1
|
Severin S, Gratacap MP, Bouvet L, Borret M, Kpotor AO, Chicanne G, Xuereb JM, Viaud J, Payrastre B. Phosphoinositides take a central stage in regulating blood platelet production and function. Adv Biol Regul 2024; 91:100992. [PMID: 37793962 DOI: 10.1016/j.jbior.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Blood platelets are produced by megakaryocytes through a complex program of differentiation and play a critical role in hemostasis and thrombosis. These anucleate cells are the target of antithrombotic drugs that prevent them from clumping in cardiovascular disease conditions. Platelets also significantly contribute to various aspects of physiopathology, including interorgan communications, healing, inflammation, and thromboinflammation. Their production and activation are strictly regulated by highly elaborated mechanisms. Among them, those involving inositol lipids have drawn the attention of researchers. Phosphoinositides represent the seven combinatorially phosphorylated forms of the inositol head group of inositol lipids. They play a crucial role in regulating intracellular mechanisms, such as signal transduction, actin cytoskeleton rearrangements, and membrane trafficking, either by generating second messengers or by directly binding to specific domains of effector proteins. In this review, we will explore how phosphoinositides are implicated in controlling platelet production by megakaryocytes and in platelet activation processes. We will also discuss the diversity of phosphoinositides in platelets, their role in granule biogenesis and maintenance, as well as in integrin signaling. Finally, we will address the discovery of a novel pool of phosphatidylinositol 3-monophosphate in the outerleaflet of the plasma membrane of human and mouse platelets.
Collapse
Affiliation(s)
- Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Laura Bouvet
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Maxime Borret
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Afi Oportune Kpotor
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Jean-Marie Xuereb
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Julien Viaud
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France; Laboratoire d'Hématologie, Centre de Référence des Pathologies Plaquettaires, Centre Hospitalier Universitaire de Toulouse Rangueil, F-31432, Toulouse, France.
| |
Collapse
|
2
|
Reversible Platelet Integrin αIIbβ3 Activation and Thrombus Instability. Int J Mol Sci 2022; 23:ijms232012512. [PMID: 36293367 PMCID: PMC9604507 DOI: 10.3390/ijms232012512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Integrin αIIbβ3 activation is essential for platelet aggregation and, accordingly, for hemostasis and arterial thrombosis. The αIIbβ3 integrin is highly expressed on platelets and requires an activation step for binding to fibrinogen, fibrin or von Willebrand factor (VWF). A current model assumes that the process of integrin activation relies on actomyosin force-dependent molecular changes from a bent-closed and extended-closed to an extended-open conformation. In this paper we review the pathways that point to a functional reversibility of platelet αIIbβ3 activation and transient aggregation. Furthermore, we refer to mouse models indicating that genetic defects that lead to reversible platelet aggregation can also cause instable thrombus formation. We discuss the platelet agonists and signaling pathways that lead to a transient binding of ligands to integrin αIIbβ3. Our analysis points to the (autocrine) ADP P2Y1 and P2Y12 receptor signaling via phosphoinositide 3-kinases and Akt as principal pathways linked to reversible integrin activation. Downstream signaling events by protein kinase C, CalDAG-GEFI and Rap1b have not been linked to transient integrin activation. Insight into the functional reversibility of integrin activation pathways will help to better understand the effects of antiplatelet agents.
Collapse
|
3
|
Suvarna K, Salkar A, Palanivel V, Bankar R, Banerjee N, Gayathri J Pai M, Srivastava A, Singh A, Khatri H, Agrawal S, Shrivastav O, Shastri J, Srivastava S. A Multi-omics Longitudinal Study Reveals Alteration of the Leukocyte Activation Pathway in COVID-19 Patients. J Proteome Res 2021; 20:4667-4680. [PMID: 34379420 PMCID: PMC8370121 DOI: 10.1021/acs.jproteome.1c00215] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/24/2022]
Abstract
Severe coronavirus disease 2019 (COVID-19) infection may lead to lung injury, multi-organ failure, and eventually death. Cytokine storm due to excess cytokine production has been associated with fatality in severe infections. However, the specific molecular signatures associated with the elevated immune response are yet to be elucidated. We performed a mass-spectrometry-based proteomic and metabolomic analysis of COVID-19 plasma samples collected at two time points. Using Orbitrap Fusion LC-MS/MS-based label-free proteomic analysis, we identified around 10 significant proteins, 32 significant peptides, and 5 metabolites that were dysregulated at the severe time points. Few of these proteins identified by quantitative proteomics were validated using the multiple reaction monitoring (MRM) assay. Integrated pathway analysis using distinct proteomic and metabolomic signatures revealed alterations in complement and coagulation cascade, platelet aggregation, myeloid leukocyte activation pathway, and arginine metabolism. Further, we highlight the role of leukocyte activation and arginine metabolism in COVID-19 pathogenesis and targeting these pathways for COVID-19 therapeutics.
Collapse
Affiliation(s)
- Kruthi Suvarna
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
| | - Akanksha Salkar
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
| | - Viswanthram Palanivel
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
| | - Renuka Bankar
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
| | - Nirjhar Banerjee
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
| | - Medha Gayathri J Pai
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
| | - Alisha Srivastava
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
- University of Delhi, New
Delhi, Delhi 110021, India
| | - Avinash Singh
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
| | - Harsh Khatri
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
| | - Sachee Agrawal
- Kasturba Hospital for Infectious
Diseases, Chinchpokli, Mumbai, Maharashtra 400034,
India
| | - Om Shrivastav
- Kasturba Hospital for Infectious
Diseases, Chinchpokli, Mumbai, Maharashtra 400034,
India
| | - Jayanthi Shastri
- Kasturba Hospital for Infectious
Diseases, Chinchpokli, Mumbai, Maharashtra 400034,
India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering,
Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India
| |
Collapse
|
4
|
Dahiya N, Atreya CD. MiR-181a Reduces Platelet Activation via the Inhibition of Endogenous RAP1B. Microrna 2021; 9:240-246. [PMID: 31738148 PMCID: PMC7366005 DOI: 10.2174/2211536608666191026120515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/21/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
Aim Since RAP1B is critical for platelet functions, including hemostasis, this study was conducted to identify RAP1B regulating microRNAs (miRNAs) in ex vivo stored platelets. Background Previous studies with platelets identified factors affecting RAP1B activity but regulatory miRNAs that affect RAP1B protein expression have not been reported. Objective To understand the functional significance of miRNA mediated regulation of RAP1B in stored platelets, using microRNA, miR-181a as an example. Methods A Tagged RNA Affinity approach (MS2-TRAP) was employed to identify miRNAs that bound to the 3` untranslated region (3`UTR) of the RAP1B mRNA in HeLa cells as an assay system. And subsequently, the mRNA 3’UTR:miRNA interactions were verified in platelets through the ectopic expression of miR-181a mimic and appropriate controls. The interaction of such miRNAs with RAP1B mRNA was also validated by qRT-PCR and Western analysis. Results Sixty-two miRNAs from MS2 assay were then compared with already known 171 platelet abundant miRNAs to identify a common set of miRNAs. This analysis yielded six miRNAs (miR-30e, miR-155, miR-181a, miR-206, miR-208a and miR-454), which are also predicted to target RAP1B mRNA. From this pool, miR-181a was selected for further study since RAP1B harbors two binding sites for miR-181a in its 3′UTR. Ectopic expression of miR-181a mimic in platelets resulted in lowering the endogenous RAP1B at both mRNA and protein levels. Further, miR-181a ectopic expression reduced the surface expression of the platelet activation marker, P-selectin. Conclusion MicroRNA-181a can target RAP1B and this interaction has the potential to regulate platelet activation during storage.
Collapse
Affiliation(s)
- Neetu Dahiya
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Chintamani D Atreya
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
5
|
Schmid C, Ignjatovic V, Pang B, Nie S, Williamson NA, Tingay DG, Pereira-Fantini PM. Proteomics reveals region-specific hemostatic alterations in response to mechanical ventilation in a preterm lamb model of lung injury. Thromb Res 2020; 196:466-475. [PMID: 33075590 DOI: 10.1016/j.thromres.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Preterm infants often require assisted ventilation, however ventilation when applied to the immature lung can initiate ventilator-induced lung injury (VILI). The biotrauma which underscores VILI is largely undefined, and is likely to involve vascular injury responses, including hemostasis. We aimed to use a ventilated, preterm lamb model to: (1) characterize regional alterations in hemostatic mediators within the lung and (2) assess the functional impact of protein alterations on hemostasis by analyzing temporal thrombin generation. MATERIALS AND METHODS Preterm lambs delivered at 124 to 127 days gestation received 90 min of mechanical ventilation (positive end-expiratory pressure = 8 cm H2O, VT = 6-8 ml/kg) and were compared with unventilated control lambs. At study completion, lung tissue was taken from standardized nondependent and gravity-dependent regions, and Orbitrap-mass spectrometry and KEGG were used to identify and map regional alterations in hemostasis pathway members. Temporal alterations in plasma thrombin generation were assessed. RESULTS Ventilation was distributed towards the nondependent lung. Significant changes in hemostatic protein abundance, were detected at a two-fold higher rate in the nondependent lung when compared with the gravity-dependent lung. Seven proteins were uniquely altered in non-dependent lung (SERPINA1, MYL12A, RAP1B, RHOA, ITGB1, A2M, GNAI2), compared with a single proteins in gravity-dependent lung (COL1A2). Four proteins were altered in both regions (VTN, FGG, FGA, and ACTB). Tissue protein alterations were mirrored by plasma hypocoagulability at 90-minutes of ventilation. CONCLUSIONS We observed regionally specific, hemostatic alterations within the preterm lung together with disturbed fibrinolysis following a short period of mechanical ventilation.
Collapse
Affiliation(s)
- Christine Schmid
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Neonatology, Royal Children's Hospital, Parkville, Australia
| | - Vera Ignjatovic
- Department of Paediatrics, University of Melbourne, Parkville, Australia; Haematology Research, Murdoch Children's Research Institute, Parkville, Australia
| | - Boyuan Pang
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Shuai Nie
- Bio21 Institute, University of Melbourne, Parkville, Australia
| | | | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Neonatology, Royal Children's Hospital, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| |
Collapse
|
6
|
Gautam I, Storad Z, Filipiak L, Huss C, Meikle CK, Worth RG, Wuescher LM. From Classical to Unconventional: The Immune Receptors Facilitating Platelet Responses to Infection and Inflammation. BIOLOGY 2020; 9:E343. [PMID: 33092021 PMCID: PMC7589078 DOI: 10.3390/biology9100343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Platelets have long been recognized for their role in maintaining the balance between hemostasis and thrombosis. While their contributions to blood clotting have been well established, it has been increasingly evident that their roles extend to both innate and adaptive immune functions during infection and inflammation. In this comprehensive review, we describe the various ways in which platelets interact with different microbes and elicit immune responses either directly, or through modulation of leukocyte behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (I.G.); (Z.S.); (L.F.); (C.H.); (C.K.M.); (R.G.W.)
| |
Collapse
|
7
|
Torti M, Manganaro D, Visconte C, Zarà M, Canino J, Vismara M, Canobbio I, Guidetti GF. Stimulation of mTORC2 by integrin αIIbβ3 is required for PI3Kβ-dependent activation of Akt but is dispensable for platelet spreading on fibrinogen. Platelets 2019; 31:521-529. [PMID: 31509054 DOI: 10.1080/09537104.2019.1663806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphatidylinositol 3 kinase (PI3K) is a major player in platelet activation and regulates thrombus formation and stabilization. The β isoform of PI3K is implicated in integrin αIIbβ3 outside-in signaling, is required for the phosphorylation of Akt, and controls efficient platelet spreading upon adhesion to fibrinogen. In this study we found that during integrin αIIbβ3 outside-in signaling PI3Kβ-dependent phosphorylation of Akt on Serine473 is mediated by the mammalian target of rapamycin complex 2 (mTORC2). The activity of mTORC2 is stimulated upon platelet adhesion to fibrinogen, as documented by increased autophosphorylation. However, mTORC2 activation downstream of integrin αIIbβ3 is PI3Kβ-independent. Inhibition of mTORC2, but not mTORC1, also prevents Akt phosphorylation of Threonine308 and affects Akt activity, resulting in the inhibition of GSK3α/β phosphorylation. Nevertheless, mTORC2 or Akt inhibition does not alter PI3Kβ-dependent platelet spreading on fibrinogen. The activation of the small GTPase Rap1b downstream of integrin αIIbβ3 is regulated by PI3Kβ but is not affected upon inhibition of either mTORC2 or Akt. Altogether, these results demonstrate for the first time the activation of mTORC2 and its involvement in Akt phosphorylation and stimulation during integrin αIIbβ3 outside-in signaling. Moreover, the results demonstrate that the mTORC2/Akt pathway is dispensable for PI3Kβ-regulated platelet spreading on fibrinogen.
Collapse
Affiliation(s)
- Mauro Torti
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy
| | | | - Caterina Visconte
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy
| | - Marta Zarà
- Centro Cardiologico Monzino, IRCCS , Milan, Italy
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy.,University School for Advanced Studies (IUSS) , Pavia, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia , Pavia, Italy
| | | |
Collapse
|
8
|
Protein kinase C signaling dysfunction in von Willebrand disease (p.V1316M) type 2B platelets. Blood Adv 2018; 2:1417-1428. [PMID: 29925524 DOI: 10.1182/bloodadvances.2017014290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/17/2018] [Indexed: 01/22/2023] Open
Abstract
von Willebrand disease (VWD) type 2B is characterized by gain-of-function mutations in von Willebrand factor (VWF), enhancing its binding affinity for the platelet receptor glycoprotein (GP)Ibα. VWD type 2B patients display a bleeding tendency associated with loss of high-molecular-weight VWF multimers and variable thrombocytopenia. We recently demonstrated that a marked defect in agonist-induced activation of the small GTPase, Rap1, and integrin αIIbβ3 in VWD (p.V1316M) type 2B platelets also contributes to the bleeding tendency. Here, we investigated the molecular mechanisms underlying impaired platelet Rap1 signaling in this disease. Two distinct pathways contribute to Rap1 activation in platelets: rapid activation mediated by the calcium-sensing guanine nucleotide exchange factor CalDAG-GEF-I (CDGI) and sustained activation that is dependent on signaling by protein kinase C (PKC) and the adenosine 5'-diphosphate receptor P2Y12. To investigate which Rap1 signaling pathway is affected, we expressed VWF/p.V1316M by hydrodynamic gene transfer in wild-type and Caldaggef1-/- mice. Using αIIbβ3 integrin activation as a read-out, we demonstrate that platelet dysfunction in VWD (p.V1316M) type 2B affects PKC-mediated, but not CDGI-mediated, activation of Rap1. Consistently, we observed decreased PKC substrate phosphorylation and impaired granule release in stimulated VWD type 2B platelets. Interestingly, the defect in PKC signaling was caused by a significant increase in baseline PKC substrate phosphorylation in circulating VWD (p.V1316M) type 2B platelets, suggesting that the VWF-GPIbα interaction leads to preactivation and exhaustion of the PKC pathway. Consistent with PKC preactivation, VWD (p.V1316M) type 2B mice also exhibited marked shedding of platelet GPIbα. In summary, our studies identify altered PKC signaling as the underlying cause of platelet hypofunction in p.V1316M-associated VWD type 2B.
Collapse
|
9
|
Anquetil T, Payrastre B, Gratacap MP, Viaud J. The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer Metastasis Rev 2018; 37:477-489. [DOI: 10.1007/s10555-018-9735-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Estevez B, Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda) 2017; 32:162-177. [PMID: 28228483 DOI: 10.1152/physiol.00020.2016] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upon blood vessel injury, platelets are exposed to adhesive proteins in the vascular wall and soluble agonists, which initiate platelet activation, leading to formation of hemostatic thrombi. Pathological activation of platelets can induce occlusive thrombosis, resulting in ischemic events such as heart attack and stroke, which are leading causes of death globally. Platelet activation requires intracellular signal transduction initiated by platelet receptors for adhesion proteins and soluble agonists. Whereas many platelet activation signaling pathways have been established for many years, significant recent progress reveals much more complex and sophisticated signaling and amplification networks. With the discovery of new receptor signaling pathways and regulatory networks, some of the long-standing concepts of platelet signaling have been challenged. This review provides an overview of the new developments and concepts in platelet activation signaling.
Collapse
Affiliation(s)
- Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Battram AM, Durrant TN, Agbani EO, Heesom KJ, Paul DS, Piatt R, Poole AW, Cullen PJ, Bergmeier W, Moore SF, Hers I. The Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) Binder Rasa3 Regulates Phosphoinositide 3-kinase (PI3K)-dependent Integrin αIIbβ3 Outside-in Signaling. J Biol Chem 2017; 292:1691-1704. [PMID: 27903653 PMCID: PMC5290945 DOI: 10.1074/jbc.m116.746867] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/14/2016] [Indexed: 11/16/2022] Open
Abstract
The class I PI3K family of lipid kinases plays an important role in integrin αIIbβ3 function, thereby supporting thrombus growth and consolidation. Here, we identify Ras/Rap1GAP Rasa3 (GAP1IP4BP) as a major phosphatidylinositol 3,4,5-trisphosphate-binding protein in human platelets and a key regulator of integrin αIIbβ3 outside-in signaling. We demonstrate that cytosolic Rasa3 translocates to the plasma membrane in a PI3K-dependent manner upon activation of human platelets. Expression of wild-type Rasa3 in integrin αIIbβ3-expressing CHO cells blocked Rap1 activity and integrin αIIbβ3-mediated spreading on fibrinogen. In contrast, Rap1GAP-deficient (P489V) and Ras/Rap1GAP-deficient (R371Q) Rasa3 had no effect. We furthermore show that two Rasa3 mutants (H794L and G125V), which are expressed in different mouse models of thrombocytopenia, lack both Ras and Rap1GAP activity and do not affect integrin αIIbβ3-mediated spreading of CHO cells on fibrinogen. Platelets from thrombocytopenic mice expressing GAP-deficient Rasa3 (H794L) show increased spreading on fibrinogen, which in contrast to wild-type platelets is insensitive to PI3K inhibitors. Together, these results support an important role for Rasa3 in PI3K-dependent integrin αIIbβ3-mediated outside-in signaling and cell spreading.
Collapse
Affiliation(s)
- Anthony M Battram
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Tom N Durrant
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ejaife O Agbani
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Kate J Heesom
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - David S Paul
- the McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Raymond Piatt
- the McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Alastair W Poole
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Wolfgang Bergmeier
- the McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Samantha F Moore
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ingeborg Hers
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|
12
|
Navas-Carrillo D, Marín F, Valdés M, Orenes-Piñero E. Deciphering acute coronary syndrome biomarkers: High-resolution proteomics in platelets, thrombi and microparticles. Crit Rev Clin Lab Sci 2016; 54:49-58. [DOI: 10.1080/10408363.2016.1241214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Diana Navas-Carrillo
- Department of Surgery, Hospital de la Vega Lorenzo Guirao, University of Murcia, Murcia, Spain,
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain, and
| | - Mariano Valdés
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain, and
| | - Esteban Orenes-Piñero
- Proteomic Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
13
|
Piatt R, Paul DS, Lee RH, McKenzie SE, Parise LV, Cowley DO, Cooley BC, Bergmeier W. Mice Expressing Low Levels of CalDAG-GEFI Exhibit Markedly Impaired Platelet Activation With Minor Impact on Hemostasis. Arterioscler Thromb Vasc Biol 2016; 36:1838-46. [PMID: 27417588 DOI: 10.1161/atvbaha.116.307874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The tight regulation of platelet adhesiveness, mediated by the αIIbβ3 integrin, is critical for hemostasis and prevention of thrombosis. We recently demonstrated that integrin affinity in platelets is controlled by the guanine nucleotide exchange factor, CalDAG-GEFI (CD-GEFI), and its target, RAP1. In this study, we investigated whether low-level expression of CD-GEFI leads to protection from thrombosis without pathological bleeding in mice. APPROACH AND RESULTS Cdg1(low) mice were generated by knockin of human CD-GEFI cDNA into the mouse Cdg1 locus. CD-GEFI expression in platelets from Cdg1(low) mice was reduced by ≈90% when compared with controls. Activation of RAP1 and αIIbβ3 was abolished at low agonist concentrations and partially inhibited at high agonist concentrations in Cdg1(low) platelets. Consistently, the aggregation response of Cdg1(low) platelets was weaker than that of wild-type platelets, but more efficient than that observed in Cdg1(-/-) platelets. Importantly, Cdg1(low) mice were strongly protected from arterial and immune complex-mediated thrombosis, with only minimal impact on primary hemostasis. CONCLUSIONS Together, our studies suggest the partial inhibition of CD-GEFI function as a powerful new approach to safely prevent thrombotic complications.
Collapse
Affiliation(s)
- Raymond Piatt
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - David S Paul
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Robert H Lee
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Steven E McKenzie
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Leslie V Parise
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Dale O Cowley
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Brian C Cooley
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Wolfgang Bergmeier
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill.
| |
Collapse
|
14
|
Zhu Z, Di J, Lu Z, Gao K, Zheng J. Rap2B GTPase: structure, functions, and regulation. Tumour Biol 2016; 37:7085-93. [PMID: 27012552 DOI: 10.1007/s13277-016-5033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Rap2B GTPase, a member of Ras-related protein superfamily, was first discovered from a platelet cDNA library in the early 1990s. Since then, it has been reported to play an important role in regulating cellular processes including cytoskeletal organization, cell growth, and proliferation. It can be stimulated and suppressed by a wide range of external and internal inducers, circulating between GTP-bound active state and GDP-bound inactive state. Increasing focus on Ras signaling pathway reveals critical effects of Rap2B on tumorigenesis. In particular, Rap2B behaves in a p53-dependent manner in regulation of apoptosis and migration. Apart from being an oncogenic activator, Rap2B has been found to participate in many other physiological events via diverse downstream effectors. In this review, we present recent studies on the structure, regulation, and multiple biological functions of Rap2B, shedding light on its potential status in treatment of cancer as well as other diseases.
Collapse
Affiliation(s)
- Zhesi Zhu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
15
|
Stefanini L, Bergmeier W. RAP1-GTPase signaling and platelet function. J Mol Med (Berl) 2015; 94:13-9. [PMID: 26423530 DOI: 10.1007/s00109-015-1346-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Abstract
Platelets are critical for hemostasis, i.e., the body's ability to prevent blood loss at sites of vascular injury. They patrol the vasculature in a quiescent, non-adhesive state for approximately 10 days, after which they are removed from circulation by phagocytic cells of the reticulo-endothelial system. At sites of vascular injury, they promptly shift to an activated, adhesive state required for the formation of a hemostatic plug. The small GTPase RAP1 is a critical regulator of platelet adhesiveness. Our recent studies demonstrate that the antagonistic balance between the RAP1 regulators, CalDAG-GEFI and RASA3, is critical for the modulation of platelet adhesiveness, both in circulation and at sites of vascular injury. The RAP1 activator CalDAG-GEFI responds to small changes in the cytoplasmic calcium concentration and thus provides sensitivity and speed to the activation response, essential for efficient platelet adhesion under conditions of hemodynamic shear stress. The RAP1 inhibitor RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI-dependent RAP1 activation. Upon cellular stimulation, it is turned off by P2Y12 signaling to enable sustained RAP1 activation, required for the formation of a stable hemostatic plug. This review will summarize important studies that elucidated the signaling pathways that control RAP1 activation in platelets.
Collapse
Affiliation(s)
- Lucia Stefanini
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Bergmeier W, Stefanini L. Platelet signaling--blood's great balancing act. Oncotarget 2015; 6:19922-3. [PMID: 26343368 PMCID: PMC4652957 DOI: 10.18632/oncotarget.5122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
17
|
Guidetti GF, Canobbio I, Torti M. PI3K/Akt in platelet integrin signaling and implications in thrombosis. Adv Biol Regul 2015; 59:36-52. [PMID: 26159296 DOI: 10.1016/j.jbior.2015.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 01/09/2023]
Abstract
Blood platelets are anucleated circulating cells that play a critical role in hemostasis and are also implicated in arterial thrombosis, a major cause of death worldwide. The biological function of platelets strongly relies in their reactiveness to a variety of extracellular agonists that regulate their adhesion to extracellular matrix at the site of vascular injury and their ability to form rapidly growing cell aggregates. Among the membrane receptors expressed on the cell surface, integrins are crucial for both platelet activation, adhesion and aggregation. Integrin affinity for specific ligands is regulated by intracellular signaling pathways activated in stimulated platelets, and, once engaged, integrins themselves generate and propagate signals inside the cells to reinforce and consolidate platelet response and thrombus formation. Phosphatidylinositol 3-Kinases (PI3Ks) have emerged as crucial players in platelet activation, and they are directly implicated in the regulation of integrin function. This review will discuss the contribution of PI3Ks in platelet integrin signaling, focusing on the role of specific members of class I PI3Ks and their downstream effector Akt on both integrin inside-out and outside-in signaling. The contribution of the PI3K/Akt pathways stimulated by integrin engagement and platelet activation in thrombus formation and stabilization will also be discussed in order to highlight the possibility to target these enzymes in effective anti-thrombotic therapeutic strategies.
Collapse
Affiliation(s)
- Gianni F Guidetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
18
|
Amyloid β-peptide-dependent activation of human platelets: essential role for Ca2+ and ADP in aggregation and thrombus formation. Biochem J 2014; 462:513-23. [PMID: 24984073 DOI: 10.1042/bj20140307] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is associated with the accumulation of Aβ (amyloid β)-peptides in the brain. Besides their cytotoxic effect on neurons, Aβ-peptides are thought to be responsible for the atherothrombotic complications associated with Alzheimer's disease, which are collectively known as cerebrovascular disease. In the present study, we investigated the effect of Aβ-peptides on human platelet signal transduction and function. We discovered that the 25-35 domain of Aβ-peptides induce an increase in platelet intracellular Ca2+ that stimulates α-granule and dense granule secretion and leads to the release of the secondary agonist ADP. Released ADP acts in an autocrine manner as a stimulant for critical signalling pathways leading to the activation of platelets. This includes the activation of the protein kinases Syk, protein kinase C, Akt and mitogen-activated protein kinases. Ca2+-dependent release of ADP is also the main component of the activation of the small GTPase Rap1b and the fibrinogen receptor integrin αIIbβ3, which leads to increased platelet aggregation and increased thrombus formation in human whole blood. Our discoveries complement existing understanding of cerebrovascular dementia and suggest that Aβ-peptides can induce vascular complications of Alzheimer's disease by stimulating platelets in an intracellular Ca2+-dependent manner. Despite a marginal ADP-independent component suggested by low levels of signalling activity in the presence of apyrase or P2Y receptor inhibitors, Ca2+-dependent release of ADP by Aβ-peptides clearly plays a critical role in platelet activation. Targeting ADP signalling may therefore represent an important strategy to manage the cerebrovascular component of Alzheimer's disease.
Collapse
|
19
|
Guidetti GF, Torti M. Pull-down assay for analysis of integrin-mediated activation of Rap proteins in adherent platelets. Methods Mol Biol 2014; 1120:167-76. [PMID: 24470025 DOI: 10.1007/978-1-62703-791-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Rap1 GTPases operate as molecular switches by cycling between a GDP-bound inactive state and a GTP-bound active state and regulate several cellular pathways in response to different stimuli. Circulating blood platelets express high levels of Rap1 proteins, mainly Rap1b, which plays a critical role in platelet adhesion and activation. Rap1 is a key element in the inside-out signaling pathway leading to the conversion of integrins into the high-affinity state for their ligands. In platelets, Rap1b regulates inside-out activation of both integrin αIIbβ3 and α2β1. In addition, Rap1b is also involved in integrin outside-in signaling. Integrin-mediated platelet adhesion leads to accumulation of GTP-bound Rap1b, which promotes integrin-mediated processes such as spreading and clot retraction. Rap1b is thus a bidirectional regulator of platelet integrin function. Here we describe a method to analyze Rap1b activation induced by platelet adhesion via integrin α2β1.
Collapse
|
20
|
Alonso-Orgaz S, Moreno-Luna R, López JA, Gil-Dones F, Padial LR, Moreu J, de la Cuesta F, Barderas MG. Proteomic characterization of human coronary thrombus in patients with ST-segment elevation acute myocardial infarction. J Proteomics 2014; 109:368-81. [DOI: 10.1016/j.jprot.2014.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/04/2023]
|
21
|
Molina-Ortiz P, Polizzi S, Ramery E, Gayral S, Delierneux C, Oury C, Iwashita S, Schurmans S. Rasa3 controls megakaryocyte Rap1 activation, integrin signaling and differentiation into proplatelet. PLoS Genet 2014; 10:e1004420. [PMID: 24967784 PMCID: PMC4072513 DOI: 10.1371/journal.pgen.1004420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 04/20/2014] [Indexed: 01/17/2023] Open
Abstract
Rasa3 is a GTPase activating protein of the GAP1 family which targets Ras and Rap1. Ubiquitous Rasa3 catalytic inactivation in mouse results in early embryonic lethality. Here, we show that Rasa3 catalytic inactivation in mouse hematopoietic cells results in a lethal syndrome characterized by severe defects during megakaryopoiesis, thrombocytopenia and a predisposition to develop preleukemia. The main objective of this study was to define the cellular and the molecular mechanisms of terminal megakaryopoiesis alterations. We found that Rasa3 catalytic inactivation altered megakaryocyte development, adherence, migration, actin cytoskeleton organization and differentiation into proplatelet forming megakaryocytes. These megakaryocyte alterations were associated with an increased active Rap1 level and a constitutive integrin activation. Thus, these mice presented a severe thrombocytopenia, bleeding and anemia associated with an increased percentage of megakaryocytes in the bone marrow, bone marrow fibrosis, extramedular hematopoiesis, splenomegaly and premature death. Altogether, our results indicate that Rasa3 catalytic activity controls Rap1 activation and integrin signaling during megakaryocyte differentiation in mouse. Megakaryocytes are the bone marrow cellular precursors of circulating blood platelets and give rise to nascent platelets by forming branching filaments called proplatelets. Terminal differentiation of round megakaryocytes into branched proplatelet forming megakaryocytes is a complex cytoskeletal-driven process which is affected in rare human familial thrombocytopenias. Interactions of megakaryocytes with extracellular matrix proteins are essential in this process since constitutive megakaryocyte integrin activity caused by specific mutations in ITGA2B or ITGB3 genes encoding for extracellular matrix protein receptors may result in abnormal adherent megakaryocytes, defect in proplatelet formation and thrombocytopenia. Here, we show that Rasa3, a GTPase activating protein of the GAP1 family, controls Rap1 activation and integrin signaling during megakaryocyte differentiation. We found that Rasa3 catalytic inactivation in mice altered megakaryocyte development, adherence, migration, actin cytoskeleton organization and differentiation into proplatelet. Thus, these mice presented a severe thrombocytopenia, bleeding and anemia.
Collapse
Affiliation(s)
- Patricia Molina-Ortiz
- Laboratory of Functional Genetics, GIGA-Research Centre, Université de Liège, Liège, and Welbio, Belgium
| | - Séléna Polizzi
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté de Médecine, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eve Ramery
- Laboratoire de Biologie Clinique, Faculté de Médecine-vétérinaire, Université de Liège, Liège, Belgium
| | - Stéphanie Gayral
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté de Médecine, Université Libre de Bruxelles, Gosselies, Belgium
| | - Céline Delierneux
- Laboratory of Thrombosis and Hemostasis, GIGA-Research Centre, Université de Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Thrombosis and Hemostasis, GIGA-Research Centre, Université de Liège, Liège, Belgium
| | - Shintaro Iwashita
- Mitsubishi Kagaku Institute of Life Sciences and Faculty of Pharmacy, Iwaki Meisei University, Iwaki, Japan
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Research Centre, Université de Liège, Liège, and Welbio, Belgium
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté de Médecine, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail:
| |
Collapse
|
22
|
Sakata A, Ohmori T, Nishimura S, Suzuki H, Madoiwa S, Mimuro J, Kario K, Sakata Y. Paxillin is an intrinsic negative regulator of platelet activation in mice. Thromb J 2014; 12:1. [PMID: 24383745 PMCID: PMC3904695 DOI: 10.1186/1477-9560-12-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 01/04/2023] Open
Abstract
Background Paxillin is a LIM domain protein localized at integrin-mediated focal adhesions. Although paxillin is thought to modulate the functions of integrins, little is known about the contribution of paxillin to signaling pathways in platelets. Here, we studied the role of paxillin in platelet activation in vitro and in vivo. Methods and results We generated paxillin knockdown (Pxn-KD) platelets in mice by transplanting bone marrow cells transduced with a lentiviral vector carrying a short hairpin RNA sequence, and confirmed that paxillin expression was significantly reduced in platelets derived from the transduced cells. Pxn-KD platelets showed a slight increased in size and augmented integrin αIIbβ3 activation following stimulation of multiple receptors including glycoprotein VI and G protein-coupled receptors. Thromboxane A2 biosynthesis and the release of α-granules and dense granules in response to agonist stimulation were also enhanced in Pxn-KD platelets. However, Pxn-KD did not increase tyrosine phosphorylation or intracellular calcium mobilization. Intravital imaging confirmed that Pxn-KD enhanced thrombus formation in vivo. Conclusions Our findings suggest that paxillin negatively regulates several common platelet signaling pathways, resulting in the activation of integrin αIIbβ3 and release reactions.
Collapse
Affiliation(s)
| | - Tsukasa Ohmori
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Phosphorylation of the guanine-nucleotide-exchange factor CalDAG-GEFI by protein kinase A regulates Ca(2+)-dependent activation of platelet Rap1b GTPase. Biochem J 2013; 453:115-23. [PMID: 23600630 DOI: 10.1042/bj20130131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In blood platelets the small GTPase Rap1b is activated by cytosolic Ca2+ and promotes integrin αIIbβ3 inside-out activation and platelet aggregation. cAMP is the major inhibitor of platelet function and antagonizes Rap1b stimulation through a mechanism that remains unclear. In the present study we demonstrate that the Ca2+-dependent exchange factor for Rap1b, CalDAG-GEFI (calcium and diacylglycerol-regulated guanine-nucleotide-exchange factor I), is a novel substrate for the cAMP-activated PKA (protein kinase A). CalDAG-GEFI phosphorylation occurred in intact platelets treated with the cAMP-increasing agent forskolin and was inhibited by the PKA inhibitor H89. Purified recombinant CalDAG-GEFI was also phosphorylated in vitro by the PKA catalytic subunit. By screening a panel of specific serine to alanine residue mutants, we identified Ser116 and Ser586 as PKA phosphorylation sites in CalDAG-GEFI. In transfected HEK (human embryonic kidney)-293 cells, as well as in platelets, forskolin-induced phosphorylation of CalDAG-GEFI prevented the activation of Rap1b induced by the Ca2+ ionophore A23187. In platelets this effect was associated with the inhibition of aggregation. Moreover, cAMP-mediated inhibition of Rap1b was lost in HEK-293 cells transfected with a double mutant of CalDAG-GEFI unable to be phosphorylated by PKA. The results of the present study demonstrate that phosphorylation of CalDAG-GEFI by PKA affects its activity and represents a novel mechanism for cAMP-mediated inhibition of Rap1b in platelets.
Collapse
|
24
|
Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets. Biochem Biophys Res Commun 2013; 437:603-8. [PMID: 23850619 DOI: 10.1016/j.bbrc.2013.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 11/21/2022]
Abstract
The primary target of the cAMP analogue 8-pCPT-2'-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2'-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2'-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2'O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2'-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2'-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2'-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2'-O-Me-cAMP did not affect platelet activation at similar concentrations.
Collapse
Key Words
- (Rp)-adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer
- (β-phenyl-1), N(2)-etheno-8-bromoguanosine-3′,5′-cyclic monophosphate
- 2-methylthio-adenosine diphosphate
- 2-methylthio-adenosine monophosphate
- 2MeSADP
- 2MeSAMP
- 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole-3′,5′-cyclic monophosphorothioate, Sp-isomer
- 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate
- 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphorothioate, Sp-isomer
- 8-Br-PET-cGMP
- 8-bromoadenosineadenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer
- 8-pCPT-2′-O-Me-cAMP
- ADP
- Blood platelets
- CP/CPK
- Epac
- P2Y(12) receptor
- PI3K
- PKA
- PKG
- PMA
- Rp-8-Br-cAMPS
- Rp-cAMPS
- Sp-5, 6-DCL-cBIMPS
- Sp-8-pCPT-2′-O-Me-cAMPS
- Thromboxane
- TxA(2)
- adenosine diphosphate
- cAMP
- cAMP-activated protein kinase
- cGMP-activated protein kinase
- creatine phosphate/creatine phosphokinase
- cyclic adenosine monophosphate
- exchange factor directly activated by cAMP
- phorbol 12-myristate 13-acetate
- phosphatidyl-inositol-3 kinase
- thromboxane receptor A(2)
Collapse
|