1
|
Zheng Y, Gao D, Xie H, Geng H. Epicatechin protects mice against OVA-induced asthma through inhibiting airway inflammation and modulating gut microbiota. Cell Signal 2025; 127:111609. [PMID: 39826677 DOI: 10.1016/j.cellsig.2025.111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Allergic asthma is a chronic airway inflammatory reaction that seriously affects people's quality of life and even endangers their lives. The aim of this study was to explore the role of epicatechin (EC) on asthma and its potential mechanism. A mice model of allergic asthma was established by intraperitoneal injection of ovalbumin (OVA) with aluminum hydrogen solution, and nebulized inhalation of OVA to stimulate. EC (10, 20, 40 mg/kg) was administered 30 min before nebulization for three consecutive days. The results showed that EC attenuated OVA-induced lung injury, inflammatory cell infiltration, IgE, and inflammatory cytokine production. EC also inhibited OVA-induced NF-κB activation and increased Nrf2 and HO-1 expression. 16S rRNA sequencing analysis demonstrated that at genus level, EC significantly increased the abundance of Lachnospiraceae_NK4A136_group, Ligilactobacillus, Alloprevotella. Meanwhile, EC inhibited the abundance of Clostridia UCG-014, Helicobacter, Paramuribaculum, and Escherichia-Shigella. In conclusion, EC can effectively alleviate the symptoms of asthma in mice, which may through regulating the composition of gut microbiota and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin 130033, China
| | - Dengyu Gao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin 130033, China
| | - Hongyang Xie
- Department of Gynecology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin 130033, China.
| | - Huafeng Geng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin 130033, China.
| |
Collapse
|
2
|
Komai M, Takeno D, Fujii C, Nakano J, Ohsaki Y, Shirakawa H. Nailfold Capillaroscopy: A Comprehensive Review on Its Usefulness in Both Clinical Diagnosis and Improving Unhealthy Dietary Lifestyles. Nutrients 2024; 16:1914. [PMID: 38931269 PMCID: PMC11206784 DOI: 10.3390/nu16121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Since the 1970s, the utility of nailfold capillaroscopy (NFC) in diagnosing rheumatological disorders such as systemic sclerosis has been well established. Further studies have also shown that NFC can detect non-rheumatic diseases such as diabetes, glaucoma, dermatitis, and Alzheimer disease. In the past decade, nailfold capillary morphological changes have also been reported as symptoms of unhealthy lifestyle habits such as poor diet, smoking, sleep deprivation, and even psychological stress, all of which contribute to slow blood flow. Therefore, studying the relationships between the morphology of nailfold capillaries and lifestyle habits has a high potential to indicate unhealthy states or even pre-disease conditions. Simple, inexpensive, and non-invasive methods such as NFC are important and useful for routine medical examinations. The present study began with a systematic literature search of the PubMed database followed by a summary of studies reporting the assessment of morphological changes detected by NFC, and a comprehensive review of NFC's utility in clinical diagnosis and improving unhealthy dietary lifestyles. It culminates in a summary of dietary and lifestyle health promotion strategy, assessed based on NFC and other related measurements that indicate healthy microvascular blood flow and endothelial function.
Collapse
Affiliation(s)
- Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| | - Dan Takeno
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Chiharu Fujii
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Joe Nakano
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| |
Collapse
|
3
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
4
|
Jaafar FR, Abu-Raghif A. Comparative treatment of Sulfasalazine+Ezetimibe combination and Sulfasalazine in a rat model with induced colitis. J Med Life 2023; 16:1165-1169. [PMID: 38024826 PMCID: PMC10652677 DOI: 10.25122/jml-2023-0194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Ulcerative colitis is a chronic inflammatory disease with high mortality and morbidity worldwide. It causes inflammation in the lining of the colon, resulting in several symptoms that negatively impact the quality of life. Unfortunately, there is currently no known cure for this condition. Therefore, it is crucial to explore alternative treatment approaches. This research aimed to investigate the anti-inflammatory and antioxidative effects of a combination therapy involving Sulfasalazine+Ezetimibe compared to Sulfasalazine alone in a rat model of ulcerative colitis. Forty adult rats were divided into four groups for this study. The groups consisted of a control group (negative control), an acetic acid group (positive control), an acetic acid+Sulfasalazine (100 mg/kg per day) group, and an acetic acid+Sulfasalazine (50 mg/kg)+Ezetimibe (5 mg/kg) group. Rats were treated for one week, and colitis was induced by administering 2 ml of 4% (v/v) acetic acid inter-rectally. After sacrifice, the colonic tissue homogenate was analyzed for several markers, including proinflammatory cytokines (TNF-α, IL-1β, NF-κB), oxidative stress markers (malondialdehyde, myeloperoxidase), and adhesive molecule markers (E-selectin, ICAM-1). Sulfasalazine and the combination of Sulfasalazine+Ezetimibe significantly reduced the colonic levels of TNF-α, IL-1β, NF-κB, MDA, and E-selectin in the homogenate. However, the combination therapy of Sulfasalazine and Ezetimibe demonstrated a superior effect.
Collapse
Affiliation(s)
- Farrah Rasool Jaafar
- Pharmacology Department, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Ahmed Abu-Raghif
- Pharmacology Department, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
5
|
Matsumura Y, Kitabatake M, Kayano SI, Ito T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12040880. [PMID: 37107256 PMCID: PMC10135282 DOI: 10.3390/antiox12040880] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols, flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids, phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These compounds are present in most plants, are abundant in nature, and contribute to the bitterness and color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects still exist. The antioxidant activities of phenolic compounds may be beneficial for human health. On the other hand, metabolism by intestinal bacteria changes the structures of these compounds with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years, it has become possible to analyze the composition of the intestinal microbiota. The augmentation of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication system between the gut microbiome and brain, is attracting increasing attention, and research has revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal microflora, and their effects on the brain–gut axis.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
6
|
Kiran S, Patra A, Verma P, Purkait S, Chhabra G, Guttula PK, Ghosh A. Restoration of Altered Oncogenic and Tumor Suppressor microRNA Expression in Breast Cancer and Colorectal Cancer Cell using Epicatechin. Curr Mol Pharmacol 2023; 16:915-926. [PMID: 36809960 DOI: 10.2174/1874467216666230210091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND MicroRNAs (miRNA) are small non-coding RNAs that regulate the function of mRNA post-transcriptionally in a tissue-specific manner. miRNA expressions are heavily dysregulated in human cancer cells through various mechanisms, including epigenetic changes, karyotype abnormalities, and miRNA biogenesis defects. miRNAs may act as either oncogenes or tumor suppressors under different conditions. Epicatechin is a natural compound found in green tea which possesses antioxidant and antitumor properties. OBJECTIVE The objective of this study is to investigate the effect of epicatechin treatment on the expression level of several oncogenic and tumor suppressor miRNAs in breast and colorectal cancer cell lines (MCF7 and HT-29) and identify its mechanism of action. METHODS The MCF-7 and HT29 cells were treated with epicatechin for 24 hours and untreated cells were considered control cultures. miRNA was isolated and qRT-PCR was used to measure the expression profile changes of different oncogenic and tumor suppressor miRNAs. Furthermore, the mRNA expression profile was also screened at different concentrations of epicatechin. RESULTS Our results showed several-fold changes in miRNAs expression level, which is cell line specific. Also, epicatechin at different concentrations induces biphasic changes in mRNA expression levels in both cell lines. CONCLUSION Our findings first time demonstrated that epicatechin can reverse the expression of these miRNAs and may trigger the cytostatic effect at a lower concentration.
Collapse
Affiliation(s)
- Sheetal Kiran
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Abhilipsa Patra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Poonam Verma
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Suvendu Purkait
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Gaurav Chhabra
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Praveen Kumar Guttula
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amit Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| |
Collapse
|
7
|
Batalha ADDSJ, Souza DCDM, Ubiera RD, Chaves FCM, Monteiro WM, da Silva FMA, Koolen HHF, Boechat AL, Sartim MA. Therapeutic Potential of Leaves from Fridericia chica (Bonpl.) L. G. Lohmann: Botanical Aspects, Phytochemical and Biological, Anti-Inflammatory, Antioxidant and Healing Action. Biomolecules 2022; 12:biom12091208. [PMID: 36139047 PMCID: PMC9496332 DOI: 10.3390/biom12091208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Plants of the species Fridericia chica (Bonpl.) L. G. Lohmann (Bignoniaceae), which are widely distributed in Brazil and named crajiru in the state of Amazonas, are known in folk medicine as a traditional medicine in the form of a tea for the treatment of intestinal colic, diarrhea, and anemia, among other diseases. The chemical analysis of extracts of the leaves has identified phenolic compounds, a class of secondary metabolites that provide defense for plants and benefits to the health of humans. Several studies have shown the therapeutic efficacy of F. chica extracts, with antitumor, antiviral, wound healing, anti-inflammatory, and antioxidant activities being among the therapeutic applications already proven. The healing action of F. chica leaf extract has been demonstrated in several experimental models, and shows the ability to favor the proliferation of fibroblasts, which is essential for tissue repair. The anti-inflammatory activity of F. chica has been clearly demonstrated by several authors, who suggest that it is related to the presence of 3-deoxyanthocyanidins, which is capable of inhibiting pro-inflammatory pathways such as the kappa B (NF-kB) nuclear transcription factor pathway. Another important effect attributed to this species is the antioxidant effect, attributed to phenolic compounds interrupting chain reactions caused by free radicals and donating hydrogen atoms or electrons. In conclusion, the species Fridericia chica has great therapeutic potential, which is detailed in this paper with the objective of encouraging new research and promoting the sum of efforts for the inclusion of herbal medicines in health systems around the world.
Collapse
Affiliation(s)
| | - Damy Caroline de Melo Souza
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Rosmery Duran Ubiera
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | | | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Tropical Medicine Foundation Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | | | - Hector Henrique Ferreira Koolen
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research Group in Metabolomics and Mass Spectrometry, Amazonas State University, Manaus 690065-130, Brazil
| | - Antônio Luiz Boechat
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Laboratory of Innovative Therapies, Department of Parasitology, Amazonas State University—UEA, Manaus 69080-900, Brazil
| | - Marco Aurélio Sartim
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Brazil
- Correspondence:
| |
Collapse
|
8
|
Tentative Identification of Phytochemicals from Smilax glabra and Smilax corbularia Extracts by LC-QTOF/MS and Their Bioactive Potential. PLANTS 2022; 11:plants11162089. [PMID: 36015393 PMCID: PMC9415527 DOI: 10.3390/plants11162089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
The Smilacaceae family has been used as a food source and herbal medicine for a long time. This study aims to identify the phytochemicals extracted from Smilax glabra and Smilax corbularia by using LC-QTOF/MS analysis and determine their bioactive potential. Compounds were identified from S. glabra and S. corbularia extracts by LC–QTOF-MS and it was found that longistylin A and CAY10435 have higher degrees of matching compounds (99.66% and 99.87%). Smilax glabra showed antioxidant capacity, i.e., DPPH and ABTS at percentage inhibitions of 71.94 ± 1.46% and 59.84 ± 4.80%, respectively, and FRAP at 730.69 ± 33.62 mg AAE/100 g sample. The total phenolic compound contents of the ethanol, methanol, and water extracts were 0.017 ± 0.001, 0.015 ± 0.001, and 0.016 ± 0.001 mg GAE/g, respectively, while the total flavonoid contents were 0.043 ± 0.002, 0.033 ± 0.002, and 0.006 ± 0.003 mg QE/g, respectively. The anti-inflammatory capacity showed 97.26% protection and 2.74% hemolysis. The antimicrobial activity can inhibit Gram-positive bacteria with a minimum inhibitory concentration (MIC) of 62.5 mg/mL and a minimum bactericidal concentration (MBC) of 500 mg/mL. Smilax corbularia showed antioxidant capacity, i.e., DPPH and ABTS at percentage inhibitions of 72.24 ± 0.64% and 39.87 ± 2.37%, respectively, and FRAP at 208.33 ± 50.80 mg AAE/100 g sample. The total phenolic compound contents of the ethanol, methanol, and water extracts were 0.006 ± 0.000, 0.007 ± 0.002, and 0.002 ± 0.001 mg GAE/g, respectively, while the total flavonoid contents of the ethanol and methanol extracts were 0.012 ± 0.001 and 0.008 ± 0.000 mg QE/g, respectively. The anti-inflammatory capacity showed 96.64% protection and 3.36% hemolysis. The antimicrobial activity of the extracts can inhibit Gram-positive bacteria with a MIC of 31.25 mg/mL and MBC of 125 mg/mL for the ethanol extract and a MIC of 125 mg/mL and MBC of 62.5 mg/mL for the methanol extract. In conclusion, Smilax glabra and Smilax corbularia were found to contain several phytochemicals that can be used for further study. Both Smilax species can also be used as sources of antioxidants and herbal medicines for killing Gram-positive bacteria.
Collapse
|
9
|
Liu C, Boeren S, Rietjens IMCM. Intra- and Inter-individual Differences in the Human Intestinal Microbial Conversion of (-)-Epicatechin and Bioactivity of Its Major Colonic Metabolite 5-(3′,4′-Dihydroxy-Phenyl)-γ-Valerolactone in Regulating Nrf2-Mediated Gene Expression. Front Nutr 2022; 9:910785. [PMID: 35845790 PMCID: PMC9281540 DOI: 10.3389/fnut.2022.910785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 12/28/2022] Open
Abstract
(-)-Epicatechin (EC) is one of the most popular polyphenols present in various food products in daily life. Upon intake, it is intensively metabolized by microbiota in the large intestine. In the present study, intra- and inter-individual variations in this gut microbial conversion of EC and the concomitant formation of its major metabolites, including 5-(3′,4′-dihydroxy phenyl)-γ-valerolactone (3,4-diHPV), were identified and quantified via liquid chromatography triple quadrupole mass spectrometry (LC-TQ-MS) in anaerobic fecal incubations. In addition, the bioactivity of EC and 3,4-diHPV in activating Nrf2-mediated gene expression was tested quantifying their effects in the U2OS Nrf2 CALUX assay (a reporter gene assay that is used to test the potency of chemicals in activation of Nrf2 signaling), and on the expression levels of Nrf2-related proteins in Hepa1c1c7 and Caco-2 cells via nanoLC-MSMS. A quantitative real-time polymerase chain reaction (RT-qPCR) was carried out to confirm selected Nrf2-regulated gene expressions at the mRNA level. Results obtained show that both intra- and inter-individual differences exist in human gut microbial EC degradation and 3,4-diHPV formation, with inter-individual differences being more distinct than intra-individual differences. The metabolite, 3,4-diHPV, showed higher potency in the U2OS Nrf2 CALUX assay than EC itself. Among the obviously altered Nrf2-related proteins, 14 and 10 Nrf2-associated proteins were upregulated to a higher extent upon 3,4-diHPV treatment than in the EC treated group for Hepa1c1c7 and Caco-2 cells, respectively. While only three and four of these Nrf2-associated proteins were induced at a higher level upon EC than upon 3,4-diHPV treatment for Hepa1c1c7 and Caco-2 cells, respectively. RT-qPCR results showed that indeed Nrf2-mediated genes (e.g., Nqo1 and Ugt1a) were only induced significantly in 3,4-diHPV treated and not in EC treated Hepa1c1c7 cells. Taken together, the results suggest that the major colonic EC metabolite, 3,4-diHPV, was more capable of inducing Nrf2-mediated gene expression than its parent compound EC. This implies that the evident inter- and intra-individual differences in the microbial conversion of EC to this major metabolite 3,4-diHPV may affect the overall health-promoting effects of EC consumption related to the Nrf2 pathway activation.
Collapse
Affiliation(s)
- Chen Liu
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Chen Liu
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
10
|
El-Desoky Mohamady RE, Elwia SK, Abo El Wafa SM, Mohamed MA. Effect of mesenchymal stem cells derived exosomes and green tea polyphenols on acetic acid induced ulcerative colitis in adult male albino rats. Ultrastruct Pathol 2022; 46:147-163. [DOI: 10.1080/01913123.2022.2039825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sania K. Elwia
- Department of Medical Biochemistry, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sahar M. Abo El Wafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mona Ataya Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
11
|
Termer M, Carola C, Salazar A, Keck CM, Hemberger J, von Hagen J. Activity-Guided Characterization of COX-2 Inhibitory Compounds in Waltheria indica L. Extracts. Molecules 2021; 26:molecules26237240. [PMID: 34885813 PMCID: PMC8658768 DOI: 10.3390/molecules26237240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is the body's response to infection or tissue injury in order to restore and maintain homeostasis. Prostaglandin E2 (PGE-2) derived from arachidonic acid (AA), via up-regulation of cyclooxygenase-2 (COX-2), is a key mediator of inflammation and can also be induced by several other factors including stress, chromosomal aberration, or environmental factors. Targeting prostaglandin production by inhibiting COX-2 is hence relevant for the successful resolution of inflammation. Waltheria indica L. is a traditional medicinal plant whose extracts have demonstrated COX-2 inhibitory properties. However, the compounds responsible for the activity remained unknown. For the preparation of extracts with effective anti-inflammatory properties, characterization of these substances is vital. In this work, we aimed to address this issue by characterizing the substances responsible for the COX-2 inhibitory activity in the extracts and generating prediction models to quantify the COX-2 inhibitory activity without biological testing. For this purpose, an extract was separated into fractions by means of centrifugal partition chromatography (CPC). The inhibitory potential of the fractions and extracts against the COX-2 enzyme was determined using a fluorometric COX-2 inhibition assay. The characterizations of compounds in the fractions with the highest COX-2 inhibitory activity were conducted by high resolution mass spectrometry (HPLC-MS/MS). It was found that these fractions contain alpha-linolenic acid, linoleic acid and oleic acid, identified and reported for the first time in Waltheria indica leaf extracts. After analyzing their contents in different Waltheria indica extracts, it could be demonstrated that these fatty acids are responsible for up to 41% of the COX-2 inhibition observed with Waltheria indica extract. Additional quantification of secondary metabolites in the extract fractions revealed that substances from the group of steroidal saponins and triterpenoid saponins also contribute to the COX-2 inhibitory activity. Based on the content of compounds contributing to COX-2 inhibition, two mathematical models were successfully developed, both of which had a root mean square error (RMSE) = 1.6% COX-2 inhibitory activity, demonstrating a high correspondence between predicted versus observed values. The results of the predictive models further suggested that the compounds contribute to COX-2 inhibition in the order linoleic acid > alpha linolenic acid > steroidal saponins > triterpenoid saponins. The characterization of substances contributing to COX-2 inhibition in this study enables a more targeted development of extraction processes to obtain Waltheria indica extracts with superior anti-inflammatory properties.
Collapse
Affiliation(s)
- Michael Termer
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University of Marburg, Robert-Koch-Str. 4, 35032 Marburg, Germany;
- Correspondence:
| | - Christophe Carola
- Merck KGaA, Frankfurterstr. 250, 64293 Darmstadt, Germany; (C.C.); (A.S.); (J.v.H.)
| | - Andrew Salazar
- Merck KGaA, Frankfurterstr. 250, 64293 Darmstadt, Germany; (C.C.); (A.S.); (J.v.H.)
| | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University of Marburg, Robert-Koch-Str. 4, 35032 Marburg, Germany;
| | - Juergen Hemberger
- Department of Life Science Engineering, Institute for Biochemical Engineering & Analytics, University of Applied Sciences, Wiesenstr. 14, 35390 Giessen, Germany;
| | - Joerg von Hagen
- Merck KGaA, Frankfurterstr. 250, 64293 Darmstadt, Germany; (C.C.); (A.S.); (J.v.H.)
- Department of Life Science Engineering, Institute for Biochemical Engineering & Analytics, University of Applied Sciences, Wiesenstr. 14, 35390 Giessen, Germany;
| |
Collapse
|
12
|
Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021; 10:467. [PMID: 33809620 PMCID: PMC8002320 DOI: 10.3390/antiox10030467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Various studies have shown that certain flavonoids, flavonoid-containing plant extracts, and foods can improve human health. Experimental studies showed that flavonoids have the capacity to alter physiological processes as well as cellular and molecular mechanisms associated with their antioxidant properties. An important function of flavonoids was determined in the cardiovascular system, namely their capacity to lower blood pressure and to improve endothelial function. (-)-Epicatechin and taxifolin are two flavonoids with notable antihypertensive effects and multiple beneficial actions in the cardiovascular system, but they also possess antiviral effects, which may be of particular importance in the ongoing pandemic situation. Thus, this review is focused on the current knowledge of (-)-epicatechin as well as (+)-taxifolin and/or (-)-taxifolin-modified biological action and underlining molecular mechanisms determined in preclinical studies, which are relevant not only to the treatment of hypertension per se but may provide additional antiviral benefits that could be relevant to the treatment of hypertensive subjects with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| | - Silvia Liskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
13
|
Akbarialiabad H, Dahroud MD, Khazaei MM, Razmeh S, Zarshenas MM. Green Tea, A Medicinal Food with Promising Neurological Benefits. Curr Neuropharmacol 2021; 19:349-359. [PMID: 32469701 PMCID: PMC8033961 DOI: 10.2174/1570159x18666200529152625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological disorders and their sequelae, as of the widespread and critical humans’ complications, affect the body's nervous systems, organ functions, and behaviors. According to WHO, neurological disorders are currently predicted to affect more than one billion people globally. It is well-established that complementary medicine is one of the high accepted interventions that could have been considered for the management of neurological ailments. The current review aimed to compile all the crucial data reporting the investigation on the conspicuous intervention of green tea (made of Camellia sinensis) and related lead compounds (especially l-theanine, epigallocatechin-3-gallate, epicatechin-3-gallate, epicatechin, and epigallocatechin) for their neurological activities, mechanisms of action, and clinical properties. According to the documents, green tea exhibits antidepressant, anti-neurodegenerative (e.g., anti-Parkinson and anti-Alzheimer), as well as neuroprotective effects.Chief among them, for offering novel work, it is worth focusing on several related assessments with great attention to more extensive standardized clinical trials, and subsequently more in-depth pharmacokinetic studies to safely introduce this beneficial medicinal food as a neuro-effective agent.
Collapse
Affiliation(s)
- Hossein Akbarialiabad
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dahri Dahroud
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Khazaei
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Razmeh
- Neurology Research center, Department of Neurology, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Pereyra-Vergara F, Olivares-Corichi IM, Perez-Ruiz AG, Luna-Arias JP, García-Sánchez JR. Apoptosis Induced by (-)-Epicatechin in Human Breast Cancer Cells is Mediated by Reactive Oxygen Species. Molecules 2020; 25:E1020. [PMID: 32106523 PMCID: PMC7179206 DOI: 10.3390/molecules25051020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023] Open
Abstract
(-)-Epicatechin is a phenolic compound with antioxidant activity that is present in natural food and drinks, such as cocoa and red wine. Evidence suggests that (-)-epicatechin exhibits anticancer activity; however, its mechanism of action is poorly understood. Here, we investigated the anticancer effects of (-)-epicatechin and its mechanism of action in breast cancer cells. We assessed the anticancer activity by cell proliferation assays, apoptosis by DNA fragmentation and flow cytometry. The expression of proteins associated with apoptosis was analyzed by the human apoptosis array. MitoSOXTM Red and biomarkers of oxidative damage were used to measure the effect of (-)-epicatechin on mitochondrial reactive oxygen species (ROS) and cellular damage, respectively. (-)-Epicatechin treatment caused a decreasing in the viability of MDA-MB-231 and MCF-7 cells. This cell death was associated with DNA fragmentation and an apoptotic proteomic profile. Further, (-)-epicatechin in MDA-MB-231 cells upregulated death receptor (DR4/DR5), increased the ROS production, and modulated pro-apoptotic proteins. In MCF-7 cells, (-)-epicatechin did not involve death receptor; however, an increase in ROS and the upregulation of pro-apoptotic proteins (Bad and Bax) were observed. These changes were associated with the apoptosis activation through the intrinsic pathway. In conclusion, this study shows that (-)-epicatechin has anticancer activity in breast cancer cells and provides novel insight into the molecular mechanism of (-)-epicatechin to induce apoptosis.
Collapse
Affiliation(s)
- Fernando Pereyra-Vergara
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Ciudad de Mexico C.P. 07360, Mexico; (F.P.-V.)
| | - Ivonne María Olivares-Corichi
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico; (I.M.O.-C.); (A.G.P.-R.)
| | - Adriana Guadalupe Perez-Ruiz
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico; (I.M.O.-C.); (A.G.P.-R.)
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Ciudad de Mexico C.P. 07360, Mexico; (F.P.-V.)
| | - José Rubén García-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico; (I.M.O.-C.); (A.G.P.-R.)
| |
Collapse
|
15
|
Epicatechin alleviates inflammation in lipopolysaccharide-induced acute lung injury in mice by inhibiting the p38 MAPK signaling pathway. Int Immunopharmacol 2019; 66:146-153. [DOI: 10.1016/j.intimp.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/08/2023]
|
16
|
Park SM, Min BG, Jung JY, Jegal KH, Lee CW, Kim KY, Kim YW, Choi YW, Cho IJ, Ku SK, Kim SC. Combination of Pelargonium sidoides and Coptis chinensis root inhibits nuclear factor kappa B-mediated inflammatory response in vitro and in vivo. Altern Ther Health Med 2018; 18:20. [PMID: 29351747 PMCID: PMC5775528 DOI: 10.1186/s12906-018-2088-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/14/2018] [Indexed: 01/01/2023]
Abstract
Background Pelargonium sidoides (PS) and Coptis chinensis root (CR) have traditionally been used to treat various diseases, including respiratory and gastrointestinal infections, dysmenorrhea, and hepatic disorders. The present study was conducted to evaluate the anti-inflammatory effects of a combination of PS and CR in vitro and in vivo. Methods The in vitro effects of PS + CR on the induction of inflammation-related proteins were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The levels of nitric oxide (NO) and of inflammatory cytokines and prostaglandin E2 (PGE2) were measured using the Griess reagent and enzyme-linked immunosorbent assay (ELISA) methods, respectively. The expression of inflammation-related proteins was confirmed by Western blot. Additionally, the effects of PS + CR on paw edema volume, skin thickness, and numbers of infiltrated inflammatory cells, mast cells, COX-2-, iNOS-, and TNF-α-immunoreactive cells in dorsum and ventrum pedis skin were evaluated in a rat model of carrageenan (CA)-induced paw edema. Results PS + CR significantly reduced production of NO, PGE2 and three pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6) and also decreased levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with PS + CR significantly reduced the protein expression levels of LPS-stimulated nuclear factor kappa B (NF-κB) and phosphorylated inhibitor of NF-κB (p-I-κBα). Additionally, PS + CR significantly inhibited the increases in paw swelling, skin thickness, infiltrated inflammatory cells, mast cell degranulation, COX-2-, iNOS-, and TNF-α-immunoreactive cells in the rat model of CA-induced acute edematous paw. Conclusions These results demonstrate that PS + CR exhibits anti-inflammatory properties through decreasing the production of pro-inflammatory mediators (NO, PGE2, TNF-α, IL-1β, and IL-6), suppressing NF-κB signaling in LPS-induced RAW 264.7 cells. Additionally, the results of the CA-induced rat paw edema assay revealed an anti-edema effect of PS + CR. Furthermore, it is suggested that PS + CR also inhibits acute edematous inflammation by suppressing mast cell degranulation and inflammatory mediators (COX-2, iNOS, and TNF-α). Thus, PS + CR may be a potential candidate for the treatment of various inflammatory diseases, and it may also contribute to a better understanding of the molecular mechanisms underlying inflammatory response regulation.
Collapse
|
17
|
Fan FY, Sang LX, Jiang M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 2017; 22:E484. [PMID: 28335502 PMCID: PMC6155401 DOI: 10.3390/molecules22030484] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Catechins are natural polyphenolic phytochemicals that exist in food and medicinal plants, such as tea, legume and rubiaceae. An increasing number of studies have associated the intake of catechins-rich foods with the prevention and treatment of chronic diseases in humans, such as inflammatory bowel disease (IBD). Some studies have demonstrated that catechins could significantly inhibit the excessive oxidative stress through direct or indirect antioxidant effects and promote the activation of the antioxidative substances such as glutathione peroxidases (GPO) and glutathione (GSH), reducing the oxidative damages to the colon. In addition, catechins can also regulate the infiltration and proliferation of immune related-cells, such as neutrophils, colonic epithelial cells, macrophages, and T lymphocytes, helping reduce the inflammatory relations and provide benefits to IBD. Perhaps catechins can further inhibit the deterioration of intestinal lesions through regulating the cell gap junctions. Furthermore, catechins can exert their significant anti-inflammatory properties by regulating the activation or deactivation of inflammation-related oxidative stress-related cell signaling pathways, such as nuclear factor-kappa B (NF-κB), mitogen activated protein kinases (MAPKs), transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), signal transducer and the activator of transcription 1/3 (STAT1/3) pathways. Finally, catechins can also stabilize the structure of the gastrointestinal micro-ecological environment via promoting the proliferation of beneficial intestinal bacteria and regulating the balance of intestinal flora, so as to relieve the IBD. Furthermore, catechins may regulate the tight junctions (TJ) in the epithelium. This paper elaborates the currently known possible molecular mechanisms of catechins in favor of IBD.
Collapse
Affiliation(s)
- Fei-Yan Fan
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| |
Collapse
|
18
|
Molecular Mechanisms and Therapeutic Effects of (-)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:181260. [PMID: 26180580 PMCID: PMC4477097 DOI: 10.1155/2015/181260] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 01/13/2023]
Abstract
With recent insight into the mechanisms involved in diseases, such as cardiovascular disease, cancer, stroke, neurodegenerative diseases, and diabetes, more efficient modes of treatment are now being assessed. Traditional medicine including the use of natural products is widely practiced around the world, assuming that certain natural products contain the healing properties that may in fact have a preventative role in many of the diseases plaguing the human population. This paper reviews the biological effects of a group of natural compounds called polyphenols, including apigenin, epigallocatechin gallate, genistein, and (-)-epicatechin, with a focus on the latter. (-)-Epicatechin has several unique features responsible for a variety of its effects. One of these is its ability to interact with and neutralize reactive oxygen species (ROS) in the cell. (-)-Epicatechin also modulates cell signaling including the MAP kinase pathway, which is involved in cell proliferation. Mutations in this pathway are often associated with malignancies, and the use of (-)-epicatechin holds promise as a preventative agent and as an adjunct for chemotherapy and radiation therapy to improve outcome. This paper discusses the potential of some phenolic compounds to maintain, protect, and possibly reinstate health.
Collapse
|
19
|
Antioxidant and Anti-Inflammatory Activities of Phenolic-Enriched Extracts of Smilax glabra. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:910438. [PMID: 25477999 PMCID: PMC4244943 DOI: 10.1155/2014/910438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 11/08/2022]
Abstract
Smilax glabra Roxb. has been used for a long time as both food and folk medicine. In the present study, phenolic-enriched extract of S. glabra (PEESG) was extracted with 70% ethanol and purified by HP-20 column chromatography. Its antioxidant and anti-inflammatory activities were evaluated by radical scavenging assay, reducing power determination, and lipopolysaccharide (LPS)-induced RAW264.7 cells assays, respectively. PEESG exhibited obviously scavenging capacity for DPPH and ABTS radicals, as well as significant reducing power for ferric ion. Particularly, PEESG (12.5–50 μg/mL) showed a significantly higher efficiency for scavenging ABTS than that of ascorbic acid and no significant difference with ascorbic acid for DPPH scavenging. PEESG also possessed a significant suppression effect on proinflammatory mediators production, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), in LPS-induced RAW264.7 cells. In addition, the main ingredients of PEESG were identified using ultrahigh pressure liquid chromatography coupled to electrospray mass spectrometry (U-HPLC-ESI-MS). Seventeen components, including 5-O-caffeoylshikimic acid, neoastilbin, astilbin, neoisoastilbin, isoastilbin, engetin and isoengeletin were identified. These findings strongly suggest the potential of PEESG as a natural antioxidant and anti-inflammatory agent.
Collapse
|
20
|
Flavonoids and 5-aminosalicylic acid inhibit the formation of neutrophil extracellular traps. Mediators Inflamm 2013; 2013:710239. [PMID: 24381411 PMCID: PMC3871909 DOI: 10.1155/2013/710239] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 02/06/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been suggested to play a pathophysiological role in several autoimmune diseases. Since NET-formation in response to several biological and chemical stimuli is mostly ROS dependent, in theory any substance that inhibits or scavenges ROS could prevent ROS-dependent NET release. Therefore, in the present comprehensive study, several antioxidative substances were assessed for their capacity to inhibit NET formation of primary human neutrophils in vitro. We could show that the flavonoids (-)-epicatechin, (+)-catechin hydrate, and rutin trihydrate as well as vitamin C and the pharmacological substances N-acetyl-L-cysteine and 5-aminosalicylic acid inhibited PMA induced ROS production and NET formation. Therefore, a broad spectrum of antioxidative substances that reduce ROS production of primary human neutrophils also inhibits ROS-dependent NET formation. It is tempting to speculate that such antioxidants can have beneficial therapeutic effects in diseases associated with ROS-dependent NET formation.
Collapse
|