1
|
Gupta N, Saha S. Polymer-Based Designer Particles as Drug Carriers: Strategies to Construct and Modify. ACS APPLIED BIO MATERIALS 2025. [PMID: 40405643 DOI: 10.1021/acsabm.5c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Biological barriers present remarkable challenges for therapeutics delivery, requiring an advanced drug delivery system that can navigate through the complex physiological environment. Polymeric particles provide remarkable versatility due to their adaptable physiochemical properties, facilitating new designs that address complex delivery issues. This review focuses on recent advancements in the morphology of polymeric particles that emulate biological barriers to improve drug efficacy. It includes how structural engineering─such as designing rod-shaped particles for improved cellular uptake, red-blood-cell-shaped particles for prolonged circulation, worm-shaped carriers for improved tissue penetration, and multicompartmental systems for providing combination therapies─profoundly alters drug delivery capabilities. These designer particles exhibit enhanced target specificity, controlled release kinetics, and improved therapeutic outcomes relative to traditional spherical carriers. This particular review also emphasizes how a combination of polymer chemistry and fabrication methods facilitates achieving these advanced structures, while highlighting ongoing challenges in scale-up, reproducibility, and clinical translations. Through the analysis of structure-functional property correlations in various biomimetic designs, we have also attempted to provide insight into future advancements in polymeric delivery systems that have the potential to transform treatment strategies for complicated diseases via shape-directed biological interactions for better therapeutic outcomes.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- International College of Semiconductor Technology, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Jiang W, Ulker Z, Thong KX, Qin M, Yu-Wai-Man C. Applying nanotechnology to glaucoma therapy: past, present, and future. Nanomedicine (Lond) 2025:1-3. [PMID: 40278832 DOI: 10.1080/17435889.2025.2497748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025] Open
Affiliation(s)
- Wenbing Jiang
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Zeynep Ulker
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Kai Xin Thong
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mengqi Qin
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | |
Collapse
|
3
|
Ahmad S, Ahmad L, Adil M, Sharma R, Khan S, Hasan N, Aqil M. Emerging nano-derived therapy for the treatment of dementia: a comprehensive review. Drug Deliv Transl Res 2025:10.1007/s13346-025-01863-3. [PMID: 40268841 DOI: 10.1007/s13346-025-01863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Dementia includes a variety of neurodegenerative diseases that affect and target the brain's fundamental cognitive functions. It is undoubtedly one of the diseases that affects people globally. The ameliorating the disease is still not known; the symptoms, however, can be prevented to an extent. Dementia encompasses Alzheimer's disease, Parkinson's disease, Huntington's disease, Lewy body dementia, mixed dementia, and various other diseases. The aggregation of β-amyloid protein plaques and the formation of neurofibrillary tangles have been concluded as the foremost cause for the onset of the disease. As the cases climb, new neuroprotective methods are being developed in the form of new drug delivery systems that provide targeted delivery. Herbal drugs like Ashwagandha, Brahmi, and Cannabis have shown satisfactory results by not only treating the symptoms but have also been shown to reduce and ameliorate the formation of amyloid plaque formation. This article explores the intricate possibilities of drug delivery and the absolute use of herbal drugs to target neurodegenerative diseases. The various possibilities of nanotechnology currently available with new emerging techniques are also discussed.
Collapse
Affiliation(s)
- Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lubna Ahmad
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ritu Sharma
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saara Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Kurt AA, Aslan İ. A Novel Liposomal In-Situ Hydrogel Formulation of Hypericum perforatum L.: In Vitro Characterization and In Vivo Wound Healing Studies. Gels 2025; 11:165. [PMID: 40136870 PMCID: PMC11942153 DOI: 10.3390/gels11030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Hypericum perforatum L. (H.P.) is a species with a well-documented history of use in wound healing practices across the globe. The objective of this study was twofold: firstly, to evaluate the in vivo efficacy of liposomal in situ gel formulations in wound healing, both clinically and histopathologically, and secondly, to determine the physicochemical characterization of liposomal in situ gel formulations. The in vitro studies will be assessed in terms of particle size, zeta potential, release kinetics, rheological behaviors, and antioxidant and antimicrobial properties. The in vivo studies will be evaluated in clinical animal experiments and pathology studies. The in-situ hydrogel formulations were prepared using the physical cross-linking method with Poloxamer 188, Poloxamer 407, Ultrez 21, and Ultrez 30. The liposome formulations phospholipid 90H and lipoid S100 were prepared using the thin film solvent evaporation method. The antioxidant activity of the samples was evaluated through in vitro studies employing the DPPH antioxidant activity, ABTS+ test, and FRAP test. The antimicrobial activity of the samples was evaluated through the determination of MIC and MBC values employing the 96-well plate method. In vivo, 36 male New Zealand rabbits aged 32-36 weeks were utilized, with six rabbits in each group. The groups were composed of six distinct groups, including conventional and in situ gel liposome formulations of HHPM, three different commercial preparations, and a control group (n = 6). The HHPM-LG8 formulation developed in this study was found to be applicable in terms of all its properties. The new liposomal in situ hydrogel formulation demonstrated notable wound healing activity, a result that was supported by the formulation itself.
Collapse
Affiliation(s)
- Ahmet Arif Kurt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Suleyman Demirel University, Isparta 32000, Türkiye
| | - İsmail Aslan
- Department of Pharmaceutical Technology, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Türkiye;
- Faculty of Pharmacy, Istanbul Kent University, Istanbul 34406, Türkiye
| |
Collapse
|
5
|
Weerarathna IN, Kumar P, Dzoagbe HY, Kiwanuka L. Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application. ACS OMEGA 2025; 10:5214-5250. [PMID: 39989765 PMCID: PMC11840590 DOI: 10.1021/acsomega.4c09806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
In light of the ongoing technological transformation, embracing advancements that foster shared benefits is essential. Nanorobots, a breakthrough within nanotechnology, have demonstrated significant potential in fields such as medicine, where diagnostic and therapeutic applications are the primary focus areas. This review provides a comprehensive overview of nanotechnology, robots, and their evolving role in medical applications, particularly highlighting the use of nanorobots. Various design strategies and operational principles, including sensors, actuators, and nanocontrollers, are discussed based on prior research. Key nanorobot medical applications include biomedical imaging, biosensing, minimally invasive surgery, and targeted drug delivery, each utilizing advanced actuation technologies to enhance precision. The paper further examines recent progress in micro/nanorobot actuation and addresses important considerations for the future, including biocompatibility, control, navigation, delivery, targeting, safety, and ethical implications. This review offers a holistic perspective on how nanorobots can reshape medical practices, paving the way for precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department
of Biomedical Sciences, Datta Meghe Institute
of Higher Education and Research (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Praveen Kumar
- Department
of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| | - Hellen Yayra Dzoagbe
- Datta
Meghe College of Pharmacy, Datta Meghe Institute of Higher Education
and Research, (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Lydia Kiwanuka
- Department
of Medical Radiology and Imaging Technology, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| |
Collapse
|
6
|
Aly GA, Sabra SA, Haroun M, Helmy MW, Moussa N. Bovine serum albumin nanoparticles encapsulating Dasatinib and Celecoxib for oral cancer: Preparation, characterization, and in-vitro evaluation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03829-1. [PMID: 39937256 DOI: 10.1007/s00210-025-03829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Oral squamous cell carcinoma is a diverse complex disease. Despite the ever-expanding repertoire of anti-cancer treatments, the outcomes are often inadequate highlighting the urgent need for innovative approaches. In this regard, co-targeting signaling pathways such as Src and COX-2 have attracted growing attention in several cancers, but co-inhibition of these two pathways using dasatinib and celecoxib has not been explored in oral cancer. However, the therapeutic efficacy of these drugs is limited due to their low aqueous solubility. Nanoencapsulation can improve this by utilizing naturally available proteins due to their ease of fabrication and biocompatibility. In this sense, this study aimed at preparing and characterizing dastatinib (DAS)/celecoxib (CXB)-loaded bovine serum albumin (BSA) nanoparticles as well as investigating their potential anticancer effects in vitro on SCC-4 oral cancer cell line. DAS/CXB-loaded BSA nanoparticles (NPs) were fabricated by the desolvation method, then characterized in terms of their hydrodynamic particle size, zeta potential, morphology and in vitro drug release. The IC50 was determined via the MTT assay. Cyclin D1, COX-2, p-Src and FAK protein expression levels were determined using ELISA while active caspase-3 was determined colorimetrically. DAS/CXB-loaded BSA NPs exhibited particle size of 336.6 ± 1.098 nm with low PDI value of 0.211 ± 0.019 and zeta potential of -35.0 ± 4.03 mV. Moreover, the in vitro cytotoxicity study revealed decreased IC50 value in case of the dual drug-loaded NPs compared to all treated groups, with significant decrease in the expression levels of cyclin D1, COX-2, p-Src and FAK proteins, besides, increased caspase-3 level. The findings suggest that DAS/CXB-loaded BSA NPs could serve as a drug delivery platform with increased antitumor effectiveness.
Collapse
Affiliation(s)
- Ghadeer AbouBakr Aly
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK, Malik T. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med (Lausanne) 2025; 12:1522223. [PMID: 39963432 PMCID: PMC11831571 DOI: 10.3389/fmed.2025.1522223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal loss and cognitive impairments, pose a significant global health challenge. This study explores the potential of nanotherapeutics as a promising approach to enhance drug delivery across physiological barriers, particularly the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (B-CSFB). By employing nanoparticles, this research aims to address critical challenges in the diagnosis and treatment of conditions such as Alzheimer's, Parkinson's, and Huntington's diseases. The multifactorial nature of these disorders necessitates innovative solutions that leverage nanomedicine to improve drug solubility, circulation time, and targeted delivery while minimizing off-target effects. The findings underscore the importance of advancing nanomedicine applications to develop effective therapeutic strategies that can alleviate the burden of neurodegenerative diseases on individuals and healthcare systems.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mukul Jain
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Abhayveer Singh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mohd Tariq
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Khemraj Deshmukh
- Department of Biomedical Engineering, Parul Institute of Technology, Parul University, Vadodara, India
| | | | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research & Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
8
|
Liu HY, Wu JY. Modulating electronic properties in hydrogenated silicon nanotubes. Phys Chem Chem Phys 2025; 27:2114-2122. [PMID: 39775469 DOI: 10.1039/d4cp03703k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study employs first-principles calculations to investigate the geometric and electronic properties of hydrogenated silicon nanotubes (SiNTs). SiNTs, particularly in their gear-like configuration, demonstrate unique semiconducting behavior; however, their relatively small intrinsic band gaps limit their applicability in fields requiring moderate band gaps. Significant changes in electronic properties are observed by hydrogenating SiNTs at various levels of adsorption-either full or partial-and different surface configurations (exterior, interior, or dual-sided). These changes include band gap tuning, metal-semiconductor transitions, and enhanced material stability. Generally, complete hydrogen adsorption increases the band gap, while partial hydrogen adsorption can induce metallic or half-metallic characteristics. The study also highlights the significance of spatial charge density redistribution in determining the electronic behavior of SiNTs under hydrogen doping, underscoring their potential for use in electronics, sensors, and energy storage applications.
Collapse
Affiliation(s)
- Hsin-Yi Liu
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Jhao-Ying Wu
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Chaulagain B, Singh J. Penetratin and Mannose-Functionalized Cannabidiol Lipid Nanoparticles Encapsulating the BDNF Gene Reduce Amyloid-Induced Inflammation. Mol Pharm 2025; 22:154-167. [PMID: 39588752 PMCID: PMC11874068 DOI: 10.1021/acs.molpharmaceut.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Inflammation is emerging as a critical player in the disease progression of Alzheimer's disease (AD) by its interaction with amyloid beta plaques in a feed-forward loop. There is also a decline in the nourishment and enriching neurotrophic factor, brain-derived neurotrophic factor (BDNF), in the brain. Therefore, supplementing the brain with BDNF by gene delivery and delivering the anti-inflammatory agent, cannabidiol (CBD) in this case, to mitigate inflammation-induced disease cascade offers an attractive treatment strategy. To achieve the brain localization of CBD and pBDNF, lipid nanoparticles (LNPs) functionalized with mannose and penetratin were utilized. CBD and pBDNF were successfully encapsulated in the LNPs (more than 80%) with a size less than 180 nm, polydispersity index less than 0.25, and zeta potential of 23 mV. CBD was released from the formulation over a period of a week. The dual-functionalized LNPs demonstrated higher cellular uptake of CBD and expressed a significantly higher amount of BDNF (p-value <0.05) after transfection than their nonmodified counterparts in four brain cell lines, i.e., brain endothelial cells (b.END3), immortalized microglia cells (IMGs), primary astrocytes, and primary neurons. Similarly, the permeation of CBD through the dual-modified LNPs across the in vitro coculture blood-brain barrier model was significantly higher (p-value <0.05) compared to free CBD or nonfunctionalized nanoparticles. The LNPs demonstrated anti-inflammatory activity against lipopolysaccharides and human amyloid beta1-42 oligomer induction as they reduced the protein and mRNA expression of pro-inflammatory cytokines TNF-α (p < 0.05) and IL-1β (p < 0.05) in IMG cells. In summary, the penetratin and mannose-functionalized LNPs encapsulating CBD and pBDNF could serve as a promising therapy in AD, requiring further validation in animal models.
Collapse
Affiliation(s)
- Bivek Chaulagain
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
10
|
Rana V, Dani U, Shah A. Environmental toxicity assessment of engineered nanoparticles manifest histo-hemato alterations to fresh water fish. Nanotoxicology 2024; 18:645-660. [PMID: 39578698 DOI: 10.1080/17435390.2024.2423653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
The present study rigorously examined the toxicological effects of nanoparticles (NPs), specifically nickel (Ni) and chromium oxide (Cr3O4) NPs, synthesized under controlled conditions and characterized. To evaluate their potential environmental impact exposed the freshwater fish Labeo rohita (L. rohita) to environmentally relevant concentrations of both NPs within a controlled laboratory conditions. Vital organs, including gills and liver were subjected to histopathological analysis, revealing profound alterations in tissue architecture that were distinctly correlated with pathological damage. The lesions exhibited moderate to severe changes that are further correlated with the semi-quantitative mean alteration value (MAV). Furthermore, conducted a quantitative assessment of tissue-specific morphological changes. Notably, there was a significant reduction in critical hematological changes, including red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin concentrations and other parameters. All of which exhibited significant fluctuations in relation to increasing NPs concentrations. These findings underscore the critical necessity for continued investigation into the ecological risks associated with these nanoparticles.
Collapse
Affiliation(s)
- Vaishnavi Rana
- Department of Zoology, B. P. Baria Science Institute, Navsari, Gujarat, India
| | - Unnati Dani
- Department of Zoology, B. P. Baria Science Institute, Navsari, Gujarat, India
| | - Alkesh Shah
- Department of Zoology, B. P. Baria Science Institute, Navsari, Gujarat, India
| |
Collapse
|
11
|
Chandoliya R, Sharma S, Sharma V, Joshi R, Sivanesan I. Titanium Dioxide Nanoparticle: A Comprehensive Review on Synthesis, Applications and Toxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2964. [PMID: 39519883 PMCID: PMC11547906 DOI: 10.3390/plants13212964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology has garnered significant interest worldwide due to its wide-ranging applications across various industries. Titanium dioxide nanoparticles are one type of nanoparticle that is commonly utilised in everyday use and can be synthesized by different techniques using physical, chemical and biological extracts. Green synthesis is an economical, environmentally benign and non-toxic method of synthesising nanoparticles. Titanium dioxide nanoparticles have a positive impact on plant physiology, particularly in response to biotic and abiotic stresses, depending on various factors like size, concentration, exposure of the nanoparticles and other variables. Further, titanium dioxide nanoparticles have many applications, such as being used as nano-fertilizers, adsorption of heavy metal from industrial wastewater and antimicrobial activity, as discussed in this review paper. Previous studies investigated whether titanium dioxide nanoparticles also induce genotoxicity may be due to mishandling procedure, exposure time, size, concentration and other variables. This is still contradictory and requires more research. The present review is a pragmatic approach to summarize the synthesis, application, nanotoxicity, genotoxicity and eco-friendly method of nanoparticle synthesis and disposable.
Collapse
Affiliation(s)
- Rakhi Chandoliya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Zahid AA, Chakraborty A, Shamiya Y, Wilson RB, Borradaile N, Paul A. Cell Membrane-Derived Nanoparticles as Biomimetic Nanotherapeutics to Alleviate Fatty Liver Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39117-39128. [PMID: 39022877 DOI: 10.1021/acsami.4c08240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The prevalence of metabolic dysfunction associated-steatotic liver disease (MASLD) (formerly known as nonalcoholic fatty liver disease; NAFLD) is estimated at around 32% of the world's population, resulting in a major healthcare concern in recent times. Current pharmaceutical methods lack efficacy for the treatment of the disease because of suboptimal pharmacokinetic parameters including poor bioavailability, short half-life, and premature clearance. Designing an efficient drug delivery system that provides a protective environment is critical for addressing these challenges. Such a system should aim to enhance the cellular uptake of drugs, improve their bioavailability, and reduce the chances of rapid clearance. Here, we developed nanoengineered natural cell membrane-derived nanoparticles (CMNs) incorporated with a model drug, rosuvastatin, in the bilayer assembly of CMNs to reduce the accumulation of lipids in hepatocytes, a hallmark of MASLD. We used a cell extrusion technique to develop self-assembled CMNs with precise size control compared to the cell shearing method. Interestingly, the prepared CMNs were found to be nonphagocytic, representing around 1.13% of phosphatidylserine receptors on healthy cells, which allows the possibility of their use as stealth nanoparticles for drug delivery. Furthermore, CMNs exhibit higher drug-loading efficiency, excellent cytocompatibility, and enhanced cellular internalization capabilities. Moreover, we show that the delivery of rosuvastatin-loaded CMNs in the in vitro MASLD model efficiently reduced hepatocyte lipid accumulation, including total cholesterol (26.8 ± 3.1%) and triglycerides (11.8 ± 0.8%), compared to the negative control. Taken together, the nanoengineered biomimetic CMNs enhance the drug's bioactivity in hepatic cells, establishing a foundation for further investigation of this drug delivery system in treating MASLD.
Collapse
Affiliation(s)
- Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Rachel B Wilson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Nica Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
13
|
Havlicek D, Panakkal VM, Voska L, Sedlacek O, Jirak D. Self-Assembled Fluorinated Nanoparticles as Sensitive and Biocompatible Theranostic Platforms for 19F MRI. Macromol Biosci 2024; 24:e2300510. [PMID: 38217510 DOI: 10.1002/mabi.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Theranostics is a novel paradigm integrating therapy and diagnostics, thereby providing new prospects for overcoming the limitations of traditional treatments. In this context, perfluorocarbons (PFCs) are the most widely used tracers in preclinical fluorine-19 magnetic resonance (19F MR), primarily for their high fluorine content. However, PFCs are extremely hydrophobic, and their solutions often display reduced biocompatibility, relative instability, and subpar 19F MR relaxation times. This study aims to explore the potential of micellar 19F MR imaging (MRI) tracers, synthesized by polymerization-induced self-assembly (PISA), as alternative theranostic agents for simultaneous imaging and release of the non-steroidal antileprotic drug clofazimine. In vitro, under physiological conditions, these micelles demonstrate sustained drug release. In vivo, throughout the drug release process, they provide a highly specific and sensitive 19F MRI signal. Even after extended exposure, these fluoropolymer tracers show biocompatibility, as confirmed by the histological analysis. Moreover, the characteristics of these polymers can be broadly adjusted by design to meet the wide range of criteria for preclinical and clinical settings. Therefore, micellar 19F MRI tracers display physicochemical properties suitable for in vivo imaging, such as relaxation times and non-toxicity, and high performance as drug carriers, highlighting their potential as both diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Dominik Havlicek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 20, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, Prague, 121 08, Czech Republic
| | - Vyshakh M Panakkal
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague, 128 00, Czech Republic
| | - Ludek Voska
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 20, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague, 128 00, Czech Republic
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 20, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, Prague, 121 08, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, 1402/2 Studentská, Liberec, 46117, Czech Republic
| |
Collapse
|
14
|
Rasheed R, Uzair B, Raza A, Binsuwaidan R, Alshammari N. Fungus-mediated synthesis of Se-BiO-CuO multimetallic nanoparticles as a potential alternative antimicrobial against ESBL-producing Escherichia coli of veterinary origin. Front Cell Infect Microbiol 2024; 14:1301351. [PMID: 38655284 PMCID: PMC11037251 DOI: 10.3389/fcimb.2024.1301351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024] Open
Abstract
Bacterial infections emerge as a significant contributor to mortality and morbidity worldwide. Emerging extended-spectrum β-lactamase (ESBL) Escherichia coli strains provide a greater risk of bacteremia and mortality, are increasingly resistant to antibiotics, and are a major producer of ESBLs. E. coli bacteremia-linked mastitis is one of the most common bacterial diseases in animals, which can affect the quality of the milk and damage organ functions. There is an elevated menace of treatment failure and recurrence of E. coli bacteremia necessitating the adoption of rigorous alternative treatment approaches. In this study, Se-Boil-CuO multimetallic nanoparticles (MMNPs) were synthesized as an alternate treatment from Talaromyces haitouensis extract, and their efficiency in treating ESBL E. coli was confirmed using standard antimicrobial assays. Scanning electron microscopy, UV-visible spectroscopy, and dynamic light scattering were used to validate and characterize the mycosynthesized Se-BiO-CuO MMNPs. UV-visible spectra of Se-BiO-CuO MMNPs showed absorption peak bands at 570, 376, and 290 nm, respectively. The average diameters of the amorphous-shaped Se-BiO-CuO MMNPs synthesized by T. haitouensis extract were approximately 66-80 nm, respectively. Se-BiO-CuO MMNPs (100 μg/mL) showed a maximal inhibition zone of 18.33 ± 0.57 mm against E. coli. Se-BiO-CuO MMNPs also exhibited a deleterious impact on E. coli killing kinetics, biofilm formation, swimming motility, efflux of cellular components, and membrane integrity. The hemolysis assay also confirms the biocompatibility of Se-BiO-CuO MMNPs at the minimum inhibitory concentration (MIC) range. Our findings suggest that Se-BiO-CuO MMNPs may serve as a potential substitute for ESBL E. coli bacteremia.
Collapse
Affiliation(s)
- Rida Rasheed
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Abida Raza
- National Center of Industrial Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
15
|
Hussen NH, Hasan AH, FaqiKhedr YM, Bogoyavlenskiy A, Bhat AR, Jamalis J. Carbon Dot Based Carbon Nanoparticles as Potent Antimicrobial, Antiviral, and Anticancer Agents. ACS OMEGA 2024; 9:9849-9864. [PMID: 38463310 PMCID: PMC10918813 DOI: 10.1021/acsomega.3c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Antimicrobial and anticancer drugs are widely used due to increasing widespread infectious diseases caused by microorganisms such as bacterial, fungal, viral agents, or cancer cells, which are one of the major causes of mortality globally. Nevertheless, several microorganisms developed resistance to antibiotics as a result of genetic changes that have occurred over an extended period. Carbon-based materials, particularly carbon dots (C-dots), are potential candidates for antibacterial and anticancer nanomaterials due to their low toxicity, ease of synthesis and functionalization, high dispersibility in aqueous conditions, and promising biocompatibility. In this Review, the content is divided into four sections. The first section concentrates on C-dot structures, surface functionalization, and morphology. Following that, we summarize C-dot classifications and preparation methods such as arc discharge, laser ablation, electrochemical oxidation, and so on. The antimicrobial applications of C-dots as antibacterial, antifungal, and antiviral agents both in vivo and in vitro are discussed. Finally, we thoroughly examined the anticancer activity displayed by C-dots.
Collapse
Affiliation(s)
- Narmin Hamaamin Hussen
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Aso Hameed Hasan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 81310 Johor Bahru, Johor, Malaysia
- Department of Chemistry, College of Science, University of Garmian, Kalar 46021, Kurdistan Region, Iraq
| | - Yar Muhammed FaqiKhedr
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
16
|
Gupta D, Roy P, Sharma R, Kasana R, Rathore P, Gupta TK. Recent nanotheranostic approaches in cancer research. Clin Exp Med 2024; 24:8. [PMID: 38240834 PMCID: PMC10799106 DOI: 10.1007/s10238-023-01262-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
Humanity is suffering from cancer which has become a root cause of untimely deaths of individuals around the globe in the recent past. Nanotheranostics integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. We hereby propose to discuss all recent cancer imaging and diagnostic tools, the mechanism of targeting tumor cells, and current nanotheranostic platforms available for cancer. This review discusses various nanotheranostic agents and novel molecular imaging tools like MRI, CT, PET, SPEC, and PAT used for cancer diagnostics. Emphasis is given to gold nanoparticles, silica, liposomes, dendrimers, and metal-based agents. We also highlight the mechanism of targeting the tumor cells, and the limitations of different nanotheranostic agents in the field of research for cancer treatment. Due to the complexity in this area, multifunctional and hybrid nanoparticles functionalized with targeted moieties or anti-cancer drugs show the best feature for theranostics that enables them to work on carrying and delivering active materials to the desired area of the requirement for early detection and diagnosis. Non-invasive imaging techniques have a specificity of receptor binding and internalization processes of the nanosystems within the cancer cells. Nanotheranostics may provide the appropriate medicine at the appropriate dose to the appropriate patient at the appropriate time.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Priyanka Roy
- Department of Chemistry, Jamia Hamdard University, New Delhi, 110062, India
| | - Rishabh Sharma
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Richa Kasana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Pragati Rathore
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Tejendra Kumar Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
17
|
Priyam J, Saxena U. Therapeutic applications of carbon nanomaterials in renal cancer. Biotechnol Lett 2023; 45:1395-1416. [PMID: 37864745 DOI: 10.1007/s10529-023-03429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/23/2023]
Abstract
Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene, and nanodiamonds (NDs), have shown great promise in detecting and treating numerous cancers, including kidney cancer. CNMs can increase the sensitivity of diagnostic techniques for better kidney cancer identification and surveillance. They enable targeted medicine delivery specifically to tumour locations, with little effect on healthy tissue. Because of their unique chemical and physical characteristics, they can avoid the body's defence mechanisms, making it easier to accumulate where tumours exist. Consequently, CNMs provide more effective drug delivery to kidney cancer cells. It also helps in improving the efficacy of treatment. This review explores the potential of several CNMs in improving therapeutic strategies for kidney cancer. We briefly covered the physicochemical properties and therapeutic applications of CNMs. Additionally, we discussed how structural modifications in CNMs enhance their precision in treating renal cancer. A thorough overview of CNM-based gene, peptide, and drug delivery strategies for the treatment of renal cancer is presented in this review. It covers information on other CNM-based therapeutic approaches, such as hyperthermia, photodynamic therapy, and photoacoustic therapy. Also, the interactions of CNMs with the tumour microenvironment (TME) are explored, including modulation of the immune response, regulation of tumour hypoxia, interactions between CNMs and TME cells, effects of TME pH on CNMs, and more. Finally, potential side effects of CNMs, such as toxicity, bio corona formation, enzymatic degradation, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Jyotsna Priyam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Urmila Saxena
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
18
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Babu B, Pawar S, Mittal A, Kolanthai E, Neal CJ, Coathup M, Seal S. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1896. [PMID: 37190884 DOI: 10.1002/wnan.1896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Melanie Coathup
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- College of Medicine, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
20
|
Palaniyappan K, S. M. N. Mydin RB, Widera D, Noordin SS, Harun NH, Wan Eddis Effendy WN, Hazan R, Sreekantan S. Double-edged sword of biofouling potentials associated with haemocompatibility behaviour: titania nanotube arrays for medical implant surface technology. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Abstract
Background
Medical implant failures are frequently associated with limitations of the surface technology that lead to biofouling and haemocompatibility issues. Titania nanotube array technology could provide a solution for this existing limitation. The present study describes the biofouling potential using the simulated body fluid model according to ISO 23317-2007 and haemocompatibility profiles according to ISO 10993-4 guidelines. Further haemocompatibility profiles were also assessed by evaluating full blood count, coagulation assays, haemolytic rate, whole blood clotting factor, platelet profiles, and FESEM characterization.
Result
Titania nanotube array nanosurface was found to present with better apatite biofouling and hydrophilic potential compared to bare titanium foil. Furthermore, good compatibility behaviour was observed based on the haemocompatibility profiles where no signs of thrombogenesis and haemolysis risks were observed. Titania nanotube array reduced fibrinogen adsorption, red blood cell and platelet adhesion and activation, which could be associated with detrimental biofouling properties.
Conclusion
Titania nanotube array could possess a double-edged sword of biofouling potentials that resist detrimental biofouling properties associated with thrombogenesis and haemolysis risk. It also provides better apatite biofouling potential for improved tissue and osseointegration activities. Knowledge from this study provides a better understanding of medical implant surface technology.
Graphical Abstract
Collapse
|
21
|
Toxic Ag + detection based on Au@Ag core shell nanostructure formation using Tannic acid assisted synthesis of Pullulan stabilized gold nanoparticles. Sci Rep 2023; 13:1844. [PMID: 36725957 PMCID: PMC9892037 DOI: 10.1038/s41598-023-27406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/02/2023] [Indexed: 02/03/2023] Open
Abstract
Herein, a sensitive colorimetric detection strategy is proposed for Ag+ detection based on the use of environmentally friendly synthesis of gold nanoparticles (AuNPs), at room temperature, using (tannic acid, TA), as the reductant and pullulan (PUL) as stabilizing agent. The colloidal solution (TA/PUL-AuNPs), at the optimal synthesis conditions, showed maximum absorbance at 529 nm with a berry red color. TEM and FESEM validated that the particles are spherical and monodispersed, while other characterization results elucidated the role of pullulan in the nano-synthesis. Ag+ addition to the probe (TA/PUL-AuNPs), pH 11, resulted in naked-eye color changes, owing to Au@Ag core shell nanostructure formation. Further, the added Ag+ is reduced to AgNPs, on the surface of the TA/PUL-AuNPs probe. A hypsochromic shift in the absorption maximum, from 529 to 409 nm was observed, while (AAg+-Abl)@409 nm exhibited linearity with Ag+ concentrations, from 0.100 to 150 µM. The estimated limit of detection was 30.8 nM, which is far lower than the acceptable limit of 0.930 µM from the regulatory agency. The TA/PUL-AuNPs probe was further tested for Ag+ detection in lake water samples, and it displayed satisfactory detection performances for real sample applications.
Collapse
|
22
|
Biswas S, Yadav N, Juneja P, Mourya AK, Kaur S, Tripathi DM, Chauhan VS. Conformationally Restricted Dipeptide-Based Nanoparticles for Delivery of siRNA in Experimental Liver Cirrhosis. ACS OMEGA 2022; 7:36811-36824. [PMID: 36278038 PMCID: PMC9583317 DOI: 10.1021/acsomega.2c05292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Liver cirrhosis is a major health problem with multiple associated complications. The presently available drug delivery systems showed moderate site-specific delivery of antifibrotic molecules to the diseased liver; therefore, research on more effective and selective delivery systems in the context of liver cirrhosis remains a necessity in clinical investigation. The aim of the present study was to develop a peptide-based targeted nanocarrier to deliver an oligonucleotide to the hepatic sinusoidal and perivascular regions of the cirrhotic liver. We have synthesized and characterized a conformationally restricted targeted pentapeptide (RΔFRGD), which contains an unnatural amino acid, α,β-dehydrophenylalanine (ΔF). The RΔFRGD self-assembled into spherical nanoparticles (NPs) and was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Next, we investigated the delivery potential of the pentapeptide-based NPs to make a stable complex with a well-established small interference RNA and studied its site-specific delivery in experimental liver cirrhosis. We used siNR4A1 of the orphan nuclear receptor 4A1 (NR4A1), a well-known regulatory checkpoint for controlling liver fibrosis. Peptide NPs and their complex with siNR4A1 showed high biocompatibility against various mammalian cell lines. Hepatic tissue biodistribution analysis illustrated that targeted NPs predominantly accumulated in the cirrhotic liver compared to normal rats, specifically in sinusoidal and perivascular areas. A significant downregulation of the NR4A1 mRNA expression (-70%) andlower levels of the NR4A1/GAPDH ratio (-55%) were observed in the RΔFRGD-siNR4A1 nanocomplex-treated group in comparison to the RΔFRGD-vehicle group (RΔFRGD-Veh) at the gene and protein levels, respectively. In addition, in vivo inhibition of NR4A1 produced a significant aggravation in hepatic fibrosis compared with siRNA-vehicle-treated rats (+41% in the MT stain). The novel pentapeptide-based targeted delivery system can be further evaluated and validated for therapeutic purposes in various pathological conditions.
Collapse
Affiliation(s)
- Saikat Biswas
- International
Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| | - Nitin Yadav
- International
Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| | - Pinky Juneja
- Institute
of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | | | - Savneet Kaur
- Institute
of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | | | - Virander Singh Chauhan
- International
Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| |
Collapse
|
23
|
De Negri Atanasio G, Ferrari PF, Campardelli R, Firpo G, Perego P, Palombo D. Bevacizumab-Controlled Delivery from Polymeric Microparticle Systems as Interesting Tools for Pathologic Angiogenesis Diseases. Polymers (Basel) 2022; 14:polym14132593. [PMID: 35808639 PMCID: PMC9269115 DOI: 10.3390/polym14132593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022] Open
Abstract
This work is a comparative study among three different biocompatible and biodegradable polymers, poly(lactic-co-glycolic acid), poly(ε-caprolactone), and poly(lactic acid), used to produce microparticles for the encapsulation of bevacizumab for drug delivery purposes. All the formulations were produced using the double emulsion water-oil-water evaporation method and characterized in terms of particle mean diameter, particle size distribution, and bevacizumab entrapment efficiency. Bevacizumab cumulative release was taken into consideration to study the dissolution kinetics from the three different polymeric delivery platforms for a period of 50 days at 37 °C in phosphate buffered saline and mathematical models of the drug release kinetic were attempted in order to describe the release phenomena from the different types of the studied microparticles. Finally, cell viability on human endothelial cell line EA.hy926 was studied to define the maximum cytocompatible concentration for each microsystem, registering the mitochondrial functionality through MTS assay.
Collapse
Affiliation(s)
- Giulia De Negri Atanasio
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; (G.D.N.A.); (P.P.)
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; (G.D.N.A.); (P.P.)
- Correspondence: (P.F.F.); (R.C.)
| | - Roberta Campardelli
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; (G.D.N.A.); (P.P.)
- Correspondence: (P.F.F.); (R.C.)
| | - Giuseppe Firpo
- Department of Physics, University of Genoa, via Dodecaneso, 33, 16146 Genoa, Italy;
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; (G.D.N.A.); (P.P.)
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy;
| | - Domenico Palombo
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy;
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, viale Benedetto XV, 6, 16132 Genoa, Italy
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132 Genoa, Italy
| |
Collapse
|
24
|
Ranjha MMAN, Shafique B, Rehman A, Mehmood A, Ali A, Zahra SM, Roobab U, Singh A, Ibrahim SA, Siddiqui SA. Biocompatible Nanomaterials in Food Science, Technology, and Nutrient Drug Delivery: Recent Developments and Applications. Front Nutr 2022; 8:778155. [PMID: 35127783 PMCID: PMC8811221 DOI: 10.3389/fnut.2021.778155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomaterials exist as potential biocompatible materials in nature and are being synthesized to provide extraordinary characteristics in various food industry sectors. Synthesis of biocompatible nanomaterials requires modification in the shape, density, and size of nanomaterials. Biocompatible nanomaterials are synthesized to reduce toxicity, decrease adverse effects in the gastrointestinal tract, and enhance immune response. Nanomaterials can target organs and tissues. Nanomaterials are found to be effectively compatible by interacting with functional foods and nutraceuticals. Applications of these nanomaterials are novel strategies in food industries such as food safety, food processing, food quality, food packaging, and food labeling. Various functions like detection of toxins and pathogens; production of biocompatible packaging; enhancement in color, flavor, and aroma; processing edible film, and sensing authenticity of food product are being accomplished with no toxicity. This review provides a systematic study on the biocompatibility of nanomaterials. It highlights the synthesis of biocompatible nanomaterials and advanced functions of these nanomaterials in the production area, processing industry, safety improvement, quality control, edible packaging films, biocompatibility, current developments, legislations and regulations for Nano-products, health and safety concerns, toxicity and public perceptions for use of nanomaterials.
Collapse
Affiliation(s)
| | - Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Syeda Mahvish Zahra
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
- Department of Environmental Design, Health and Nutritional Sciences, Allama Iqbal Open University, Islamabad, Pakistan
- *Correspondence: Syeda Mahvish Zahra ;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ajay Singh
- Department of Food Technology, Mata Gujri College, Fatehgarh Sahib, India
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Salam A. Ibrahim
| | - Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), (Deutsches Institut für Lebensmitteltechnik (English version: German Institute of Food Technologies)), Quakenbrück, Germany
- Shahida Anusha Siddiqui
| |
Collapse
|
25
|
An Overview of Nanotechnologies for Drug Delivery to the Brain. Pharmaceutics 2022; 14:pharmaceutics14020224. [PMID: 35213957 PMCID: PMC8875260 DOI: 10.3390/pharmaceutics14020224] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Drug delivery to the brain has been one of the toughest challenges researchers have faced to develop effective treatments for brain diseases. Owing to the blood–brain barrier (BBB), only a small portion of administered drug can reach the brain. A consequence of that is the need to administer a higher dose of the drug, which, expectedly, leads to a variety of unwanted side effects. Research in a variety of different fields has been underway for the past couple of decades to address this very serious and frequently lethal problem. One area of research that has produced optimistic results in recent years is nanomedicine. Nanomedicine is the science birthed by fusing the fields of nanotechnology, chemistry and medicine into one. Many different types of nanomedicine-based drug-delivery systems are currently being studied for the sole purpose of improved drug delivery to the brain. This review puts together and briefly summarizes some of the major breakthroughs in this crusade. Inorganic nanoparticle-based drug-delivery systems, such as gold nanoparticles and magnetic nanoparticles, are discussed, as well as some organic nanoparticulate systems. Amongst the organic drug-delivery nanosystems, polymeric micelles and dendrimers are discussed briefly and solid polymeric nanoparticles are explored in detail.
Collapse
|
26
|
Bhandari V, Jose S, Badanayak P, Sankaran A, Anandan V. Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vandana Bhandari
- Department of Textile and Apparel Designing, I.C. College of Home Science, CCS Haryana Agricultural University, Hisar, India 125004
| | - Seiko Jose
- Textile Manufacturing and Textile Chemistry Division, ICAR- Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India 304501
| | - Pratikhya Badanayak
- Department of Textile and Apparel Designing, College of Community Science, University of Agricultural Sciences, Dharwad, India 580005
| | - Anuradha Sankaran
- Department of Chemistry, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu India 624622
| | - Vysakh Anandan
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala India 686560
| |
Collapse
|
27
|
Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 2022; 58:107905. [DOI: 10.1016/j.biotechadv.2022.107905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
28
|
Garanina AS, Nikitin AA, Abakumova TO, Semkina AS, Prelovskaya AO, Naumenko VA, Erofeev AS, Gorelkin PV, Majouga AG, Abakumov MA, Wiedwald U. Cobalt Ferrite Nanoparticles for Tumor Therapy: Effective Heating versus Possible Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:38. [PMID: 35009988 PMCID: PMC8746458 DOI: 10.3390/nano12010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticles (MNPs) are widely considered for cancer treatment, in particular for magnetic hyperthermia (MHT). Thereby, MNPs are still being optimized for lowest possible toxicity on organisms while the magnetic properties are matched for best heating capabilities. In this study, the biocompatibility of 12 nm cobalt ferrite MNPs, functionalized with citrate ions, in different dosages on mice and rats of both sexes was investigated for 30 days after intraperitoneal injection. The animals' weight, behavior, and blood cells changes, as well as blood biochemical parameters are correlated to histological examination of organs revealing that cobalt ferrite MNPs do not have toxic effects at concentrations close to those used previously for efficient MHT. Moreover, these MNPs demonstrated high specific loss power (SLP) of about 400 W g-1. Importantly the MNPs retained their magnetic properties inside tumor tissue after intratumoral administration for several MHT cycles within three days. Thus, cobalt ferrite MNPs represent a perspective platform for tumor therapy by MHT due to their ability to provide effective heating without exerting a toxic effect on the organism. This opens up new avenues for smaller MNPs sizes while their heating efficiency is maintained.
Collapse
Affiliation(s)
- Anastasiia S. Garanina
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
| | - Alexey A. Nikitin
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
| | | | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, Russian National Research Medical University, 117997 Moscow, Russia;
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia;
| | - Alexandra O. Prelovskaya
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia;
| | - Alexander S. Erofeev
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter V. Gorelkin
- Medical Nanotechnology LLC, Skolkovo Innovation Center, 121205 Moscow, Russia;
| | - Alexander G. Majouga
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Maxim A. Abakumov
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Department of Medical Nanobiotechnology, Russian National Research Medical University, 117997 Moscow, Russia;
| | - Ulf Wiedwald
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Center for Nanointegration Duisburg-Essen, Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
29
|
Yang MY, Liu BS, Huang HY, Yang YC, Chang KB, Kuo PY, Deng YH, Tang CM, Hsieh HH, Hung HS. Engineered Pullulan-Collagen-Gold Nano Composite Improves Mesenchymal Stem Cells Neural Differentiation and Inflammatory Regulation. Cells 2021; 10:cells10123276. [PMID: 34943784 PMCID: PMC8699622 DOI: 10.3390/cells10123276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue repair engineering supported by nanoparticles and stem cells has been demonstrated as being an efficient strategy for promoting the healing potential during the regeneration of damaged tissues. In the current study, we prepared various nanomaterials including pure Pul, pure Col, Pul–Col, Pul–Au, Pul–Col–Au, and Col–Au to investigate their physicochemical properties, biocompatibility, biological functions, differentiation capacities, and anti-inflammatory abilities through in vitro and in vivo assessments. The physicochemical properties were characterized by SEM, DLS assay, contact angle measurements, UV-Vis spectra, FTIR spectra, SERS, and XPS analysis. The biocompatibility results demonstrated Pul–Col–Au enhanced cell viability, promoted anti-oxidative ability for MSCs and HSFs, and inhibited monocyte and platelet activation. Pul–Col–Au also induced the lowest cell apoptosis and facilitated the MMP activities. Moreover, we evaluated the efficacy of Pul–Col–Au in the enhancement of neuronal differentiation capacities for MSCs. Our animal models elucidated better biocompatibility, as well as the promotion of endothelialization after implanting Pul–Col–Au for a period of one month. The above evidence indicates the excellent biocompatibility, enhancement of neuronal differentiation, and anti-inflammatory capacities, suggesting that the combination of pullulan, collagen, and Au nanoparticles can be potential nanocomposites for neuronal repair, as well as skin tissue regeneration in any further clinical treatments.
Collapse
Affiliation(s)
- Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.)
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 11490, Taiwan
- College of Nursing, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Bai-Shuan Liu
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - Hsiu-Yuan Huang
- Department of Cosmeceutics and Graduate, Institute of Cosmeceutics, China Medical University, Taichung 40402, Taiwan;
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
| | - Pei-Yeh Kuo
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - You-Hao Deng
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - Cheng-Ming Tang
- College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 407024, Taiwan;
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 7827); Fax: +886-4-22333641
| |
Collapse
|
30
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
31
|
A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Robotics is a rapidly growing field, and the innovative idea to scale down the size of robots to the nanometer level has paved a new way of treating human health. Nanorobots have become the focus of many researchers aiming to explore their many potential applications in medicine. This paper focuses on manufacturing techniques involved in the fabrication of nanorobots and their associated challenges in terms of design architecture, sensors, actuators, powering, navigation, data transmission, followed by challenges in applications. In addition, an overview of various nanorobotic systems addresses different architectures of a nanorobot. Moreover, multiple medical applications, such as oncology, drug delivery, and surgery, are reviewed and summarized.
Collapse
|
32
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
33
|
Hamida RS, Ali MA, Goda DA, Redhwan A. Anticandidal Potential of Two Cyanobacteria-Synthesized Silver Nanoparticles: Effects on Growth, Cell Morphology, and Key Virulence Attributes of Candida albicans. Pharmaceutics 2021; 13:1688. [PMID: 34683981 PMCID: PMC8539685 DOI: 10.3390/pharmaceutics13101688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen responsible for 90-100% of mucosal and nosocomial infections worldwide. The emergence of drug-resistant strains has resulted in adverse consequences for human health, including numerous deaths. Consequently, there is an urgent need to identify and develop new antimicrobial drugs to counter these effects. Antimicrobial nanoagents have shown potent inhibitory activity against a number of pathogens through targeting their defense systems, such as biofilm formation. Here, we investigated the anticandidal activity of silver nanoparticles biosynthesized by the cyanobacterial strains Desertifilum sp. IPPAS B-1220 and Nostoc Bahar_M (D-SNPs and N-SNPs, respectively), along with that of silver nitrate (AgNO3), and examined the mechanisms underlying their lethal effects. For this, we performed agar well diffusion and enzyme activity assays (lactate dehydrogenase, adenosine triphosphatase, glutathione peroxidase, and catalase) and undertook morphological examinations using transmission electron microscopy. The effects of the three treatments on Hwp1 and CDR1 gene expression and protein patterns were assessed using qRT-PCR and SDS-PAGE assays, respectively. All of the three treatments inhibited C. albicans growth; disrupted membrane integrity, metabolic function, and antioxidant activity; induced ultrastructural changes in the cell envelope; and disrupted cytoplasmic and nuclear contents. Of the three agents, D-SNPs showed the greatest biocidal activity against C. albicans. Additionally, the D-SNP treatment significantly reduced the gene expression of Hwp1 and CDR1, suggestive of negative effects on biofilm formation ability and resistance potential of C. albicans, and promoted protein degradation. The mechanism involved in the biocidal effects of both D-SNPs and N-SNPs against C. albicans could be attributed to their ability to interfere with fungal cell structures and/or stimulate oxidative stress, enabling them to be used as a robust antimycotic agent.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt;
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Doaa A. Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| |
Collapse
|
34
|
Lipid Nanoparticles Based Cosmetics with Potential Application in Alleviating Skin Disorders. COSMETICS 2021. [DOI: 10.3390/cosmetics8030084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lipids mainly oils, fats, waxes and phospholipids are of substantial importance in the development and functioning of cosmetic products. The lipid nanoparticles-based cosmetic product is highly capable of protecting the skin against harmful radiations and is utilized for anti-aging therapy. Naturally derived antioxidants such as carotenoids, retinoids and tocopherols could be employed for their antioxidant properties as therapeutics and skincare active moieties in cosmetic products. Such a lipid nanoparticles-based cosmetic formulation consisting of antioxidants are very effective against irritated and inflamed skin and very promising for treating skin disorders such as atopic dermatitis and psoriasis. Therefore, the present review provides an insight into lipid nanoparticles based cosmetics and the mechanistic of their percutaneous absorption. The manuscript discussion highlights the role of lipid nanoparticles-based cosmetics/cosmeceuticals employing active ingredients of synthetic and natural origin in alleviating dermatological disorders and enhancing skin health and appeal. Furthermore, the manuscript also updates about contemporary research studies carried on the concept of lipid nanoparticles based formulation design of cosmetic preparation and significant outcome to alleviate skin disorders.
Collapse
|
35
|
Sohrabi Kashani A, Packirisamy M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. Int J Mol Sci 2021; 22:9587. [PMID: 34502495 PMCID: PMC8431109 DOI: 10.3390/ijms22179587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
With the advancement of nanotechnology, the nano-bio-interaction field has emerged. It is essential to enhance our understanding of nano-bio-interaction in different aspects to design nanomedicines and improve their efficacy for therapeutic and diagnostic applications. Many researchers have extensively studied the toxicological responses of cancer cells to nano-bio-interaction, while their mechanobiological responses have been less investigated. The mechanobiological properties of cells such as elasticity and adhesion play vital roles in cellular functions and cancer progression. Many studies have noticed the impacts of cellular uptake on the structural organization of cells and, in return, the mechanobiology of human cells. Mechanobiological changes induced by the interactions of nanomaterials and cells could alter cellular functions and influence cancer progression. Hence, in addition to biological responses, the possible mechanobiological responses of treated cells should be monitored as a standard methodology to evaluate the efficiency of nanomedicines. Studying the cancer-nano-interaction in the context of cell mechanics takes our knowledge one step closer to designing safe and intelligent nanomedicines. In this review, we briefly discuss how the characteristic properties of nanoparticles influence cellular uptake. Then, we provide insight into the mechanobiological responses that may occur during the nano-bio-interactions, and finally, the important measurement techniques for the mechanobiological characterizations of cells are summarized and compared. Understanding the unknown mechanobiological responses to nano-bio-interaction will help with developing the application of nanoparticles to modulate cell mechanics for controlling cancer progression.
Collapse
Affiliation(s)
| | - Muthukumaran Packirisamy
- Optical Bio-Microsystem Lab, Micro-Nano-Bio-Integration Centre, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada;
| |
Collapse
|
36
|
Mititelu-Tartau L, Bogdan M, Pricop DA, Buca BR, Pauna AM, Dijmarescu LA, Pelin AM, Pavel LL, Popa GE. Assessment of the In Vivo Release and Biocompatibility of Novel Vesicles Containing Zinc in Rats. Molecules 2021; 26:molecules26134101. [PMID: 34279441 PMCID: PMC8271654 DOI: 10.3390/molecules26134101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
This paper is focused on the in vivo release and biocompatibility evaluation in rats of some novel systems entrapping zinc chloride in lipid vesicles. The particles were prepared by zinc chloride immobilization inside lipid vesicles made using phosphatidylcholine, stabilized with 0.5% chitosan solution, and dialyzed for 10 h to achieve a neutral pH. The submicrometric systems were physico-chemically characterized. White Wistar rats, assigned into four groups of six animals each, were treated orally with a single dose, as follows: Group I (control): deionized water 0.3 mL/100 g body weight; Group II (Zn): 2 mg/kg body weight (kbw) zinc chloride; Group III (LV-Zn): 2 mg/kbw zinc chloride in vesicles; Group IV (LVC-Zn): 2 mg/kbw zinc chloride in vesicles stabilized with chitosan. Haematological, biochemical, and immune parameters were assessed after 24 h and 7 days, and then liver fragments were collected for histopathological examination. The use of zinc submicrometric particles-especially those stabilized with chitosan-showed a delayed zinc release in rats. No substantial changes to blood parameters, plasma biochemical tests, serum complement activity, or peripheral neutrophils phagocytic capacity were noted; moreover, the tested substances did not induce liver architectural disturbances. The obtained systems provided a delayed release of zinc, and showed good biocompatibility in rats.
Collapse
Affiliation(s)
- Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.-T.); (B.R.B.); (A.-M.P.)
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Correspondence: (M.B.); (D.A.P.)
| | - Daniela Angelica Pricop
- Department of Physics, Faculty of Physics, “Al. I. Cuza” University, 700506 Iasi, Romania
- Correspondence: (M.B.); (D.A.P.)
| | - Beatrice Rozalina Buca
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.-T.); (B.R.B.); (A.-M.P.)
| | - Ana-Maria Pauna
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.-T.); (B.R.B.); (A.-M.P.)
| | - Lorena Anda Dijmarescu
- Department of Obstetrics-Gynecology, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Ana-Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800010 Galati, Romania;
| | - Liliana Lacramioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800010 Galati, Romania;
| | - Gratiela Eliza Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
37
|
Sharma S, Bhatia V. Nanoscale Drug Delivery Systems for Glaucoma: Experimental and In Silico Advances. Curr Top Med Chem 2021; 21:115-125. [PMID: 32962618 DOI: 10.2174/1568026620666200922114210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
In this review, nanoscale-based drug delivery systems, particularly in relevance to the antiglaucoma drugs, have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery is an ideal option to target tumours, and the drug can be released in areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood-retinal barrier, corneal epithelium and the blood-aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us understand the existing queries and evidence gaps and will pave the way for the effective design of novel ocular drug delivery systems.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital and Postgraduate Institute, Noida, UP, India
| |
Collapse
|
38
|
Bishnoi S, Kumari A, Rehman S, Minz A, Senapati S, Nayak D, Gupta S. Fusogenic Viral Protein-Based Near-Infrared Active Nanocarriers for Biomedical Imaging. ACS Biomater Sci Eng 2021; 7:3351-3360. [PMID: 34111927 DOI: 10.1021/acsbiomaterials.1c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An effective drug delivery system (DDS) relies on an efficient cellular uptake and faster intracellular delivery of theranostic agents, bypassing the endosomal mediated degradation of the payload. The use of viral nanoparticles (VNPs) permits such advancement, as the viruses are naturally evolved to infiltrate the host cells to deliver their genetic material. As a proof of concept, we bioengineered the vesicular stomatitis virus glycoprotein (VSV-G)-based near-infrared (NIR) active viral nanoconstructs (NAVNs) encapsulating indocyanine green dye (ICG) for NIR bioimaging. NAVNs are spherical in size and have the intrinsic cellular-fusogenic properties of VSV-G. Further, the NIR imaging displaying higher fluorescence intensity in NAVNs treated cells suggests enhanced cellular uptake and delivery of ICG by NAVNs compared to the free form of ICG. The overall study highlights the effectiveness of VSV-G-based VNPs as an efficient delivery system for NIR fluorescence imaging.
Collapse
Affiliation(s)
- Suman Bishnoi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Anshu Kumari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India.,School of Medicine, University of Maryland Baltimore, Maryland 21201, United States
| | - Sheeba Rehman
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Aliva Minz
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | | | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Sharad Gupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India.,School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
39
|
Application of Halloysite Nanotubes in Cancer Therapy-A Review. MATERIALS 2021; 14:ma14112943. [PMID: 34072513 PMCID: PMC8198791 DOI: 10.3390/ma14112943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Halloysite, a nanoclay characterized by a unique, tubular structure, with oppositely charged interior and exterior, suitable, nanometric-range size, high biocompatibility, and low cost, is recently gaining more and more interest as an important and versatile component of various biomaterials and delivery systems of biomedical relevance. One of the most recent, significant, and intensely studied fields in which halloysite nanotubes (HNTs) found diverse applications is cancer therapy. Even though this particular direction is mentioned in several more general reviews, it has never so far been discussed in detail. In our review, we offer an extended survey of the literature on that particular aspect of the biomedical application of HNTs. While historical perspective is also given, our paper is focused on the most recent developments in this field, including controlled delivery and release of anticancer agents and nucleic acids by HNT-based systems, targeting cancer cells using HNT as a carrier, and the capture and analysis of circulating tumor cells (CTCs) with nanostructured or magnetic HNT surfaces. The overview of the most up-to-date knowledge on the HNT interactions with cancer cells is also given.
Collapse
|
40
|
Therapeutic Nanoparticles for the Different Phases of Ischemic Stroke. Life (Basel) 2021; 11:life11060482. [PMID: 34073229 PMCID: PMC8227304 DOI: 10.3390/life11060482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Stroke represents the second leading cause of mortality and morbidity worldwide. Ischemic strokes are the most prevalent type of stroke, and they are characterized by a series of pathological events prompted by an arterial occlusion that leads to a heterogeneous pathophysiological response through different hemodynamic phases, namely the hyperacute, acute, subacute, and chronic phases. Stroke treatment is highly reliant on recanalization therapies, which are limited to only a subset of patients due to their narrow therapeutic window; hence, there is a huge need for new stroke treatments. Nonetheless, the vast majority of promising treatments are not effective in the clinical setting due to their inability to cross the blood-brain barrier and reach the brain. In this context, nanotechnology-based approaches such as nanoparticle drug delivery emerge as the most promising option. In this review, we will discuss the current status of nanotechnology in the setting of stroke, focusing on the diverse available nanoparticle approaches targeted to the different pathological and physiological repair mechanisms involved in each of the stroke phases.
Collapse
|
41
|
Zinc Oxide and Silver Nanoparticle Effects on Intestinal Bacteria. MATERIALS 2021; 14:ma14102489. [PMID: 34065822 PMCID: PMC8151642 DOI: 10.3390/ma14102489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
The application of nanoparticles (NPs) for food safety is increasingly being explored. Zinc oxide (ZnO) and silver (Ag) NPs are inorganic chemicals with antimicrobial and bioactive characteristics and have been widely used in the food industry. However, not much is known about the behavior of these NPs upon ingestion and whether they inhibit natural gut microflora. The objective of this study was to investigate the effects of ZnO and Ag NPs on the intestinal bacteria, namely Escherichia coli, Lactobacillus acidophilus, and Bifidobacterium animalis. Cells were inoculated into tryptic soy broth or Lactobacilli MRS broth containing 1% of NP-free solution, 0, 12, 16, 20 mM of ZnO NPs or 0, 1.8, 2.7, 4.6 mM Ag NPs, and incubated at 37 °C for 24 h. The presence and characterization of the NPs on bacterial cells were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Membrane leakage and cell viability were assessed using a UV-visible spectrophotometer and confocal electron microscope, respectively. Numbers of treated cells were within 1 log CFU/mL less than those of the controls for up to 12 h of incubation. Cellular morphological changes were observed, but many cells remained in normal shapes. Only a small amount of internal cellular contents was leaked due to the NP treatments, and more live than dead cells were observed after exposure to the NPs. Based on these results, we conclude that ZnO and Ag NPs have mild inhibitory effects on intestinal bacteria.
Collapse
|
42
|
Khorsandi K, Hosseinzadeh R, Sadat Esfahani H, Keyvani-Ghamsari S, Ur Rahman S. Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities. Expert Rev Anti Infect Ther 2021; 19:1299-1323. [PMID: 33755503 DOI: 10.1080/14787210.2021.1908125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Despite extensive advances in the production and synthesis of antibiotics, infectious diseases are one of the main problems of the 21st century due to multidrug-resistant (MDR) distributing in organisms. Therefore, researchers in nanotechnology have focused on new strategies to formulate and synthesis the different types of nanoparticles (NPs) with antimicrobial properties.Areas covered:The present review focuses on nanoparticles which are divided into two groups, organic (micelles, liposomes, polymer-based and lipid-based NPs) and inorganic (metals and metal oxides). NPs can penetrate the cell wall then destroy permeability of cell membrane, the structure and function of cell macromolecules by producing of reactive oxygen species (ROS) and eventually kill the bacteria. Moreover, their characteristics and mechanism in various bacteria especially MDR bacteria and finally their biocompatibility and the factors affecting their activity have been discussed.Expert opinion:Nanotechnology has led to higher drug absorption, targeted drug delivery and fewer side effects. NPs can overcome MDR through affecting several targets in the bacteria cell and synergistically increase the effectiveness of current antibiotics. Moreover, organic NPs with regard to their biodegradability and biocompatibility characteristics can be suitable agents for medical applications. However, they are less stable in environment in comparison to inorganic NPs.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Homa Sadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
43
|
Mehta M, Dhanjal DS, Satija S, Wadhwa R, Paudel KR, Chellappan DK, Mohammad S, Haghi M, Hansbro PM, Dua K. Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier Based Drug Delivery Systems. Curr Pharm Des 2021; 26:5380-5392. [PMID: 33198611 DOI: 10.2174/1381612826999201116161143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Cell Signaling pathways form an integral part of our existence that allows the cells to comprehend a stimulus and respond back. Such reactions to external cues from the environment are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people are asthmatic, 65 million are suffering from COPD, 2.3 million are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and the nation's annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Daljeet Singh Dhanjal
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Ridhima Wadhwa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Keshav Raj Paudel
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Shiva Mohammad
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Philip M Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
44
|
Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology 2021; 19:106. [PMID: 33858436 PMCID: PMC8051083 DOI: 10.1186/s12951-021-00853-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a neglected tropical disease, Leishmaniasis is significantly instigating morbidity and mortality across the globe. Its clinical spectrum varies from ulcerative cutaneous lesions to systemic immersion causing hyperthermic hepato-splenomegaly. Curbing leishmanial parasite is toughly attributable to the myriad obstacles in existing chemotherapy and immunization. Since the 1990s, extensive research has been conducted for ameliorating disease prognosis, by resolving certain obstacles of conventional therapeutics viz. poor efficacy, systemic toxicity, inadequate drug accumulation inside the macrophage, scarce antigenic presentation to body's immune cells, protracted length and cost of the treatment. Mentioned hurdles can be restricted by designing nano-drug delivery system (nano-DDS) of extant anti-leishmanials, phyto-nano-DDS, surface modified-mannosylated and thiolated nano-DDS. Likewise, antigen delivery with co-transportation of suitable adjuvants would be achievable through nano-vaccines. In the past decade, researchers have engineered nano-DDS to improve the safety profile of existing drugs by restricting their release parameters. Polymerically-derived nano-DDS were found as a suitable option for oral delivery as well as SLNs due to pharmacokinetic re-modeling of drugs. Mannosylated nano-DDS have upgraded macrophage internalizing of nanosystem and the entrapped drug, provided with minimal toxicity. Cutaneous Leishmaniasis (CL) was tackling by the utilization of nano-DDS designed for topical delivery including niosomes, liposomes, and transfersomes. Transfersomes, however, appears to be superior for this purpose. The nanotechnology-based solution to prevent parasitic resistance is the use of Thiolated drug-loaded and multiple drugs loaded nano-DDS. These surfaces amended nano-DDS possess augmented IC50 values in comparison to conventional drugs and un-modified nano-DDS. Phyto-nano-DDS, another obscure horizon, have also been evaluated for their anti-leishmanial response, however, more intense assessment is a prerequisite. Impoverished Cytotoxic T-cells response followed by Leishmanial antigen proteins delivery have also been vanquished using nano-adjuvants. The eminence of nano-DDS for curtailment of anti-leishmanial chemotherapy and immunization associated challenges are extensively summed up in this review. This expedited approach is ameliorating the Leishmaniasis management successfully. Alongside, total to partial eradication of this disease can be sought along with associated co-morbidities.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
45
|
Cui X, Li X, Xu Z, Guan X, Ma J, Ding D, Zhang W. Fabrication and Characterization of Chitosan/Poly(Lactic-Co-glycolic Acid) Core-Shell Nanoparticles by Coaxial Electrospray Technology for Dual Delivery of Natamycin and Clotrimazole. Front Bioeng Biotechnol 2021; 9:635485. [PMID: 33748084 PMCID: PMC7973235 DOI: 10.3389/fbioe.2021.635485] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/26/2021] [Indexed: 02/02/2023] Open
Abstract
Natamycin (NAT) is the drug of choice for the treatment of fungal keratitis (FK). However, its inherent shortcomings, such as poor solubility, high dosing frequency, and long treatment cycle, need to be urgently addressed by designing a new delivery to widen its clinical utility. Growing research has confirmed that clotrimazole (CLZ) plays a significant role in fungal growth inhibition. Hence, coaxial electrospray (CO-ES) technology is used herein to prepare nano-systems with an average hydrodynamic particle size of 309-406 nm for the co-delivery of NAT and CLZ in chitosan (CTS) and poly(lactic-co-glycolic acid) (PLGA). The resulting NAT/CLZ@CTS/PLGA formulations were characterized by a transmission electron microscope (TEM) and in vitro release test. The results show that the formulations had obvious core-shell structures, uniform particle distribution, and also can sustain the release of drugs over 36 h. Furthermore, in vitro hemolysis, in vivo corneal irritation test, local allergenic test, and antifungal activity analyses are performed to evaluate the safety and efficiency of the formulations. Thus, good biosafety along with a significant anti-candidiasis effect are found in the NAT/CLZ@CTS/PLGA nanoparticles (NPs). Taken together, the results suggest that this design may provide a promising drug delivery system and a new option for the treatment of FK.
Collapse
Affiliation(s)
- Xiaoming Cui
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiaoli Li
- Department of Pharmacy, Weifang Traditional Chinese Hospital, Weifang, China
| | - Zhilu Xu
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
46
|
Brennan G, Ryan S, Soulimane T, Tofail SAM, Silien C. Dark Field and Coherent Anti-Stokes Raman (DF-CARS) Imaging of Cell Uptake of Core-Shell, Magnetic-Plasmonic Nanoparticles. NANOMATERIALS 2021; 11:nano11030685. [PMID: 33803430 PMCID: PMC7998699 DOI: 10.3390/nano11030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
Magnetic-plasmonic, Fe3O4-Au, core-shell nanoparticles are popular in many applications, most notably in therapeutics and diagnostics, and thus, the imaging of these nanostructures in biological samples is of high importance. These nanostructures are typically imaged in biological material by dark field scatter imaging, which requires an even distribution of nanostructures in the sample and, therefore, high nanoparticle doses, potentially leading to toxicology issues. Herein, we explore the nonlinear optical properties of magnetic nanoparticles coated with various thicknesses of gold using the open aperture z-scan technique to determine the nonlinear optical properties and moreover, predict the efficacy of the nanostructures in nonlinear imaging. We find that the magnetic nanoparticles coated with gold nanoseeds and thinner gold shells (ca. 4 nm) show the largest nonlinear absorption coefficient β and imaginary part of the third-order susceptibility Im χ(3), suggesting that these nanostructures would be suitable contrast agents. Next, we combine laser dark field microscopy and epi-detected coherent anti-Stokes Raman (CARS) microscopy to image the uptake of magnetic-plasmonic nanoparticles in human pancreatic cancer cells. We show the epi-detected CARS technique is suitable for imaging of the magnetic-plasmonic nanoparticles without requiring a dense distribution of nanoparticles. This technique achieves superior nanoparticle contrasting over both epi-detected backscatter imaging and transmission dark field imaging, while also attaining label-free chemical contrasting of the cell. Lastly, we show the high biocompatibility of the Fe3O4 nanoparticles with ca. 4-nm thick Au shell at concentrations of 10-100 µg/mL.
Collapse
Affiliation(s)
- Grace Brennan
- Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (G.B.); (S.A.M.T.)
| | - Sally Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (S.R.); (T.S.)
| | - Tewfik Soulimane
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (S.R.); (T.S.)
| | - Syed A. M. Tofail
- Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (G.B.); (S.A.M.T.)
| | - Christophe Silien
- Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (G.B.); (S.A.M.T.)
- Correspondence:
| |
Collapse
|
47
|
Ibrahim Fouad G. A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19). BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:36. [PMID: 33564223 PMCID: PMC7863044 DOI: 10.1186/s42269-021-00487-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/06/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Over the last ten months since December 2019, the world has faced infectious emerging novel coronavirus disease-2019 (COVID-19) outbreaks that had a massive global impact affecting over 185 countries. MAIN BODY Emerging novel COVID-19 is a global health emergency on a pandemic scale that represents a terror to human health through its ability to escape anti-viral measures. Such viral infections impose a great socioeconomic burden, besides global health challenges. This imposes a pressing need for the development of anti-viral therapeutic agents and diagnostic tools that demonstrate multifunctional, target-specific, and non-toxic properties. Nanotheranostics is regarded as a promising approach for the management of different viral infections. Nanotheranostics facilitates targeted drug-delivery of anti-viral therapeutics as well as contributing to the development of diagnostic systems. Multifunctional metallic nanoparticles (NPs) have emerged as innovative theranostic agents that enable sustainable treatment and effective diagnosis. Here we have reviewed current advances in the use of theranostic metallic NPs to fight against COVID-19, and discussed the application as well as limitations associated with nanotechnology-based theranostic approaches. CONCLUSION This review verified the potential use of some metal-based NPs as anti-viral nanotheranostic agents. Metal-based NPs could act as carriers that enable the sustainable and targeted delivery of active anti-viral molecules, or as diagnostic agents that allow rapid and sensitive diagnosis of viral infections.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622 Egypt
| |
Collapse
|
48
|
Pandey Y, Ambwani S. Nano Metal based Herbal theranostics for Cancer management: coalescing nature's boon with nanotechnological advancement. Curr Pharm Biotechnol 2021; 23:30-46. [PMID: 33480341 DOI: 10.2174/1389201022666210122141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
Cancer is amongst the leading public health problems globally with continuously increasing prevalence rate that demands for extensive and expensive treatment. Despite availability of number of potential cancer therapies, inadequate success has been achieved due to complexity and heterogeneity of tumors. Moreover, late/ terminal stage cancer leads to multidrug resistance, excruciating side effects, recurrence, etc. This is because of low penetrability and deleterious effects of drug on non-target cells/ tissues. This requires for cost effective, efficacious, alternative/ adjunct, complementary medicines with targeted drug delivery approach. A potential strategy to resolve this difficulty is to use theranostics i.e., formulations having both a therapeutic element and an imaging agent. Phytotherapeutics have been extensively used since times immemorial, having wide acceptability, easy availability, minimal side effects and comparatively inexpensive. These herbal formulations are mostly orally administered and thus subjected to adverse pH, enzymatic degradation, poor gut absorption, low bioavailability and non-targeted delivery that ultimately lead to their poor effectiveness. Constraints associated with conventional phyto-pharmaceuticals can be improved by designing and using "Nano Delivery Systems" (NDS). The foremost aim of metal based NDS is to provide sustained drug release, site-specific action, improved patient's compliance and enhanced efficacy. Metal Nanocarriers carrying herbal drugs will avoid these obstructions, so the drug can circulate into the blood for a longer period of time and provide optimal amount of the drug to the site of action. Besides, Herbal drugs with NDS thus would be efficacious as alternative/ complementary cancer theranostics. Present review describes about novel theranostic systems employing metal nanocarriers with diagnostic and therapeutic properties as are an effective strategy for cancer treatment. These systems when conjugated with herbal drugs provide an efficient management strategy for cancer.
Collapse
Affiliation(s)
- Yogesh Pandey
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., G.B. Pant University of Agriculture &Technology, Pantnagar, 263145, Uttarakhand. India
| | - Sonu Ambwani
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., G.B. Pant University of Agriculture &Technology, Pantnagar, 263145, Uttarakhand. India
| |
Collapse
|
49
|
Ikram M, Javed B, Raja NI, Mashwani ZUR. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int J Nanomedicine 2021; 16:249-268. [PMID: 33469285 PMCID: PMC7811472 DOI: 10.2147/ijn.s295053] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have advantages over other nanomaterials because of the promising role of selenium in the stabilization of the immune system and activation of the defense response. The use of SeNPs and their supplements not only have pharmacological significance but also boost and prepare the body's immune system to fight the pathogens. This review summarizes the recent progress in the biogenesis of plant-based SeNPs by using various plant species and the role of secondary metabolites on their biocompatible functioning. Phyto-synthesis of SeNPs results in the synthesis of nanomaterials of various, size, shape and biochemical nature and has advantages over other routine physical and chemical methods because of their biocompatibility, eco-friendly nature and in vivo actions. Unfortunately, the plant-based SeNPs failed to attain considerable attention in the pharmaceutical industry. However, a few studies were performed to explore the therapeutic potential of the SeNPs against various cancer cells, microbial pathogens, viral infections, hepatoprotective actions, diabetic management, and antioxidant approaches. Further, some of the selenium-based drug delivery systems are developed by engineering the SeNPs with the functional ligands to deliver drugs to the targeted sites. This review also provides up-to-date information on the mechanistic actions that the SeNPs adopt to achieve their designated tasks as it may help to develop precision medicine with customized treatment and healthcare for the ailing population.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
50
|
|