yang Li
- Department of Laboratory Animal Center, China Medical University, Shenyang, China
| | - Wei-Cheng Lu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Badia-Villanueva M, Defaus S, Foj R, Andreu D, Oliva B, Sierra A, Fernandez-Fuentes N. Evaluation of Computationally Designed Peptides against TWEAK, a Cytokine of the Tumour Necrosis Factor Ligand Family. Int J Mol Sci 2021; 22:ijms22031066. [PMID: 33494438 PMCID: PMC7866087 DOI: 10.3390/ijms22031066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumour necrosis factor ligand family and has been shown to be overexpressed in tumoral cells together with the fibroblast growth factor–inducible 14 (Fn14) receptor. TWEAK-Fn14 interaction triggers a set of intracellular pathways responsible for tumour cell invasion and migration, as well as proliferation and angiogenesis. Hence, modulation of the TWEAK-Fn14 interaction is an important therapeutic goal. The targeting of protein-protein interactions by external agents, e.g., drugs, remains a substantial challenge. Given their intrinsic features, as well as recent advances that improve their pharmacological profiles, peptides have arisen as promising agents in this regard. Here, we report, by in silico structural design validated by cell-based and in vitro assays, the discovery of four peptides able to target TWEAK. Our results show that, when added to TWEAK-dependent cellular cultures, peptides cause a down-regulation of genes that are part of TWEAK-Fn14 signalling pathway. The direct, physical interaction between the peptides and TWEAK was further elucidated in an in vitro assay which confirmed that the bioactivity shown in cell-based assays was due to the targeting of TWEAK. The results presented here are framed within early pre-clinical drug development and therefore these peptide hits represent a starting point for the development of novel therapeutic agents. Our approach exemplifies the powerful combination of in silico and experimental efforts to quickly identify peptides with desirable traits.
Collapse
Affiliation(s)
- Miriam Badia-Villanueva
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.-V.); (R.F.)
| | - Sira Defaus
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Science, Pompeu Fabra University, Barcelona, Biomedical Research Park, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Ruben Foj
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.-V.); (R.F.)
| | - David Andreu
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Science, Pompeu Fabra University, Barcelona, Biomedical Research Park, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Baldo Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, Pompeu Fabra University, Biomedical Research Park, 08003 Barcelona, Spain;
| | - Angels Sierra
- Laboratory of Oncological Neurosurgery, Hospital Clinic de Barcelona—IDIBAPS, 08036 Barcelona, Spain
- Correspondence: (A.S.); (N.F.-F.)
| | - Narcis Fernandez-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic-Universitat Central de Catalunya, Vic 08500 Catalonia, Spain
- Correspondence: (A.S.); (N.F.-F.)
| |
Collapse
|
9
|
Nelson RK, Brickner H, Panwar B, Ramírez-Suástegui C, Herrera-de la Mata S, Liu N, Diaz D, Alexander LEC, Ay F, Vijayanand P, Seumois G, Akuthota P. Human Eosinophils Express a Distinct Gene Expression Program in Response to IL-3 Compared with Common β-Chain Cytokines IL-5 and GM-CSF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:329-337. [PMID: 31175163 PMCID: PMC6616007 DOI: 10.4049/jimmunol.1801668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Despite recent advances in asthma management with anti-IL-5 therapies, many patients have eosinophilic asthma that remains poorly controlled. IL-3 shares a common β subunit receptor with both IL-5 and GM-CSF but, through α-subunit-specific properties, uniquely influences eosinophil biology and may serve as a potential therapeutic target. We aimed to globally characterize the transcriptomic profiles of GM-CSF, IL-3, and IL-5 stimulation on human circulating eosinophils and identify differences in gene expression using advanced statistical modeling. Human eosinophils were isolated from the peripheral blood of healthy volunteers and stimulated with either GM-CSF, IL-3, or IL-5 for 48 h. RNA was then extracted and bulk sequencing performed. DESeq analysis identified differentially expressed genes and weighted gene coexpression network analysis independently defined modules of genes that are highly coexpressed. GM-CSF, IL-3, and IL-5 commonly upregulated 252 genes and downregulated 553 genes, producing a proinflammatory and survival phenotype that was predominantly mediated through TWEAK signaling. IL-3 stimulation yielded the most numbers of differentially expressed genes that were also highly coexpressed (n = 119). These genes were enriched in pathways involving JAK/STAT signaling. GM-CSF and IL-5 stimulation demonstrated redundancy in eosinophil gene expression. In conclusion, IL-3 produces a distinct eosinophil gene expression program among the β-chain receptor cytokines. IL-3-upregulated genes may provide a foundation for research into therapeutics for patients with eosinophilic asthma who do not respond to anti-IL-5 therapies.
Collapse
Affiliation(s)
- Ryan K Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Howard Brickner
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Bharat Panwar
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | | | | | - Neiman Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Damaris Diaz
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037
- Veterans Affairs San Diego Healthcare System, La Jolla, CA 92161; and
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA 92037
- University of California San Diego School of Medicine, La Jolla, CA 92093
| | | | | | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA 92037;
- La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
10
|
Das NA, Carpenter AJ, Yoshida T, Kumar SA, Gautam S, Mostany R, Izadpanah R, Kumar A, Mummidi S, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart. J Mol Cell Cardiol 2018; 121:107-123. [PMID: 29981796 DOI: 10.1016/j.yjmcc.2018.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7 days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases.
Collapse
Affiliation(s)
- Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Tadashi Yoshida
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Senthil A Kumar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Sandeep Gautam
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA, USA
| | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University Health Science Center, New Orleans, LA, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Srinivas Mummidi
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | | | - Bysani Chandrasekar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
11
|
Boulamery A, Desplat-Jégo S. Regulation of Neuroinflammation: What Role for the Tumor Necrosis Factor-Like Weak Inducer of Apoptosis/Fn14 Pathway? Front Immunol 2017; 8:1534. [PMID: 29201025 PMCID: PMC5696327 DOI: 10.3389/fimmu.2017.01534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
Abstract
Observed in many central nervous system diseases, neuroinflammation (NI) proceeds from peripheral immune cell infiltration into the parenchyma, from cytokine secretion and from oxidative stress. Astrocytes and microglia also get activated and proliferate. NI manifestations and consequences depend on its context and on the acute or chronic aspect of the disease. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 pathway has been involved in chronic human inflammatory pathologies such as neurodegenerative, autoimmune, or malignant diseases. New data now describe its regulatory effects in tissues or fluids from patients with neurological diseases. In this mini-review, we aim to highlight the role of TWEAK/Fn14 in modulating NI in multiple sclerosis, neuropsychiatric systemic lupus erythematosus, stroke, or glioma. TWEAK/Fn14 can modulate NI by activating canonical and non-canonical nuclear factor-κB pathways but also by stimulating mitogen-activated protein kinase signaling. These downstream activations are associated with (i) inflammatory cytokine, chemokine and adhesion molecule expression or release, involved in NI propagation, (ii) matrix-metalloproteinase 9 secretion, implicated in blood–brain barrier disruption and tissue remodeling, (iii) astrogliosis and microgliosis, and (iv) migration of tumor cells in glioma. In addition, we report several animal and human studies pointing to TWEAK as an attractive therapeutic target.
Collapse
Affiliation(s)
- Audrey Boulamery
- Aix-Marseille University, CNRS, NICN, Marseille, France.,AP-HM, Hôpital Sainte-Marguerite, Centre Antipoison et de Toxicovigilance, Marseille, France
| | - Sophie Desplat-Jégo
- Aix-Marseille University, CNRS, NICN, Marseille, France.,Service d'Immunologie, Hôpital de la Conception, Marseille, France
| |
Collapse
|
12
|
Enavatuzumab, a Humanized Anti-TWEAK Receptor Monoclonal Antibody, Exerts Antitumor Activity through Attracting and Activating Innate Immune Effector Cells. J Immunol Res 2017; 2017:5737159. [PMID: 29075649 PMCID: PMC5623805 DOI: 10.1155/2017/5737159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/27/2017] [Indexed: 12/04/2022] Open
Abstract
Enavatuzumab is a humanized IgG1 anti-TWEAK receptor monoclonal antibody that was evaluated in a phase I clinical study for the treatment of solid malignancies. The current study was to determine whether and how myeloid effector cells were involved in postulated mechanisms for its potent antitumor activity in xenograft models. The initial evidence for a role of effector cells was obtained in a subset of tumor xenograft mouse models whose response to enavatuzumab relied on the binding of Fc of the antibody to Fcγ receptor. The involvement of effector cells was further confirmed by immunohistochemistry, which revealed strong infiltration of CD45+ effector cells into tumor xenografts in responding models, but minimal infiltration in nonresponders. Consistent with the xenograft studies, human effector cells preferentially migrated toward in vivo-responsive tumor cells treated by enavatuzumab in vitro, with the majority of migratory cells being monocytes. Conditioned media from enavatuzumab-treated tumor cells contained elevated levels of chemokines, which might be responsible for enavatuzumab-triggered effector cell migration. These preclinical studies demonstrate that enavatuzumab can exert its potent antitumor activity by actively recruiting and activating myeloid effectors to kill tumor cells. Enavatuzumab-induced chemokines warrant further evaluation in clinical studies as potential biomarkers for such activity.
Collapse
|
13
|
Hammerman M, Blomgran P, Dansac A, Eliasson P, Aspenberg P. Different gene response to mechanical loading during early and late phases of rat Achilles tendon healing. J Appl Physiol (1985) 2017; 123:800-815. [PMID: 28705996 DOI: 10.1152/japplphysiol.00323.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022] Open
Abstract
Mechanical loading stimulates tendon healing both when applied in the inflammatory phase and in the early remodeling phase of the process, although not necessarily via the same mechanisms. We investigated the gene response to mechanical loading in these two phases of tendon healing. The right Achilles tendon in rats was transected, and the hindlimbs were unloaded by tail suspension. The rats were exposed to 5 min of treadmill running 3 or 14 days after tendon transection. Thereafter, they were resuspended for 15 min or 3 h until euthanasia. The controls were suspended continuously. Gene analysis was first performed by microarray analysis followed by quantitative RT-PCR on selected genes, focusing on inflammation. Fifteen minutes after loading, the most important genes seemed to be the transcription factors EGR1 and C-FOS, regardless of healing phase. These transcription factors might promote tendon cell proliferation and differentiation, stimulate collagen production, and regulate inflammation. Three hours after loading on day 3, inflammation was strongly affected. Seven inflammation-related genes were upregulated according to PCR: CCL20, CCL7, IL-6, NFIL3, PTX3, SOCS1, and TLR2. These genes can be connected to macrophages, T cells, and recruitment of leukocytes. According to Ingenuity Pathway Analysis, the recruitment of leukocytes was increased by loading on day 3, which also was confirmed by histology. This inflammation-related gene response was not seen on day 14 Our results suggest that the immediate gene response after mechanical loading is similar in the early and late phases of healing but the late gene response is different.NEW & NOTEWORTHY This study investigates the direct effect of mechanical loading on gene expression during different healing phases in tendon healing. One isolated episode of mechanical loading was studied in otherwise unloaded healing tendons. This enabled us to study a time sequence, i.e., which genes were the first ones to be regulated after the loading episode.
Collapse
Affiliation(s)
- Malin Hammerman
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Parmis Blomgran
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Arie Dansac
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Pernilla Eliasson
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| | - Per Aspenberg
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Linköping, Sweden
| |
Collapse
|
14
|
Kasap B, Özel Türkçü Ü, Akbaba E, Sarıyıldız B, Küçük M, Turhan NÖ, Öner G, Özcan A. The predictive role of sTWEAK levels in pregnant women with first-trimester vaginal bleeding. J Matern Fetal Neonatal Med 2017; 31:1715-1719. [DOI: 10.1080/14767058.2017.1326097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Burcu Kasap
- Department of Obstetrics and Gynecology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ümmühani Özel Türkçü
- Department of Clinical Biochemistry, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Eren Akbaba
- Department of Obstetrics and Gynecology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Behiye Sarıyıldız
- Department of Obstetrics and Gynecology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mert Küçük
- Department of Obstetrics and Gynecology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Medical Education and Bioinformatics, School of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Nilgün Öztürk Turhan
- Department of Obstetrics and Gynecology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Gökalp Öner
- Department of Obstetrics and Gynecology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Aykut Özcan
- Department of Obstetrics and Gynecology, İzmir Tepecik Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
15
|
Transcriptome profiling of the rat retina after optic nerve transection. Sci Rep 2016; 6:28736. [PMID: 27353354 PMCID: PMC4926057 DOI: 10.1038/srep28736] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a group of eye diseases characterized by alterations in the contour of the optic nerve head (ONH), with corresponding visual field defects and progressive loss of retinal ganglion cells (RGCs). This progressive RGC death is considered to originate in axonal injury caused by compression of the axon bundles in the ONH. However, the molecular pathomechanisms of axonal injury-induced RGC death are not yet well understood. Here, we used RNA sequencing (RNA-seq) to examine transcriptome changes in rat retinas 2 days after optic nerve transection (ONT), and then used computational techniques to predict the resulting alterations in the transcriptional regulatory network. RNA-seq revealed 267 differentially expressed genes after ONT, 218 of which were annotated and 49 unannotated. We also identified differentially expressed transcripts, including potentially novel isoforms. An in silico pathway analysis predicted that CREB1 was the most significant upstream regulator. Thus, this study identified genes and pathways that may be involved in the pathomechanisms of axonal injury. We believe that our data should serve as a valuable resource to understand the molecular processes that define axonal injury-driven RGC death and to discover novel therapeutic targets for glaucoma.
Collapse
|
16
|
Bhattacharjee M, Balakrishnan L, Renuse S, Advani J, Goel R, Sathe G, Keshava Prasad TS, Nair B, Jois R, Shankar S, Pandey A. Synovial fluid proteome in rheumatoid arthritis. Clin Proteomics 2016; 13:12. [PMID: 27274716 PMCID: PMC4893419 DOI: 10.1186/s12014-016-9113-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoinflammatory disorder that affects small joints. Despite intense efforts, there are currently no definitive markers for early diagnosis of RA and for monitoring the progression of this disease, though some of the markers like anti CCP antibodies and anti vimentin antibodies are promising. We sought to catalogue the proteins present in the synovial fluid of patients with RA. It was done with the aim of identifying newer biomarkers, if any, that might prove promising in future. METHODS To enrich the low abundance proteins, we undertook two approaches-multiple affinity removal system (MARS14) to deplete some of the most abundant proteins and lectin affinity chromatography for enrichment of glycoproteins. The peptides were analyzed by LC-MS/MS on a high resolution Fourier transform mass spectrometer. RESULTS This effort was the first total profiling of the synovial fluid proteome in RA that led to identification of 956 proteins. From the list, we identified a number of functionally significant proteins including vascular cell adhesion molecule-1, S100 proteins, AXL receptor protein tyrosine kinase, macrophage colony stimulating factor (M-CSF), programmed cell death ligand 2 (PDCD1LG2), TNF receptor 2, (TNFRSF1B) and many novel proteins including hyaluronan-binding protein 2, semaphorin 4A (SEMA4D) and osteoclast stimulating factor 1. Overall, our findings illustrate the complex and dynamic nature of RA in which multiple pathways seems to be participating actively. CONCLUSIONS The use of high resolution mass spectrometry thus, enabled identification of proteins which might be critical to the progression of RA.
Collapse
Affiliation(s)
- Mitali Bhattacharjee
- />Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- />Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Lavanya Balakrishnan
- />Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- />Department of Biotechnology, Kuvempu University, Shankaraghatta, 577451 India
| | - Santosh Renuse
- />Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- />Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Jayshree Advani
- />Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- />Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Renu Goel
- />Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- />Department of Biotechnology, Kuvempu University, Shankaraghatta, 577451 India
| | - Gajanan Sathe
- />Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- />Manipal University, Madhav Nagar, Manipal, 576104 India
| | - T. S. Keshava Prasad
- />Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- />Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Bipin Nair
- />Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Ramesh Jois
- />Department of Rheumatology, Fortis Hospital, Bangalore, 560066 India
| | - Subramanian Shankar
- />Department of Rheumatology, Medical Division, Command Hospital (Air Force), Bangalore, 560007 India
| | - Akhilesh Pandey
- />McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB 527, Baltimore, MD 21205 USA
- />Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
17
|
Raju R, Gadakh S, Gopal P, George B, Advani J, Soman S, Prasad TSK, Girijadevi R. Differential ligand-signaling network of CCL19/CCL21-CCR7 system. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav106. [PMID: 26504105 PMCID: PMC4620938 DOI: 10.1093/database/bav106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/29/2015] [Indexed: 01/14/2023]
Abstract
Chemokine (C-C motif) receptor 7 (CCR7), a class A subtype G-Protein Coupled Receptor (GPCR), is involved in the migration, activation and survival of multiple cell types including dendritic cells, T cells, eosinophils, B cells, endothelial cells and different cancer cells. Together, CCR7 signaling system has been implicated in diverse biological processes such as lymph node homeostasis, T cell activation, immune tolerance, inflammatory response and cancer metastasis. CCL19 and CCL21, the two well-characterized CCR7 ligands, have been established to be differential in their signaling through CCR7 in multiple cell types. Although the differential ligand signaling through single receptor have been suggested for many receptors including GPCRs, there exists no resource or platform to analyse them globally. Here, first of its kind, we present the cell-type-specific differential signaling network of CCL19/CCL21-CCR7 system for effective visualization and differential analysis of chemokine/GPCR signaling. Database URL:http:// www. netpath. org/ pathways? path_ id= NetPath_ 46.
Collapse
Affiliation(s)
- Rajesh Raju
- Computational Biology Group, Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, Thycaud, Poojappura, Thiruvanathapuram 690 014, Kerala, India and
| | - Sachin Gadakh
- Institute of Bioinformatics, Discoverer, International Technology Park, Bangalore 560 066, Karnataka, India
| | - Priyanka Gopal
- Institute of Bioinformatics, Discoverer, International Technology Park, Bangalore 560 066, Karnataka, India
| | - Bijesh George
- Computational Biology Group, Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, Thycaud, Poojappura, Thiruvanathapuram 690 014, Kerala, India and
| | - Jayshree Advani
- Institute of Bioinformatics, Discoverer, International Technology Park, Bangalore 560 066, Karnataka, India
| | - Sowmya Soman
- Institute of Bioinformatics, Discoverer, International Technology Park, Bangalore 560 066, Karnataka, India
| | - T S K Prasad
- Institute of Bioinformatics, Discoverer, International Technology Park, Bangalore 560 066, Karnataka, India
| | - Reshmi Girijadevi
- Computational Biology Group, Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, Thycaud, Poojappura, Thiruvanathapuram 690 014, Kerala, India and
| |
Collapse
|
18
|
Lei M, Qin L, Wang A, Jin Y, Zhao X, Qi X. Fn14 receptor appears as a modulator of ovarian steroid-related regulation of goat endometrial epithelial cell IL-18 expression. Am J Reprod Immunol 2014; 73:428-36. [PMID: 25421447 DOI: 10.1111/aji.12343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) interactions affect the regulation of cytotoxic/immunotrophic pathways that are themselves under control of IL-18. The effect of Fn14 on regulation of endometrium IL-18 expression, however, remains unclear. METHOD AND STUDY The aim was to determine the mode of ovarian steroid action in regulating Fn14 expression by goat endometrial epithelial cells (EECs) in the presence and absence of endometrial stromal cells (ESCs). The possible role of Fn14 on the expression of IL-18 by EECs was also evaluated. RESULTS Opposite effects of E2 and/or P4 on the regulation of both Fn14 mRNA and protein expression by EECs were observed in the presence and absence of ESCs. Fn14 knockdown by blocking antibody or siRNA resulted in a decrease of IL-18 mRNA and protein levels in EECs cocultured with ESCs, and no significant difference of the IL-18 mRNA and protein levels in the EECs was observed between steroid treatment group and control group. CONCLUSION These findings confirm the importance of steroids in controlling Fn14 expression in goat EECs. Furthermore, Fn14 appears as a novel modulator of the steroid-related IL-18 expression in EECs in the presence of ESCs.
Collapse
Affiliation(s)
- Mingzhu Lei
- College of Veterinary Medicine of Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
19
|
Signaling Network Map of Endothelial TEK Tyrosine Kinase. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:173026. [PMID: 25371820 PMCID: PMC4211299 DOI: 10.1155/2014/173026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/15/2014] [Indexed: 11/28/2022]
Abstract
TEK tyrosine kinase is primarily expressed on endothelial cells and is most commonly referred to as TIE2. TIE2 is a receptor tyrosine kinase modulated by its ligands, angiopoietins, to regulate the development and remodeling of vascular system. It is also one of the critical pathways associated with tumor angiogenesis and familial venous malformations. Apart from the vascular system, TIE2 signaling is also associated with postnatal hematopoiesis. Despite the involvement of TIE2-angiopoietin system in several diseases, the downstream molecular events of TIE2-angiopoietin signaling are not reported in any pathway repository. Therefore, carrying out a detailed review of published literature, we have documented molecular signaling events mediated by TIE2 in response to angiopoietins and developed a network map of TIE2 signaling. The pathway information is freely available to the scientific community through NetPath, a manually curated resource of signaling pathways. We hope that this pathway resource will provide an in-depth view of TIE2-angiopoietin signaling and will lead to identification of potential therapeutic targets for TIE2-angiopoietin associated disorders.
Collapse
|
20
|
A Network Map of FGF-1/FGFR Signaling System. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:962962. [PMID: 24829797 PMCID: PMC4009234 DOI: 10.1155/2014/962962] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/03/2014] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor-1 (FGF-1) is a well characterized growth factor among the 22 members of the FGF superfamily in humans. It binds to all the four known FGF receptors and regulates a plethora of functions including cell growth, proliferation, migration, differentiation, and survival in different cell types. FGF-1 is involved in the regulation of diverse physiological processes such as development, angiogenesis, wound healing, adipogenesis, and neurogenesis. Deregulation of FGF-1 signaling is not only implicated in tumorigenesis but also is associated with tumor invasion and metastasis. Given the biomedical significance of FGFs and the fact that individual FGFs have different roles in diverse physiological processes, the analysis of signaling pathways induced by the binding of specific FGFs to their cognate receptors demands more focused efforts. Currently, there are no resources in the public domain that facilitate the analysis of signaling pathways induced by individual FGFs in the FGF/FGFR signaling system. Towards this, we have developed a resource of signaling reactions triggered by FGF-1/FGFR system in various cell types/tissues. The pathway data and the reaction map are made available for download in different community standard data exchange formats through NetPath and NetSlim signaling pathway resources.
Collapse
|
21
|
Dhruv H, Loftus JC, Narang P, Petit JL, Fameree M, Burton J, Tchegho G, Chow D, Yin H, Al-Abed Y, Berens ME, Tran NL, Meurice N. Structural basis and targeting of the interaction between fibroblast growth factor-inducible 14 and tumor necrosis factor-like weak inducer of apoptosis. J Biol Chem 2013; 288:32261-32276. [PMID: 24056367 DOI: 10.1074/jbc.m113.493536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Deregulation of the TNF-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling pathway is observed in many diseases, including inflammation, autoimmune diseases, and cancer. Activation of Fn14 signaling by TWEAK binding triggers cell invasion and survival and therefore represents an attractive pathway for therapeutic intervention. Based on structural studies of the TWEAK-binding cysteine-rich domain of Fn14, several homology models of TWEAK were built to investigate plausible modes of TWEAK-Fn14 interaction. Two promising models, centered on different anchoring residues of TWEAK (tyrosine 176 and tryptophan 231), were prioritized using a data-driven strategy. Site-directed mutagenesis of TWEAK at Tyr(176), but not Trp(231), resulted in the loss of TWEAK binding to Fn14 substantiating Tyr(176) as the anchoring residue. Importantly, mutation of TWEAK at Tyr(176) did not disrupt TWEAK trimerization but failed to induce Fn14-mediated nuclear factor κ-light chain enhancer of activated B cell (NF-κB) signaling. The validated structural models were utilized in a virtual screen to design a targeted library of small molecules predicted to disrupt the TWEAK-Fn14 interaction. 129 small molecules were screened iteratively, with identification of molecules producing up to 37% inhibition of TWEAK-Fn14 binding. In summary, we present a data-driven in silico study revealing key structural elements of the TWEAK-Fn14 interaction, followed by experimental validation, serving as a guide for the design of small molecule inhibitors of the TWEAK-Fn14 ligand-receptor interaction. Our results validate the TWEAK-Fn14 interaction as a chemically tractable target and provide the foundation for further exploration utilizing chemical biology approaches focusing on validating this system as a therapeutic target in invasive cancers.
Collapse
Affiliation(s)
- Harshil Dhruv
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | | | | | | | - Maureen Fameree
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Julien Burton
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Giresse Tchegho
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Donald Chow
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Holly Yin
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Yousef Al-Abed
- the Center for Molecular Innovation, Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - Michael E Berens
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004
| | - Nhan L Tran
- From the Translational Genomics Research Institute, Phoenix, Arizona 85004,.
| | | |
Collapse
|
22
|
Subbannayya T, Balakrishnan L, Sudarshan G, Advani J, Kumar S, Mahmood R, Nair B, Sirdeshmukh R, Mukherjee KK, Umathe SN, Raju R, Prasad TSK. An integrated map of corticotropin-releasing hormone signaling pathway. J Cell Commun Signal 2013; 7:295-300. [PMID: 23504413 DOI: 10.1007/s12079-013-0197-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/01/2013] [Indexed: 01/17/2023] Open
Affiliation(s)
- Tejaswini Subbannayya
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560 066, India,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|