1
|
Scalia F, Culletta G, Barreca M, Caruso Bavisotto C, Bivacqua R, D'Amico G, Alberti G, Spanò V, Tutone M, Almerico AM, Cappello F, Montalbano A, Barraja P. Chaperoning system: Intriguing target to modulate the expression of CFTR in cystic fibrosis. Eur J Med Chem 2024; 278:116809. [PMID: 39226706 DOI: 10.1016/j.ejmech.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The correction of protein folding is fundamental for cellular functionality and its failure can lead to severe diseases. In this context, molecular chaperones are crucial players involved in the tricky process of assisting in protein folding, stabilization, and degradation. Chaperones, such as heat shock proteins (HSP) 90, 70, and 60, operate within complex systems, interacting with co-chaperones both to prevent protein misfolding and direct to the correct folding. Chaperone targeting drugs could represent a challenging approach for the treatment of cystic fibrosis (CF), an autosomal recessive genetic disease caused by mutations in the CFTR gene, encoding for the CFTR chloride channel. In this review, we discuss the potential role of molecular chaperones as proteostasis modulators affecting CFTR biogenesis. In particular, we focused on HSP90 and HSP70, for their key role in CFTR folding and trafficking, as well as on HSP60 for its involvement in the inflammation process.
Collapse
Affiliation(s)
- Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Giulia Culletta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), via Michele Miraglia 20, 90139 Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppa D'Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Giusi Alberti
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Marco Tutone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Maria Almerico
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, via del Vespro 129, 90127 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), via Michele Miraglia 20, 90139 Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
2
|
Escobar KA, VanDusseldorp TA, Johnson KE, Stratton M, McCormick JJ, Moriarity T, Dokladny K, Vaughan RA, Kerksick CM, Kravitz L, Mermier CM. The biphasic activity of autophagy and heat shock protein response in peripheral blood mononuclear cells following acute resistance exercise in resistance-trained males. Eur J Appl Physiol 2024; 124:2981-2992. [PMID: 38771358 DOI: 10.1007/s00421-024-05503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Autophagy and heat shock protein (HSP) response are proteostatic systems involved in the acute and adaptive responses to exercise. These systems may upregulate sequentially following cellular stress including acute exercise, however, currently few data exist in humans. This study investigated the autophagic and HSP responses to acute intense lower body resistance exercise in peripheral blood mononuclear cells (PBMCs) with and without branched-chain amino acids (BCAA) supplementation. METHODS Twenty resistance-trained males (22.3 ± 1.5 yr; 175.4 ± .7 cm; 86.4 ± 15.6 kg) performed a bout of intense lower body resistance exercise and markers of autophagy and HSP70 were measured immediately post- (IPE) and 2, 4, 24, 48, and 72 h post-exercise. Prior to resistance exercise, 10 subjects were randomly assigned to BCAA supplementation of 0.22 g/kg/d for 5 days pre-exercise and up to 72 h following exercise while the other 10 subjects consumed a placebo (PLCB). RESULTS There were no difference in autophagy markers or HSP70 expression between BCAA and PLCB groups. LC3II protein expression was significantly lower 2 and 4 h post-exercise compared to pre-exercise. LC3II: I ratio was not different at any time point compared to pre-exercise. Protein expression of p62 was lower IPE, 2, and 4 h post-exercise and elevated 24 h post-exercise. HSP70 expression was elevated 48 and 72 h post-exercise. CONCLUSIONS Autophagy and HSP70 are upregulated in PBMCs following intense resistance exercise with autophagy increasing initially post-exercise and HSP response in the latter period. Moreover, BCAA supplementation did not affect this response.
Collapse
Affiliation(s)
- Kurt A Escobar
- Physiology of Sport and Exercise Lab, Department of Kinesiology, California State University, Long Beach, Long Beach, CA, USA.
| | - Trisha A VanDusseldorp
- Bonafide Health, LLC p/b JDS Therapeutics, Harrison, NY, USA
- Department of Health and Exercise Sciences, Jacksonville University, Jacksonville, FL, USA
| | - Kelly E Johnson
- Department of Kinesiology, Coastal Carolina University, Conway, SC, USA
| | - Matthew Stratton
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, USA
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Terence Moriarity
- Department of Kinesiology, University of Northern Iowa, Cedar Falls, USA
| | - Karol Dokladny
- Department of Internal Medicine, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Roger A Vaughan
- Department of Exercise Science, Congdon School of Health Sciences, High Point University, High Point, NC, USA
| | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Len Kravitz
- Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
3
|
Wu Y, Zhao J, Tian Y, Jin H. Cellular functions of heat shock protein 20 (HSPB6) in cancer: A review. Cell Signal 2023; 112:110928. [PMID: 37844714 DOI: 10.1016/j.cellsig.2023.110928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Heat shock proteins (HSP) are a large family of peptide proteins that are widely found in cells. Studies have shown that the expression and function of HSPs in cells are very complex, and they can participate in cellular physiological and pathological processes through multiple pathways. Multiple heat shock proteins are associated with cancer cell growth, proliferation, metastasis, and resistance to anticancer drugs, and they play a key role in cancer development by ensuring the correct folding or degradation of proteins in cancer cells. As research hotspots, HSP90, HSP70 and HSP27 have been extensively studied in cancer so far. However, HSP20, also referred to as HSPB6, as a member of the small heat shock protein family, has been shown to play an important role in the cardiovascular system, but little research has been conducted on HSP20 in cancer. This review summarizes the current cellular functions of HSP20 in different cancer types, as well as its effects on cancer proliferation, progression, prognosis, and its other functions in cancer, to illustrate the close association between HSP20 and cancer. We show that, unlike most HSPs, HSP20 mainly plays an active anticancer role in cancer development, which is expected to provide new ideas and help for cancer diagnosis and treatment and research.
Collapse
Affiliation(s)
- Yifeng Wu
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Jinjin Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, People's Republic of China.
| | - Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
4
|
The Pathophysiological Role of Heat Shock Response in Autoimmunity: A Literature Review. Cells 2021; 10:cells10102626. [PMID: 34685607 PMCID: PMC8533860 DOI: 10.3390/cells10102626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Within the last two decades, there has been increasing evidence that heat-shock proteins can have a differential influence on the immune system. They can either provoke or ameliorate immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.
Collapse
|
5
|
Zhang Y, Ren F, Ni B, Jing T, Tang J. Tumor targeting nanoparticle E7 49-57-HSP110-RGD elicits potent anti-tumor immune response in a CD8-dependent manner in cervical cancer-bearing mouse model. Hum Vaccin Immunother 2021; 17:3529-3538. [PMID: 34270395 DOI: 10.1080/21645515.2021.1933875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our previous research verified that HSP (heat shock protein) 110 could enhance the anti-tumor effect of HPV16 E749-57 epitope. In this study, to optimize the immunotherapy of this vaccine type, we developed and evaluated the anti-tumor immunity of a nanoparticle vaccine format assembling with E749-57-HSP110 fusion expression plasmid and RGD-GGG-K18 polypeptide. The nanoparticle vaccine was self-assembled from positively charged RGD-GGG-K18 polypeptide and negatively charged fusion expression plasmid pIRES2-3× E7-HSP110-EGFP. The particle size, stability, expression of E749-57-HSP110 fusion protein and the target ability of nanoparticle were determined, respectively. Specific CTL responses were determined by E7 tetramer staining and cytotoxicity assay in TC-1 tumor-bearing mice (CD4/CD8 knockout). The preventive and therapeutic experiments of nanoparticle vaccine were investigated in TC-1 tumor-bearing mice. Results showed that the RGD-GGG-K18 polypeptide and pIRES2-3× E7-HSP110-EGFP plasmid self-assembled nanoparticles about 100 nanometers in diameter when the charge ratios of peptide/plasmid were 2. The nanoparticles effectively entered TC-1 cells directed by RGD target-peptide, and correctly expressed the E7-HSP110 fusion protein. The HSP110 effectively facilitated nanoparticles activating CD8+T cells than nanoparticles without HSP110, including the CD8+ T cell number and the IFN-γ level; in contrast, the CD4+T cells immune response remained indiscriminate among the mice groups. This nanoparticle formulation inhibited tumor growth and prolonged the survival duration in the prophylactic and therapeutic mouse models. Therefore, the RGD-based tumor-targeting nanoparticle expressing E749-57-HSP110 fusion protein can efficiently evoke anti-tumor activity and thus suggests it might be a favorable candidate for cervical cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Faliang Ren
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| | - Tao Jing
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Tang
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|
7
|
Gebremedhn S, Ali A, Gad A, Prochazka R, Tesfaye D. Extracellular Vesicles as Mediators of Environmental and Metabolic Stress Coping Mechanisms During Mammalian Follicular Development. Front Vet Sci 2020; 7:602043. [PMID: 33330723 PMCID: PMC7710682 DOI: 10.3389/fvets.2020.602043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles are evolutionarily conserved nano-sized phospholipid membraned structures and released from virtually all types of cells into the extracellular space. Their ability to carry various molecular cargos (mRNA, miRNA, proteins, and lipids) from one cell to the other to exert functional impact on the target cells enables them to play a significant role in cell to cell communication during follicular development. As the molecular signals carried by extracellular vesicles reflect the physiological status of the cells of origin, they are expected to mediate any effect of environmental or metabolic stress on the follicualr cells and the growing oocyte. Recent studies have evidenced that reproductive cells exposed to various environmental stressors (heat and oxidative stress) released extracellular vesicles enriched with mRNA and miRNA associated with stress response mechanisms. Moreover, the metabolic status of post-calving cows could be well-reflected in the follicular extracellular vesicle's miRNA profile, which signified the potential role of extracellular cellular vesicle molecular signals in mediating the effect of metabolic stress on follicular and oocyte development. In the present review, the potential role of extracellular vesicles in mediating the effect of environmental and metabolic stress in various reproductive cells and oocytes are thoroughly discussed Moreover, considering the importance of extracellular vesicles in shuttling protective or rescuing molecular signals during stress, their potential usage as means of targeted delivery of molecules to mitigate the effect of stress on oocytes are addressed as the focus of future research.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.,Department of Animal, Rangeland and Wildlife Sciences, Mekelle University, Mekelle, Ethiopia
| | - Asghar Ali
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Ahmed Gad
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.,Department of Animal, Rangeland and Wildlife Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
8
|
Gebremedhn S, Gad A, Aglan HS, Laurincik J, Prochazka R, Salilew-Wondim D, Hoelker M, Schellander K, Tesfaye D. Extracellular vesicles shuttle protective messages against heat stress in bovine granulosa cells. Sci Rep 2020; 10:15824. [PMID: 32978452 PMCID: PMC7519046 DOI: 10.1038/s41598-020-72706-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 01/15/2023] Open
Abstract
Elevated summer temperature is reported to be the leading cause of stress in dairy and beef cows, which negatively affects various reproductive functions. Follicular cells respond to heat stress (HS) by activating the expression of heat shock family proteins (HSPs) and other antioxidants. HS is reported to negatively affect the bi-directional communication between the follicular cells and the oocyte, which is partly mediated by follicular fluid extracellular vesicles (EVs) released from surrounding cells. As carriers of bioactive molecules (DNA, RNA, protein, and lipids), the involvement of EVs in mediating the stress response in follicular cells is not fully understood. Here we used an in vitro model to decipher the cellular and EV-coupled miRNAs of bovine granulosa cells in response to HS. Moreover, the protective role of stress-related EVs against subsequent HS was assessed. For this, bovine granulosa cells from smaller follicles were cultured in vitro and after sub-confluency, cells were either kept at 37 °C or subjected to HS (42 °C). Results showed that granulosa cells exposed to HS increased the accumulation of ROS, total oxidized protein, apoptosis, and the expression of HSPs and antioxidants, while the viability of cells was reduced. Moreover, 14 and 6 miRNAs were differentially expressed in heat-stressed granulosa cells and the corresponding EVs, respectively. Supplementation of stress-related EVs in cultured granulosa cells has induced adaptive response to subsequent HS. However, this potential was not pronounced when the cells were kept under 37 °C. Taking together, EVs generated from granulosa cells exposed to HS has the potential to shuttle bioactive molecules to recipient cells and make them robust to subsequent HS.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO, 80525, USA.,Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany.,Department of Animal, Rangeland and Wildlife Sciences, Mekelle University, Mekelle, Ethiopia
| | - Ahmed Gad
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hoda Samir Aglan
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Jozef Laurincik
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.,Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Dessie Salilew-Wondim
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Michael Hoelker
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO, 80525, USA. .,Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany. .,Department of Animal, Rangeland and Wildlife Sciences, Mekelle University, Mekelle, Ethiopia.
| |
Collapse
|
9
|
Khan A, Dou J, Wang Y, Jiang X, Khan MZ, Luo H, Usman T, Zhu H. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J Anim Sci Biotechnol 2020; 11:25. [PMID: 32095238 PMCID: PMC7027041 DOI: 10.1186/s40104-019-0408-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background Heat stress is known to affect follicular dynamics, oocyte maturation, and fertilization by impairing steroidogenic ability and viability of bovine granulosa cell (bGCs). The present study explored the physiological and molecular response of bGCs to different heat stress intensities in-vitro. We exposed the primary bGCs to heat stress (HS) at 39 °C, 40 °C and 41 °C along with control samples (38 °C) for 2 h. To evaluate the impact of heat stress on bGCs, several in vitro cellular parameters including cell apoptosis, intracellular reactive oxygen species (ROS) accumulation and HSP70 kinetics were assessed by flow cytometry, florescence microscopy and western blot, respectively. Furthermore, the ELISA was performed to confirm the 17β-estradiol (E2) and progesterone (P4) levels. In addition, the RNA sequencing (RNA-Seq) method was used to get the molecular based response of bGCs to different heat treatments. Results Our findings revealed that the HS significantly decreased the cell viability, E2 and P4 levels in bGCs, whereas, increased the cellular apoptosis and ROS. Moreover, the RNA-Seq experiments showed that all the treatments (39 °C, 40 °C and 41 °C) significantly regulated many differentially expressed genes (DEGs) i.e. BCL2L1, STAR, CYP11A1, CASP3, SOD2, HSPA13, and MAPK8IP1 and pathways associated with heat stress, apoptosis, steroidogenesis, and oxidative stress. Conclusively, our data demonstrated that the impact of 40 °C treatment was comparatively detrimental for cell viability, apoptosis and ROS accumulation. Notably, a similar trend of gene expression was reported by RT-qPCR for RNA-seq data. Conclusions Our study presented a worthy strategy for the first time to characterize the cellular and transcriptomic adaptation of bGCs to heat stress (39, 40 and 41 °C) in-vitro. The results infer that these genes and pathways reported in present study could be useful candidates/indicators for heat stress research in dairy cattle. Moreover, the established model of bGCs to heat stress in the current study provides an appropriate platform to understand the mechanism of how heat-stressed bGCs can affect the quality of oocytes and developing embryo.
Collapse
Affiliation(s)
- Adnan Khan
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Jinhuan Dou
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yachun Wang
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Xiaolong Jiang
- 2Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Zahoor Khan
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Hanpeng Luo
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Tahir Usman
- 3College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, 23200 Pakistan
| | - Huabin Zhu
- 2Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Li Y, Wang D, Fang X. In Vitro Generation of Anti-Osteosarcoma Cytotoxic Activity Using Dendritic Cells Loaded with Heat Shock Protein 70-Peptide Complexes. Fetal Pediatr Pathol 2019; 38:387-398. [PMID: 30955440 DOI: 10.1080/15513815.2019.1600624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Introduction: This study aimed at evaluating the anti-osteosarcoma activity of cytotoxic T lymphocytes (CTLs) induced by dendritic cells (DCs) pulsed with heat shock protein 70-peptide complexes (Hsp70-PCs). Materials and methods: Human recombinant Hsp70 expression was analyzed using thin layer scanning and Western blot assay. Tumor antigens from Saos-2 cells were extracted to reconstitute Hsp70-PCs. Maturation of cord blood-derived DC was evaluated by alkaline phosphatase-anti-alkaline phosphatase kit and inverted microscope. The anti-osteosarcoma activity of CTLs evoked by DCs loaded with Hsp70-PCs was determined using Thiazolyl Blue Tetrazolium Bromide (MTT) assay. Results: Hsp70 protein level in BL21 (DE3) increased in a time-dependent manner after induction. The expression of surface markers was upregulated and a typical dendritic morphology was observed in mature DCs. Allogeneic CTLs exhibited strong cytotoxic activity against Saos-2 cells. Conclusion: Our in vitro experiment demonstrated the potent induction of cytotoxic activity against osteosarcoma using DC-based vaccine loaded with Hsp70-PCs.
Collapse
Affiliation(s)
- Yang Li
- Department of Thoracic Surgery, The First Hospital of Jilin University , Changchun , China
| | - Danhui Wang
- Jilin Academy of Traditional Chinese Medicine and Materia Medica , Changchun , China
| | - Xiutong Fang
- Department of Orthoapedic Surgery, Beijing Shijitan Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
11
|
Kharrati-Koopaee H, Ebrahimie E, Dadpasand M, Niazi A, Esmailizadeh A. Genomic analysis reveals variant association with high altitude adaptation in native chickens. Sci Rep 2019; 9:9224. [PMID: 31239472 PMCID: PMC6592930 DOI: 10.1038/s41598-019-45661-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 03/12/2019] [Indexed: 01/10/2023] Open
Abstract
Native chickens are endangered genetic resources that are kept by farmers for different purposes. Native chickens distributed in a wide range of altitudes, have developed adaptive mechanisms to deal with hypoxia. For the first time, we report variants associated with high-altitude adaptation in Iranian native chickens by whole genome sequencing of lowland and highland chickens. We found that these adaptive variants are involved in DNA repair, organs development, immune response and histone binding. Amazingly, signature selection analysis demonstrated that differential variants are adaptive in response to hypoxia and are not due to other evolutionary pressures. Cellular component analysis of variants showed that mitochondrion is the most important organelle for hypoxia adaptation. A total of 50 variants was detected in mtDNA for highland and lowland chickens. High-altitude associated with variant discovery highlighted the importance of COX3, a gene involved in cell respiration, in hypoxia adaptation. The results of study suggest that MIR6644-2 is involved in hypoxia and high-altitude adaptations by regulation of embryo development. Finally, 3877 novel SNVs including the mtDNA ones, were submitted to EBI (PRJEB24944). Whole-genome sequencing and variant discovery of native chickens provided novel insights about adaptation mechanisms and highlights the importance of valuable genomic variants in chickens.
Collapse
Affiliation(s)
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran.
- The University of Adelaide, School of Animal and Veterinary Sciences, Adelaide, South Australia, Australia.
- School of Information Technology and Mathematical Science, Division of Information Technology, Engineering and the Environment, University of South Australia, South Australia, Adelaide, Australia.
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia.
| | - Mohammad Dadpasand
- Department of Animal science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences No. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, P.R. China.
- Department of Animal science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
12
|
Birdi R, Kumar BVS, Gupta K, Kashyap N, Kumar A. Circulating level of heat shock protein 27 is elevated in dogs with mammary tumors. 3 Biotech 2019; 9:229. [PMID: 31139544 DOI: 10.1007/s13205-019-1765-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/16/2019] [Indexed: 01/18/2023] Open
Abstract
In the current study, we have synthesized canine recombinant Hsp27 in E. coli and raised hyperimmune serum against the protein in mice. Using the hyperimmune serum, an indirect ELISA was developed to estimate circulating levels of Hsp27 in dogs with various types of mammary neoplasia and to compare their levels with those of tumor-free apparently healthy dogs. The developed assay had a high specificity (83.3%) and sensitivity (96.6%) for a cut-off value of 0.45 with respect to histopathological examination in discriminating healthy dogs from those bearing mammary tumors. Serum Hsp27 levels were found to be significantly elevated in tumor subjects (20.33 ± 1.23 ng/ml) as compared to healthy controls (6.56 ± 0.51 ng/ml) and the increase in the Hsp27 levels was irrespective of mammary tumor histotypes. However, dogs with grade-II tumors had higher Hsp27 levels as compared to grade-I types. Therefore, Hsp27 can be exploited as one of the 'neoplastic signatures' of canine mammary tumors.
Collapse
Affiliation(s)
- Rancy Birdi
- 1School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| | - B V Sunil Kumar
- 1School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| | - Kuldip Gupta
- 2Department of Veterinary Pathology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| | - Neeraj Kashyap
- 3Department of Animal Genetics and Breeding, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| | - Ashwani Kumar
- 4Department of Veterinary Surgery and Radiology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| |
Collapse
|
13
|
Krüger K, Reichel T, Zeilinger C. Role of heat shock proteins 70/90 in exercise physiology and exercise immunology and their diagnostic potential in sports. J Appl Physiol (1985) 2019; 126:916-927. [DOI: 10.1152/japplphysiol.01052.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones facilitating the unfolding or folding of secondary structures of proteins, their client proteins, in cellular stress situations. Various internal and external physiological and mechanical stress factors induce a homeostatic imbalance, followed by an increased expression of HSP70 and HSP90. Exercise is a stress factor, too, and its cumulative physiological perturbation manifests at a cellular level by threatening the protein homeostasis of various cell types. Consequently, an increase of HSP70/90 was described in plasma and mononuclear cells and various organs and tissues, such as muscle, liver, cardiac tissue, and brain, after an acute bout of exercise. The specific response of HSP70/90 seems to be strongly related to the modality of exercise, with several dependent factors such as duration, intensity, exercise type, subjects’ training status, and environmental factors, e.g., temperature. It is suggested that HSP70/90 play a major role in immune regulation and cell protection during exercise and in the efficiency of regeneration and reparation processes. During long-term training, HSP70/90 are involved in preconditioning and adaptation processes that might also be important for disease prevention and therapy. With regard to their highly sensitive and individual response to specific exercise and training modalities, this review discusses whether and how HSP70 and HSP90 can be applied as biomarkers for monitoring exercise and training.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Thomas Reichel
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Carsten Zeilinger
- Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
14
|
Mujawar S, Gatherer D, Lahiri C. Paradigm Shift in Drug Re-purposing From Phenalenone to Phenaleno-Furanone to Combat Multi-Drug Resistant Salmonella enterica Serovar Typhi. Front Cell Infect Microbiol 2018; 8:402. [PMID: 30488026 PMCID: PMC6246918 DOI: 10.3389/fcimb.2018.00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/24/2018] [Indexed: 01/10/2023] Open
Abstract
Over recent years, typhoid fever has gained increasing attention with several cases reporting treatment failure due to multidrug resistant (MDR) strains of Salmonella enterica serovar Typhi. While new drug development strategies are being devised to combat the threat posed by these MDR pathogens, drug repurposing or repositioning has become a good alternative. The latter is considered mainly due to its capacity for saving sufficient time and effort for pre-clinical and optimization studies. Owing to the possibility of an unsuccessful repositioning, due to the mismatch in the optimization of the drug ligand for the changed biochemical properties of “old” and “new” targets, we have chosen a “targeted” approach of adopting a combined chemical moiety-based drug repurposing. Using small molecules selected from a combination of earlier approved drugs having phenalenone and furanone moieties, we have computationally delineated a step-wise approach to drug design against MDR Salmonella. We utilized our network analysis-based pre-identified, essential chaperone protein, SicA, which regulates the folding and quality of several secretory proteins including the Hsp70 chaperone, SigE. To this end, another crucial chaperone protein, Hsp70 DnaK, was also considered due to its importance for pathogen survival under the stress conditions typically encountered during antibiotic therapies. These were docked with the 19 marketed anti-typhoid drugs along with two phenalenone-furanone derivatives, 15 non-related drugs which showed 70% similarity to phenalenone and furanone derivatives and other analogous small molecules. Furthermore, molecular dynamics simulation studies were performed to check the stability of the protein-drug complexes. Our results showed the best binding interaction and stability, under the parameters of a virtual human body environment, with XR770, a phenaleno-furanone moiety based derivative. We therefore propose XR770, for repurposing for therapeutic intervention against emerging and significant drug resistance conferred by pathogenic Salmonella strains.
Collapse
Affiliation(s)
- Shama Mujawar
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Derek Gatherer
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
15
|
Shetab Boushehri MA, Lamprecht A. TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings. Mol Pharm 2018; 15:4777-4800. [DOI: 10.1021/acs.molpharmaceut.8b00691] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, D-53121 Bonn, Germany
- PEPITE EA4267, Univ. Bourgonge Franch-Comte, 25030 Besançon, France
| |
Collapse
|
16
|
Caruso Bavisotto C, Graziano F, Rappa F, Marino Gammazza A, Logozzi M, Fais S, Maugeri R, Bucchieri F, Conway de Macario E, Macario AJL, Cappello F, Iacopino DG, Campanella C. Exosomal Chaperones and miRNAs in Gliomagenesis: State-of-Art and Theranostics Perspectives. Int J Mol Sci 2018; 19:E2626. [PMID: 30189598 PMCID: PMC6164348 DOI: 10.3390/ijms19092626] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Gliomas have poor prognosis no matter the treatment applied, remaining an unmet clinical need. As background for a substantial change in this situation, this review will focus on the following points: (i) the steady progress in establishing the role of molecular chaperones in carcinogenesis; (ii) the recent advances in the knowledge of miRNAs in regulating gene expression, including genes involved in carcinogenesis and genes encoding chaperones; and (iii) the findings about exosomes and their cargo released by tumor cells. We would like to trigger a discussion about the involvement of exosomal chaperones and miRNAs in gliomagenesis. Chaperones may be either targets for therapy, due to their tumor-promoting activity, or therapeutic agents, due to their antitumor growth activity. Thus, chaperones may well represent a Janus-faced approach against tumors. This review focuses on extracellular chaperones as part of exosomes' cargo, because of their potential as a new tool for the diagnosis and management of gliomas. Moreover, since exosomes transport chaperones and miRNAs (the latter possibly related to chaperone gene expression in the recipient cell), and probably deliver their cargo in the recipient cells, a new area of investigation is now open, which is bound to generate significant advances in the understanding and treatment of gliomas.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Institute of Biophysics, National Research Council, 90143 Palermo, Italy.
| | - Francesca Graziano
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Domenico G Iacopino
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| |
Collapse
|
17
|
Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of Heat Shock Proteins in Apoptosis, Oxidative Stress, Human Inflammatory Diseases, and Cancer. Pharmaceuticals (Basel) 2017; 11:E2. [PMID: 29295496 PMCID: PMC5874698 DOI: 10.3390/ph11010002] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) play cytoprotective activities under pathological conditions through the initiation of protein folding, repair, refolding of misfolded peptides, and possible degradation of irreparable proteins. Excessive apoptosis, resulting from increased reactive oxygen species (ROS) cellular levels and subsequent amplified inflammatory reactions, is well known in the pathogenesis and progression of several human inflammatory diseases (HIDs) and cancer. Under normal physiological conditions, ROS levels and inflammatory reactions are kept in check for the cellular benefits of fighting off infectious agents through antioxidant mechanisms; however, this balance can be disrupted under pathological conditions, thus leading to oxidative stress and massive cellular destruction. Therefore, it becomes apparent that the interplay between oxidant-apoptosis-inflammation is critical in the dysfunction of the antioxidant system and, most importantly, in the progression of HIDs. Hence, there is a need to maintain careful balance between the oxidant-antioxidant inflammatory status in the human body. HSPs are known to modulate the effects of inflammation cascades leading to the endogenous generation of ROS and intrinsic apoptosis through inhibition of pro-inflammatory factors, thereby playing crucial roles in the pathogenesis of HIDs and cancer. We propose that careful induction of HSPs in HIDs and cancer, especially prior to inflammation, will provide good therapeutics in the management and treatment of HIDs and cancer.
Collapse
Affiliation(s)
- Paul Chukwudi Ikwegbue
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Priscilla Masamba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
18
|
Gentile F, Arcaro A, Pizzimenti S, Daga M, Cetrangolo GP, Dianzani C, Lepore A, Graf M, Ames PRJ, Barrera G. DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity. AIMS GENETICS 2017; 4:103-137. [PMID: 31435505 PMCID: PMC6690246 DOI: 10.3934/genet.2017.2.103] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity.
Collapse
Affiliation(s)
- Fabrizio Gentile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Alessia Arcaro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | | | - Chiara Dianzani
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Alessio Lepore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Maria Graf
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Paul R. J. Ames
- CEDOC, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal, and Department of Haematology, Dumfries Royal Infirmary, Dumfries, Scotland, UK
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
19
|
Vojisavljevic V, Pirogova E. Prediction of intrinsically disordered regions in proteins using signal processing methods: application to heat-shock proteins. Med Biol Eng Comput 2016; 54:1831-1844. [PMID: 27037818 DOI: 10.1007/s11517-016-1477-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
Abstract
Heat-shock protein (HSP)-based immunotherapy is believed to be a promising area of development for cancer treatment as such therapy is characterized by a unique approach to every tumour. It was shown that by inhibition of HSPs it is possible to induce apoptotic cell death in cancer cells. Interestingly, there are a great number of disordered regions in proteins associated with cancer, cardiovascular and neurodegenerative diseases, signalling, and diabetes. HSPs and some specific enzymes were shown to have these disordered regions in their primary structures. The experimental studies of HSPs confirmed that their intrinsically disordered (ID) regions are of functional importance. These ID regions play crucial roles in regulating the specificity of interactions between dimer complexes and their interacting partners. Because HSPs are overexpressed in cancer, predicting the locations of ID regions and binding sites in these proteins will be important for developing novel cancer therapeutics. In our previous studies, signal processing methods have been successfully used for protein structure-function analysis (i.e. for determining functionally important amino acids and the locations of protein active sites). In this paper, we present and discuss a novel approach for predicting the locations of ID regions in the selected cancer-related HSPs.
Collapse
Affiliation(s)
- Vuk Vojisavljevic
- Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Elena Pirogova
- Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
20
|
Maheshwari K, Silva RM, Guajardo-Morales L, Garlet GP, Vieira AR, Letra A. Heat Shock 70 Protein Genes and Genetic Susceptibility to Apical Periodontitis. J Endod 2016; 42:1467-71. [PMID: 27567034 DOI: 10.1016/j.joen.2016.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Heat shock proteins (HSPs) protect cells under adverse conditions such as infection, inflammation, and disease. The differential expression of HSPs in human periapical granulomas suggests a potential role for these proteins in periapical lesion development, which may contribute to different clinical outcomes. Therefore, we hypothesized that polymorphisms in HSP genes leading to perturbed gene expression and protein function may contribute to an individual's susceptibility to periapical lesion development. METHODS Subjects with deep carious lesions with or without periapical lesions (≥3 mm) were recruited at the University of Texas School of Dentistry at Houston and at the University of Pittsburgh. Genomic DNA samples of 400 patients were sorted into 2 groups: 183 cases with deep carious lesions and periapical lesions (cases) and 217 cases with deep carious lesions but without periapical lesions (controls). Eight single nucleotide polymorphisms (SNPs) in HSPA4, HSPA6, HSPA1L, HSPA4L, and HSPA9 genes were selected for genotyping. Genotypes were generated by end point analysis by using Taqman chemistry in a real-time polymerase chain reaction assay. Allele and genotype frequencies were compared among cases and controls by using χ(2) and Fisher exact tests as implemented in PLINK v.1.07. In silico analysis of SNP function was performed by using Polymorphism Phenotyping V2 and MirSNP software. RESULTS Overall, SNPs in HSPA1L and HSPA6 showed significant allelic association with cases of deep caries and periapical lesions (P < .05). We also observed altered transmission of HSPA1L SNP haplotypes (P = .03). In silico analysis of HSPA1L rs2075800 function showed that this SNP results in a glutamine-to-lysine substitution at position 602 of the protein and might affect the stability and function of the final protein. CONCLUSIONS Variations in HSPA1L and HSPA6 may be associated with periapical lesion formation in individuals with untreated deep carious lesions. Future studies could help predict host susceptibility to developing apical periodontitis.
Collapse
Affiliation(s)
- Kanwal Maheshwari
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Renato M Silva
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas; Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Leticia Guajardo-Morales
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Gustavo P Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru, São Paulo, Brazil
| | - Alexandre R Vieira
- Department of Oral Biology, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatric Dentistry, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ariadne Letra
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas; Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
21
|
Kim EY, Durai M, Mia Y, Kim HR, Moudgil KD. Modulation of Adjuvant Arthritis by Cellular and Humoral Immunity to Hsp65. Front Immunol 2016; 7:203. [PMID: 27379088 PMCID: PMC4904002 DOI: 10.3389/fimmu.2016.00203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/10/2016] [Indexed: 12/02/2022] Open
Abstract
Heat shock proteins (Hsps) are highly conserved, and their expression is upregulated in cells by heat and other stressful stimuli. These proteins play a vital role in preserving the structural and functional integrity of cells under stress. Despite the ubiquitous expression of Hsps in an individual, the immune system is not fully tolerant to them. In fact, Hsps are highly immunogenic in nature, and immune response to these proteins is observed in various inflammatory and autoimmune diseases. Studies on the immunopathogenesis of autoimmune arthritis in the rat adjuvant arthritis (AA) model of human rheumatoid arthritis (RA) as well as observations in patients with RA and juvenile idiopathic arthritis (JIA) have unraveled immunoregulatory attributes of self-Hsp65-directed immunity. Notable features of Hsp65 immunity in AA include protection rather than disease induction following immunization of Lewis rats with self (rat)-Hsp65; the diversification of T cell response to mycobacterial Hsp65 during the course of AA and its association with spontaneous induction of response to self-Hsp65; the cross-reactive T cells recognizing foreign and self homologs of Hsp65 and their role in disease suppression in rats; the suppressive effect of antibodies to Hsp65 in AA; and the use of Hsp65, its peptides, or altered peptide ligands in controlling autoimmune pathology. The results of studies in the AA model have relevance to RA and JIA. We believe that these insights into Hsp65 immunity would not only advance our understanding of the disease process in RA/JIA, but also lead to the development of novel therapeutic approaches for autoimmune arthritis.
Collapse
Affiliation(s)
- Eugene Y Kim
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Malarvizhi Durai
- Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Younus Mia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacy Services, University of Maryland Medical Center, Baltimore, MD, USA
| | - Hong R Kim
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Chong Kun Dang Pharmaceutical Institute, Yongin-si, Korea
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| |
Collapse
|
22
|
Yao Q, Zhao HY, Xie BZ. Effects of Ezrin and Heat Shock Protein 70 on Apoptosis and Proliferation of Human Osteosarcoma Cells. Orthop Surg 2016; 7:273-80. [PMID: 26311104 DOI: 10.1111/os.12186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the influence of knocking down ezrin expression in combination with heat shock protein (HSP)-induced immune killing on the apoptosis and proliferation of mouse osteosarcoma cells. METHODS The HSP70 and ezrin-shRNA DNA fragments cloned into the expression vector pGFP-V-RS and the expression vectors pGFP-V-RS-shRNA and pGFP-V-RS-shRNA-HSP70 constructed and transfected into MG63 cell line, where their status was observed by fluorescent microscopy. Expression of ezrin and HSP70 was determined by RT-PCR and western blot. Changes in cell apoptosis and proliferation were assessed by flow cytometry and MTS and changes in expression of apoptosis and cell cycle-related proteins by western blot. Specific cytotoxic T lymphocytes (CTLs) were induced by HSP70 and its lethal effect on target MG63 tumor cells analyzed by MTS assay. RESULTS The specific vector simultaneously downregulated ezrin and upregulated HSP70. Compared with ezrin knockdown alone, simultaneous HSP70 overexpression partially recovered the promoted cellular apoptosis and proliferation suppression by induced by ezrin knockdown; however, the apoptosis rate of MG63 cells was significantly greater than that of a negative control. In addition, ezrin-shRNA and ezrin-shRNA/HSP70 promoted expression of Bax. However, expression of these agents reduces Bcl-2 and Cyclin D1. The cytotoxic effects of CTLs on target MG63 tumor cells were significantly greater in the CTL + IL-2 + HSP70 group than the CTL + IL-2 group. CONCLUSIONS Simultaneously knocking down ezrin and overexpressing HSP70 promotes apoptosis and inhibits proliferation of osteosarcoma cells and HSP70 induces CTL, enhancing the lethal effect on tumor cells.
Collapse
Affiliation(s)
- Qin Yao
- Central Laboratory, Xiamen, China
| | - Hui-yi Zhao
- Department of Spine Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Bo-zhen Xie
- Department of Spine Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
24
|
Abu N, Yeap SK, Pauzi AZM, Akhtar MN, Zamberi NR, Ismail J, Zareen S, Alitheen NB. Dual Regulation of Cell Death and Cell Survival upon Induction of Cellular Stress by Isopimara-7,15-Dien-19-Oic Acid in Cervical Cancer, HeLa Cells In vitro. Front Pharmacol 2016; 7:89. [PMID: 27065873 PMCID: PMC4814465 DOI: 10.3389/fphar.2016.00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/18/2016] [Indexed: 11/14/2022] Open
Abstract
The Fritillaria imperialis is an ornamental flower that can be found in various parts of the world including Iraq, Afghanistan, Pakistan, and the Himalayas. The use of this plant as traditional remedy is widely known. This study aims to unveil the anti-cancer potentials of Isopimara-7,15-Dien-19-Oic Acid, extracted from the bulbs of F. imperialis in cervical cancer cell line, HeLa cells. Flow cytometry analysis of cell death, gene expression analysis via cDNA microarray and protein array were performed. Based on the results, Isopimara-7,15-Dien-19-Oic acid simultaneously induced cell death and promoted cell survival. The execution of apoptosis was apparent based on the flow cytometry results and regulation of both pro and anti-apoptotic genes. Additionally, the regulation of anti-oxidant genes were up-regulated especially thioredoxin, glutathione and superoxide dismutase- related genes. Moreover, the treatment also induced the activation of pro-survival heat shock proteins. Collectively, Isopimara-7,15-Dien-19-Oic Acid managed to induce cellular stress in HeLa cells and activate several anti- and pro survival pathways.
Collapse
Affiliation(s)
- Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Swee K Yeap
- Laboratory of Immunotherapeutics and Vaccine (LIVES), Institute of Bioscience, Universiti Putra Malaysia Serdang, Malaysia
| | - Ahmad Z Mat Pauzi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - M Nadeem Akhtar
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Kuantan, Malaysia
| | - Nur R Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Jamil Ismail
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Kuantan, Malaysia
| | - Seema Zareen
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Kuantan, Malaysia
| | - Noorjahan B Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia Serdang, Malaysia
| |
Collapse
|
25
|
Molino NM, Neek M, Tucker JA, Nelson EL, Wang SW. Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses. Biomaterials 2016; 86:83-91. [PMID: 26894870 DOI: 10.1016/j.biomaterials.2016.01.056] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
The immune system is a powerful resource for the eradication of cancer, but to overcome the low immunogenicity of tumor cells, a sufficiently strong CD8(+) T cell-mediated adaptive immune response is required. Nanoparticulate biomaterials represent a potentially effective delivery system for cancer vaccines, as they can be designed to mimic viruses, which are potent inducers of cellular immunity. We have been exploring the non-viral pyruvate dehydrogenase E2 protein nanoparticle as a biomimetic platform for cancer vaccine delivery. Simultaneous conjugation of a melanoma-associated gp100 epitope and CpG to the E2 nanoparticle (CpG-gp-E2) yielded an antigen-specific increase in the CD8(+) T cell proliferation index and IFN-γ secretion by 1.5-fold and 5-fold, respectively, compared to an unbound peptide and CpG formulation. Remarkably, a single nanoparticle immunization resulted in a 120-fold increase in the frequency of melanoma epitope-specific CD8(+) T cells in draining lymph nodes and a 30-fold increase in the spleen, relative to free peptide with free CpG. Furthermore, in the very aggressive B16 melanoma murine tumor model, prophylactic immunization with CpG-gp-E2 delayed the onset of tumor growth by approximately 5.5 days and increased animal survival time by approximately 40%, compared to PBS-treated animals. These results show that by combining optimal particle size and simultaneous co-delivery of molecular vaccine components, antigen-specific anti-tumor immune responses can be significantly increased.
Collapse
Affiliation(s)
- Nicholas M Molino
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Medea Neek
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Jo Anne Tucker
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Edward L Nelson
- Department of Medicine, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Szu-Wen Wang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
26
|
Hu H, Qiu Y, Guo M, Huang Y, Fang L, Peng Z, Ji W, Xu Y, Shen S, Yan Y, Huang X, Zheng J, Su C. Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models. Oncotarget 2015; 6:1079-89. [PMID: 25473902 PMCID: PMC4359218 DOI: 10.18632/oncotarget.2835] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022] Open
Abstract
The patient-derived tumor xenograft (PDTX) models can reproduce a similar natural genetic background and similar biological behaviors to tumor cells in patients, which is conducive to the assessment of personalized cancer treatment. In this study, to verify the targeting and effectiveness of the therapeutic strategy using a Survivin promoter-regulated oncolytic adenovirus expressing Hsp70, the PDTX models of hepatocellular carcinoma (HCC) were established in nude mice and the cytokine-induced killer (CIK) cells were intravenously infused into mice to partially reconstruct the mouse immune function. The results demonstrated that, either the immune anti-tumor effect caused by CIK cell infusion or the oncolytic effect generated by oncolytic adenovirus replication was very limited. However, the synergistic tumor inhibitory effect was significantly enhanced after treatments with oncolytic adenovirus expressing Hsp70 combined with CIK cells. Oncolytic adenovirus mediated the specific expression of Hsp70 in cancer tissues allowed the CIK chemotaxis, and induce the infiltration of CD3+ T cells in tumor stroma, thereby exhibiting anti-tumor activity. The anti-tumor effect was more effective for the highly malignant tumor xenografts with highly Survivin expression. This strategy can synergistically activate multiple anti-tumor mechanisms and exert effective anti-tumor activities that have a significant inhibitory effect against the growth of HCC xenografts.
Collapse
Affiliation(s)
- Huanzhang Hu
- Department of Hepatobiliary Surgery, Fuzhou General Hospital of Nanjing Military Area, Fuzhou, China.,Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yinghe Qiu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Minggao Guo
- Department of Surgery, Shanghai Sixth People Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Yao Huang
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Lin Fang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Zhangxiao Peng
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Weidan Ji
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yang Xu
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Shuwen Shen
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yan Yan
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xuandong Huang
- Department of Oncological Surgery, Second People's Hospital of Huai'an, Jiangsu Province, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Changqing Su
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China.Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
27
|
Marconato L, Martini V, Stefanello D, Moretti P, Ferrari R, Comazzi S, Laganga P, Riondato F, Aresu L. Peripheral blood lymphocyte/monocyte ratio as a useful prognostic factor in dogs with diffuse large B-cell lymphoma receiving chemoimmunotherapy. Vet J 2015; 206:226-30. [PMID: 26403958 DOI: 10.1016/j.tvjl.2015.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/29/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most frequent canine lymphoid neoplasm. Despite treatment, the majority of dogs with DLBCL experience tumour relapse and consequently die, so practical models to characterise dogs with a poor prognosis are needed. This study examined whether the lymphocyte/monocyte ratio (LMR) can predict outcome in dogs with newly diagnosed DLBCL with regard to time-to-progression (TTP) and lymphoma specific survival (LSS). A retrospective study analysed the prognostic significance of LMR obtained at diagnosis by flow cytometry (based on morphological properties and CD45 expression) in 51 dogs that underwent complete staging and received the same treatment, comprising multi-agent chemotherapy and administration of an autologous vaccine. Dogs with an LMR ≤ 1.2 (30% of all cases) were found to have significantly shorter TTP and LSS, and it was concluded that LMR was a useful independent prognostic indicator with biological relevance in dogs with DLBCL treated with chemoimmunotherapy.
Collapse
Affiliation(s)
- Laura Marconato
- Centro Oncologico Veterinario, via San Lorenzo 1-4, 40037 Sasso Marconi (BO), Italy.
| | - Valeria Martini
- Department of Veterinary Sciences and Public Health, University of Milan, via Celoria 10, 20133 Milan, Italy
| | - Damiano Stefanello
- Department of Veterinary Sciences and Public Health, University of Milan, via Celoria 10, 20133 Milan, Italy
| | - Pierangelo Moretti
- Department of Veterinary Sciences and Public Health, University of Milan, via Celoria 10, 20133 Milan, Italy
| | - Roberta Ferrari
- Department of Veterinary Sciences and Public Health, University of Milan, via Celoria 10, 20133 Milan, Italy
| | - Stefano Comazzi
- Department of Veterinary Sciences and Public Health, University of Milan, via Celoria 10, 20133 Milan, Italy
| | - Paola Laganga
- Centro Oncologico Veterinario, via San Lorenzo 1-4, 40037 Sasso Marconi (BO), Italy
| | - Fulvio Riondato
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Gruglisco (TO), Italy
| | - Luca Aresu
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Agripolis Legnaro (PD), Italy
| |
Collapse
|
28
|
Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:296146. [PMID: 26078803 PMCID: PMC4452872 DOI: 10.1155/2015/296146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
Abstract
Heat shock 60 kDa protein 1 (HSP60) is a chaperone and stress response protein responsible for protein folding and delivery of endogenous peptides to antigen-presenting cells and also a target of autoimmunity implicated in the pathogenesis of atherosclerosis. By two-dimensional electrophoresis and mass spectrometry, we found that exposure of human promyelocytic HL-60 cells to a nontoxic concentration (10 μM) of 4-hydroxy-2-nonenal (HNE) yielded a HSP60 modified with HNE. We also detected adducts of HNE with putative uncharacterized protein CXorf49, the product of an open reading frame identified in various cell and tissue proteomes. Moreover, exposure of human monocytic THP-1 cells differentiated with phorbol 12-myristate 13-acetate to 10 μM HNE, and to light density lipoprotein modified with HNE (HNE-LDL) or by copper-catalyzed oxidation (oxLDL), but not to native LDL, stimulated the formation of HNE adducts with HSP60, as detected by immunoprecipitation and western blot, well over basal levels. The identification of HNE-HSP60 adducts outlines a framework of mutually reinforcing interactions between endothelial cell stressors, like oxLDL and HSP60, whose possible outcomes, such as the amplification of endothelial dysfunction, the spreading of lipoxidative damage to other proteins, such as CXorf49, the activation of antigen-presenting cells, and the breaking of tolerance to HSP60 are discussed.
Collapse
|
29
|
Hong Y, Long J, Li H, Chen S, Liu Q, Zhang B, He X, Wang Y, Li H, Li Y, Zhang T, Lu C, Yan H, Zhang M, Li Q, Cao B, Bai Z, Wang J, Zhang Z, Zhu S, Zheng J, Ou X, Ma H, Jia J, You H, Wang S, Huang J. An Analysis of Immunoreactive Signatures in Early Stage Hepatocellular Carcinoma. EBioMedicine 2015; 2:438-46. [PMID: 26137588 PMCID: PMC4486196 DOI: 10.1016/j.ebiom.2015.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 01/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is prevalent worldwide and early diagnosis of HCC is critical for effective treatment and optimal prognosis. Methods Serum was screened first by immunoproteomic analysis for HCC-related tumor associated antigens (TAAs). Selected TAAs were clinically evaluated retrospectively in patients with HCC, liver cirrhosis, chronic hepatitis and healthy controls. Levels of autoantibody to the selected TAAs were measured by protein microarrays containing protein antigens of the candidate TAAs. Analyses were done by using receiver operating characteristics (ROC) to calculate diagnostic accuracy. Findings Twenty-two candidate TAAs were assessed by protein microarray analysis in 914 participants with serum α-fetoprotein (AFP) available. Twelve candidate TAAs were statistically different in signal intensity between HCC and controls. Among them, CENPF, HSP60 and IMP-2 showed AUC (area under the curve) values of 0.826, 0.764 and 0.796 respectively for early HCC. The highest prevalence of autoantibody positivity was observed in HCC cases with BCLC tumor stage A, well-differentiated histology and Child-Pugh grade C. Specifically, 73.6% or 79.3% cases of early HCC with negative AFP were positive for autoantibody to CENPF or HSP60. Interpretation Tumor-associated autoimmune reactions may be triggered by early stage HCCs. Measurement of serum autoantibody to TAAs may be complementary to AFP measurements and improve diagnosis of early HCC. Tumor-associated autoimmune reaction may be triggered by early stage HCCs, and TAAs may be potential marker for early HCC. Measurement of autoantibody to TAAs may be complementary to AFP measurements and improve diagnosis of early HCC. Generation of autoantibody to CENPF may result from autoimmune reaction in response to overexpression of CENPF in tumor cell.
Collapse
Affiliation(s)
- Yu Hong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jiang Long
- Department of Oncology Minimally Invasive Interventional Radiology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Hai Li
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital of Medical College of Chinese People's Armed Police Force, Tianjin, China
| | - Shuhong Chen
- Biotechnology Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qiqi Liu
- Biotechnology Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bei Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaomin He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yan Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hongyi Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yimei Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Chenzhen Lu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital of Medical College of Chinese People's Armed Police Force, Tianjin, China
| | - Hao Yan
- Biotechnology Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Minli Zhang
- Biotechnology Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jin Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shengtao Zhu
- Department of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiasheng Zheng
- Department of Oncology Minimally Invasive Interventional Radiology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shengqi Wang
- Biotechnology Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jian Huang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China ; National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
30
|
Li L, Shi Y, Wang R, Huang T, Liang W, Luo H, Gan X, Huang W, Li J, Lei A, Chen M. Proteomic analysis of tilapia Oreochromis niloticus Streptococcus agalactiae strains with different genotypes and serotypes. JOURNAL OF FISH BIOLOGY 2015; 86:615-636. [PMID: 25604844 DOI: 10.1111/jfb.12582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Nine tilapia Oreochromis niloticus group B streptococcus (GBS) strains differing in serotype and genotype were selected and paired. Two-dimensional difference gel electrophoresis (2D DIGE) and matrix-assisted laser-desorption ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) were used to analyse the protein profiles of the strain pairs. Forty-three proteins corresponding to 66 spots were identified, of which 35 proteins were found in the seven selected strain pairs that represented pairs differing in genotype and serotype. Among the 35 proteins, numbers of differentially expressed proteins in strains of different serotypes were greater than found in strains of different genotypes, suggesting that serotype plays a more essential role than genotype in the differential protein expression among GBS strains. No distinct pattern was found with respect to genotype and the protein expression profile of GBS strains. Several proteins were identified as surface-associated cytoplasmic proteins that possessed the typical immunity-eliciting characteristics of surface proteins. The identified proteins were found to be involved in 16 biological processes and seven Kyoto encyclopaedia of genes and genomes (KEGG) pathways. The data, for the first time, identified differentially expressed proteins in O. niloticus GBS strains of different serotypes, which play a major role in immunogenicity of O. niloticus GBS than does genotype, offering further information for design of a vaccine against O. niloticus GBS.
Collapse
Affiliation(s)
- L Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Y Shi
- Institute of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - R Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - T Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - W Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - H Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - X Gan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - W Huang
- Institute of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - J Li
- Institute of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - A Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - M Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| |
Collapse
|
31
|
Graner MW, Lillehei KO, Katsanis E. Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines. Front Oncol 2015; 4:379. [PMID: 25610811 PMCID: PMC4285071 DOI: 10.3389/fonc.2014.00379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major site of passage for proteins en route to other organelles, to the cell surface, and to the extracellular space. It is also the transport route for peptides generated in the cytosol by the proteasome into the ER for loading onto major histocompatibility complex class I (MHC I) molecules for eventual antigen presentation at the cell surface. Chaperones within the ER are critical for many of these processes; however, outside the ER certain of those chaperones may play important and direct roles in immune responses. In some cases, particular ER chaperones have been utilized as vaccines against tumors or infectious disease pathogens when purified from tumor tissue or recombinantly generated and loaded with antigen. In other cases, the cell surface location of ER chaperones has implications for immune responses as well as possible tumor resistance. We have produced heat-shock protein/chaperone protein-based cancer vaccines called “chaperone-rich cell lysate” (CRCL) that are conglomerates of chaperones enriched from solid tumors by an isoelectric focusing technique. These preparations have been effective against numerous murine tumors, as well as in a canine with an advanced lung carcinoma treated with autologous CRCL. We also published extensive proteomic analyses of CRCL prepared from human surgically resected tumor samples. Of note, these preparations contained at least 10 ER chaperones and a number of other residents, along with many other chaperones/heat-shock proteins. Gene ontology and network analyses utilizing these proteins essentially recapitulate the antigen presentation pathways and interconnections. In conjunction with our current knowledge of cell surface/extracellular ER chaperones, these data collectively suggest that a systems-level view may provide insight into the potent immune stimulatory activities of CRCL with an emphasis on the roles of ER components in those processes.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado School of Medicine , Aurora, CO , USA
| | - Kevin O Lillehei
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado School of Medicine , Aurora, CO , USA
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona , Tucson, AZ , USA
| |
Collapse
|
32
|
Drakes ML, Stiff PJ. Harnessing immunosurveillance: current developments and future directions in cancer immunotherapy. Immunotargets Ther 2014; 3:151-65. [PMID: 27471706 PMCID: PMC4918242 DOI: 10.2147/itt.s37790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improved methods of cancer detection and disease management over the last few decades, cancer remains a major public health problem in many societies. Conventional therapies, such as chemotherapy, radiation, and surgery, are not usually sufficient to prevent disease recurrence. Therefore, efforts have been focused on developing novel therapies to manage metastatic disease and to prolong disease-free and overall survival, by modulating the immune system to alleviate immunosuppression, and to enhance antitumor immunity. This review discusses protumor mechanisms in patients that circumvent host immunosurveillance, and addresses current immunotherapy modalities designed to target these mechanisms. Given the complexity of cancer immunosuppressive mechanisms, we propose that identification of novel disease biomarkers will drive the development of more targeted immunotherapy. Finally, administration of different classes of immunotherapy in combination regimens, will be the ultimate route to impact low survival rates in advanced cancer patients.
Collapse
Affiliation(s)
- Maureen L Drakes
- Department of Medicine, Division of Hematology and Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Patrick J Stiff
- Department of Medicine, Division of Hematology and Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
33
|
Wang W, Ji W, Hu H, Ma J, Li X, Mei W, Xu Y, Hu H, Yan Y, Song Q, Li Z, Su C. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 2014; 5:150-60. [PMID: 24473833 PMCID: PMC3960197 DOI: 10.18632/oncotarget.1430] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The efficacy of this targeted immunotherapy was examined in gastric cancer. The experiments showed that the oncolytic adenovirus can selectively replicate in and lyse the Survivin-positive gastric cancer cells, without significant toxicity to normal cells. AdSurp-Hsp70 reduced viability of cancer cells and inhibited tumor growth of gastric cancer xenografts in immuno-deficient and immuno-reconstruction mouse models. AdSurp-Hsp70 produced dual antitumor effects due to viral replication and high Hsp70 expression. This therapeutic system used the Survivin promoter-regulated oncolytic adenovirus vector to mediate targeted expression of the Hsp70 gene and ensure safety and efficacy for subsequent gene therapy programs against a variety of cancers.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Internal Medicine, No. 117 Hospital of Chinese PLA, Hangzhou 310004, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sziksz E, Pap D, Veres G, Fekete A, Tulassay T, Vannay &A. Involvement of heat shock proteins in gluten-sensitive enteropathy. World J Gastroenterol 2014; 20:6495-6503. [PMID: 24914370 PMCID: PMC4047334 DOI: 10.3748/wjg.v20.i21.6495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/12/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier.
Collapse
|
35
|
Bolli MH, Abele S, Birker M, Bravo R, Bur D, de Kanter R, Kohl C, Grimont J, Hess P, Lescop C, Mathys B, Müller C, Nayler O, Rey M, Scherz M, Schmidt G, Seifert J, Steiner B, Velker J, Weller T. Novel S1P(1) receptor agonists--part 3: from thiophenes to pyridines. J Med Chem 2013; 57:110-30. [PMID: 24367923 DOI: 10.1021/jm4014696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In preceding communications we summarized our medicinal chemistry efforts leading to the identification of potent, selective, and orally active S1P1 agonists such as the thiophene derivative 1. As a continuation of these efforts, we replaced the thiophene in 1 by a 2-, 3-, or 4-pyridine and obtained less lipophilic, potent, and selective S1P1 agonists (e.g., 2) efficiently reducing blood lymphocyte count in the rat. Structural features influencing the compounds' receptor affinity profile and pharmacokinetics are discussed. In addition, the ability to penetrate brain tissue has been studied for several compounds. As a typical example for these pyridine based S1P1 agonists, compound 53 showed EC50 values of 0.6 and 352 nM for the S1P1 and S1P3 receptor, respectively, displayed favorable PK properties, and penetrated well into brain tissue. In the rat, compound 53 maximally reduced the blood lymphocyte count for at least 24 h after oral dosing of 3 mg/kg.
Collapse
Affiliation(s)
- Martin H Bolli
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd. , Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xiao W, Dong W, Zhang C, Saren G, Geng P, Zhao H, Li Q, Zhu J, Li G, Zhang S, Ye M. Effects of the epigenetic drug MS-275 on the release and function of exosome-related immune molecules in hepatocellular carcinoma cells. Eur J Med Res 2013; 18:61. [PMID: 24359553 PMCID: PMC3881022 DOI: 10.1186/2047-783x-18-61] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background Tumor-derived exosomes have been viewed as a source of tumor antigens that can be used to induce anti-tumor immune responses. In the current study, we aim to investigate the regulatory effect of the epigenetic drug MS-275 on hepatoma G2 (HepG2) cell-derived exosomes, especially for their immunostimulatory properties and alteration of some non-specific immune protein expression, such as heat shock protein (HSP) 70, major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) and MICB. Methods MS-275 was used to modulate the secretion of exosomes in human HepG2 cells, and exosomes from untreated HepG2 cells served as negative controls. RT-PCR was used to test the expression of HSP70, MICA and MICB in HepG2 cells. Immunogold labeling of exosomes and western blotting analysis were carried out to compare the expression of HSP70, MICA and MICB proteins in exosomes with or without MS-275 treatment. A natural killer (NK) cell cytotoxicity assay and peripheral blood mononuclear cell (PBMC) proliferation assay were used to evaluate the effect of MS-275 on the immunostimulatory ability of exosomes. Results Immunogold labeling and western blot analysis showed that modification of MS-275 increased the expression of HSP70 and MICB in exosomes. RT-PCR showed the mRNA levels of HSP70 and MICB were upregulated in HepG2 cells and were consistent with their protein levels in exosomes. The exosomes modified by MS-275 could significantly increase the cytotoxicity of NK cells and proliferation of PBMC (P < 0.05). Conclusions The non-specific immune response of exosomes derived from HepG2 cells could be enhanced with treatment by the histone deacetylase inhibitor (HDACi) drug MS-275; this could provide a potential tumor vaccine strategy against liver cancer.
Collapse
Affiliation(s)
- Wenhua Xiao
- The First Affiliated Hospital, PLA General Hospital, Fucheng Road 51, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shevtsov MA, Yakovleva LY, Nikolaev BP, Marchenko YY, Dobrodumov AV, Onokhin KV, Onokhina YS, Selkov SA, Mikhrina AL, Guzhova IV, Martynova MG, Bystrova OA, Ischenko AM, Margulis BA. Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma. Neuro Oncol 2013; 16:38-49. [PMID: 24305705 DOI: 10.1093/neuonc/not141] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic properties, have the ability to function both as magnetic resonance (MR) contrast agents, and can be used for thermotherapy. SPIONs conjugated to the heat shock protein Hsp70 that selectively binds to the CD40 receptor present on glioma cells, could be used for MR contrast enhancement of experimental C6 glioma. METHODS The magnetic properties of the Hsp70-SPIONs were measured by NMR relaxometry method. The uptake of nanoparticles was assessed on the C6 glioma cells by confocal and electron microscopes. The tumor selectivity of Hsp70-SPIONs being intravenously administered was analyzed in the experimental model of C6 glioma in the MRI scanner. RESULTS Hsp70-SPIONs relaxivity corresponded to the properties of negative contrast agents with a hypointensive change of resonance signal in MR imaging. A significant accumulation of the Hsp70-SPIONs but not the non-conjugated nanoparticles was observed by confocal microscopy within C6 cells. Negative contrast tumor enhancement in the T2-weighted MR images was higher in the case of Hsp70-SPIONs in comparison to non-modified SPIONs. Histological analysis of the brain sections confirmed the retention of the Hsp70-SPIONs in the glioma tumor but not in the adjacent normal brain tissues. CONCLUSION The study demonstrated that Hsp70-SPION conjugate intravenously administered in C6 glioma model accumulated in the tumors and enhanced the contrast of their MR images.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Corresponding author: Maxim A. Shevtsov, MD, PhD, Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Strbo N, Garcia-Soto A, Schreiber TH, Podack ER. Secreted heat shock protein gp96-Ig: next-generation vaccines for cancer and infectious diseases. Immunol Res 2013; 57:311-25. [PMID: 24254084 DOI: 10.1007/s12026-013-8468-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decade, our laboratory has developed a secreted heat shock protein (HSP), chaperone gp96, cell-based vaccine that generates effective anti-tumor and anti-infectious immunity in vivo. Gp96-peptide complexes were identified as an extremely efficient stimulator of MHC I-mediated antigen cross-presentation, generating CD8 cytotoxic T-lymphocyte responses detectable in blood, spleen, gut and reproductive tract to femto-molar concentrations of antigen. These studies provided the first evidence that cell-based gp96-Ig-secreting vaccines may serve as a potent modality to induce both systemic and mucosal immunity. This approach takes advantage of the combined adjuvant and antigen delivery capacity of gp96 for the generation of cytotoxic immunity against a wide range of antigens in both anti-vial and anti-cancer vaccination. Here, we review the vaccine design that utilizes the unique property/ability of endoplasmic HSP gp96 to bind antigenic peptides and deliver them to antigen-presenting cells.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, RMSB 3008, 1600 NW 10th Ave, Miami, FL, 33136, USA,
| | | | | | | |
Collapse
|
39
|
McNulty S, Colaco CA, Blandford LE, Bailey CR, Baschieri S, Todryk S. Heat-shock proteins as dendritic cell-targeting vaccines--getting warmer. Immunology 2013; 139:407-15. [PMID: 23551234 PMCID: PMC3719058 DOI: 10.1111/imm.12104] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/08/2013] [Accepted: 02/15/2013] [Indexed: 12/22/2022] Open
Abstract
Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by antigen internalization, processing and presentation. An improved understanding of the interaction of hsp with DC has driven the development of numerous hsp-containing vaccines, designed to deliver antigens directly to DC. Studies in mice have shown that for cancers, such vaccines generate impressive immune responses and protection from tumour challenge. However, translation to human use, as for many experimental immunotherapies, has been slow partly because of the need to perform trials in patients with advanced cancers, where demonstration of efficacy is challenging. Recently, the properties of hsp have been used for development of prophylactic vaccines against infectious diseases including tuberculosis and meningitis. These hsp-based vaccines, in the form of pathogen-derived hsp-antigen complexes, or recombinant hsp combined with selected antigens in vitro, offer an innovative approach against challenging diseases where broad antigen coverage is critical.
Collapse
Affiliation(s)
- Shaun McNulty
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Mosenson JA, Eby JM, Hernandez C, Le Poole IC. A central role for inducible heat-shock protein 70 in autoimmune vitiligo. Exp Dermatol 2013; 22:566-9. [PMID: 23786523 DOI: 10.1111/exd.12183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 12/14/2022]
Abstract
Inducible heat-shock protein 70 (HSP70i) is a protein regulated by stress that protects cells from undergoing apoptosis. Such proteins are marvellously well conserved throughout evolution, which has placed them in the spotlight for helping to understand the intriguing relationship between infection and immunity. In the presence of stress proteins, dendritic cells (DCs) will sense this alarm signal and respond by recruiting immune cells of different plumage to fit the occasion. In times of stress, melanocytes will secrete antigen-bound HSP70i to act as an alarm signal in activating DCs that comes equipped with an address of origin to drive the autoimmune response in vitiligo. Here we pose that if the autoimmune response is funnelled through HSP70i, then blocking the stress protein from activating DCs can lend new treatment opportunities for vitiligo.
Collapse
Affiliation(s)
- Jeffrey A Mosenson
- Department of Pathology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | | | | | | |
Collapse
|
41
|
Calderwood SK, Gong J, Stevenson MA, Murshid A. Cellular and molecular chaperone fusion vaccines: targeting resistant cancer cell populations. Int J Hyperthermia 2013; 29:376-9. [PMID: 23682824 DOI: 10.3109/02656736.2013.792126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperone-based vaccines offer a number of advantages for cancer treatment. We have discussed the deployment of a vaccine prepared by gentle isolation of Hsp70 from tumour dendritic cell fusions (Hsp70 fusion vaccine). The vaccine was highly effective in triggering specific T cell immunity and in the treatment of tumour-bearing mice and the preparation was shown to retain an increased amount of tumour antigens compared to other chaperone-based isolates. This approach has the further advantage that tumour sub-populations could be used to prepare the Hsp70 fusion vaccine. Cellular fusion vaccines were made to specifically target drug-resistant cancer cells and tumour cell populations enriched in ovarian cancer stem cells (CSC). Such vaccines showed enhanced capacity to trigger T cell immunity to these resistant ovarian carcinoma populations. We have discussed the potential of using the cellular and Hsp70 fusion vaccine approaches in therapy of treatment-resistant cancer cells and its deployment in combination with ionising radiation or hyperthermia to enhance the effectiveness of both forms of therapy.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|