1
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Martínez-Torres AM, Morán J. Aquaporin 4 and the endocannabinoid system: a potential therapeutic target in brain injury. Exp Brain Res 2024; 242:2041-2058. [PMID: 39043897 PMCID: PMC11306651 DOI: 10.1007/s00221-024-06896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Brain edema is a critical complication arising from stroke and traumatic brain injury (TBI) with an important impact on patient recovery and can lead to long-term consequences. Therapeutic options to reduce edema progression are limited with variable patient outcomes. Aquaporin 4 (AQP4) is a water channel that allows bidirectional water diffusion across the astrocyte membrane and participates in the distinct phases of cerebral edema. The absence or inhibition of this channel has been demonstrated to ameliorate edema and brain damage. The endocannabinoid system (ECS) is a neuromodulator system with a wide expression in the brain and its activation has shown neuroprotective properties in diverse models of neuronal damage. This review describes and discusses the major features of ECS and AQP4 and their role during brain damage, observing that ECS stimulation reduces edema and injury size in diverse models of brain damage, however, the relationship between AQP4 expression and dynamics and ECS activation remains unclear. The research on these topics holds promising therapeutic implications for the treatment of brain edema following stroke and TBI.
Collapse
Affiliation(s)
- Ari Misael Martínez-Torres
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México.
| |
Collapse
|
3
|
Lauwers C, De Bruyn L, Langouche L. Impact of critical illness on cholesterol and fatty acids: insights into pathophysiology and therapeutic targets. Intensive Care Med Exp 2023; 11:84. [PMID: 38015312 PMCID: PMC10684846 DOI: 10.1186/s40635-023-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Critical illness is characterized by a hypercatabolic response encompassing endocrine and metabolic alterations. Not only the uptake, synthesis and metabolism of glucose and amino acids is majorly affected, but also the homeostasis of lipids and cholesterol is altered during acute and prolonged critical illness. Patients who suffer from critically ill conditions such as sepsis, major trauma, surgery or burn wounds display an immediate and sustained reduction in low plasma LDL-, HDL- and total cholesterol concentrations, together with a, less pronounced, increase in plasma free fatty acids. The severity of these alterations is associated with severity of illness, but the underlying pathophysiological mechanisms are multifactorial and only partly clarified. This narrative review aims to provide an overview of the current knowledge of how lipid and cholesterol uptake, synthesis and metabolism is affected during critical illness. Reduced nutritional uptake, increased scavenging of lipoproteins as well as an increased conversion to cortisol or other cholesterol-derived metabolites might all play a role in the decrease in plasma cholesterol. The acute stress response to critical illness creates a lipolytic cocktail, which might explain the increase in plasma free fatty acids, although reduced uptake and oxidation, but also increased lipogenesis, especially in prolonged critical illness, will also affect the circulating levels. Whether a disturbed lipid homeostasis warrants intervention or should primarily be interpreted as a signal of severity of illness requires further research.
Collapse
Affiliation(s)
- Caroline Lauwers
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lauren De Bruyn
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Ghaderi F, Sotoodehnejadnematalahi F, Hajebrahimi Z, Fateh A, Siadat SD. Effects of active, inactive, and derivatives of Akkermansia muciniphila on the expression of the endocannabinoid system and PPARs genes. Sci Rep 2022; 12:10031. [PMID: 35705595 PMCID: PMC9200819 DOI: 10.1038/s41598-022-13840-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effects of active and heat-inactivated forms of Akkermansia muciniphila, bacterium-derived outer membrane vesicles (OMVs), and cell-free supernatant on the transcription of endocannabinoid system (ECS) members, including cannabinoid receptors 1 and 2 (CB1 and CB2), fatty acid amide hydrolase (FAAH), and peroxisome proliferator-activated receptors (PPARs) genes (i.e., α, β/δ, and δ) in Caco-2 and HepG-2 cell lines. After the inoculation of A. muciniphila in brain heart infusion enriched medium, OMVs and cell-free supernatant were extracted. For the investigation of the effects of bacteria and its derivatives on the expression of ECS and PPARs genes, the aforementioned cells were treated by active and heat-inactivated bacteria, OMVs, and cell-free supernatant. Quantitative real-time polymerase chain reaction analysis revealed that both forms of the bacterium, bacterial-derived OMVs, and cell-free supernatant could affect the expression of CB1, CB2, FAAH, and PPARs genes (i.e., α, β/δ, and δ) significantly (P < 0.05). Considering the engagement of the aforementioned genes in metabolic pathways, it might be suggested that both forms of the bacterium, OMVs, and cell-free supernatant might have the potential to serve as a probiotic, paraprobiotic, and postbiotic candidate to prevent obesity, metabolic disorders, and liver diseases.
Collapse
Affiliation(s)
- Farinaz Ghaderi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Hajebrahimi
- A&S Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research and Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research and Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Crocodile Oil Modulates Inflammation and Immune Responses in LPS-Stimulated RAW 264.7 Macrophages. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123784. [PMID: 35744910 PMCID: PMC9229527 DOI: 10.3390/molecules27123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Crocodile oil (CO) is generated from the fatty tissues of crocodiles as a by-product of commercial aquaculture. CO is extensively applied in the treatment of illnesses including asthma, emphysema, skin ulcers, and cancer, as well as wound healing. Whether CO has anti-inflammatory properties and encourages an immune response remains uncertain. The impact of CO on inflammatory conditions in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the mechanisms behind it were examined in this work. Cells were treated with 0.125–2% CO dissolved in 0.5% propylene glycol with or without LPS. The production and expression of inflammatory cytokines and mediators were also examined in this research. CO reduced the synthesis and gene expression of interleukin-6 (IL-6). Consistently, CO inhibited the expression and synthesis of inflammatory markers including cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nitric oxide (NO), and nuclear factor kappa B (NF-κB). Furthermore, CO reduced the effects of DNA damage. CO also increased the cell-cycle regulators, cyclins D2 and E2, which improved the immunological response. CO might thus be produced as a nutraceutical supplement to help avoid inflammatory diseases.
Collapse
|
6
|
Schmitz JM, Lane SD, Weaver MF, Narayana PA, Hasan KM, Russell DD, Suchting R, Green CE. Targeting white matter neuroprotection as a relapse prevention strategy for treatment of cocaine use disorder: Design of a mechanism-focused randomized clinical trial. Contemp Clin Trials 2021; 111:106603. [PMID: 34688917 DOI: 10.1016/j.cct.2021.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
Cocaine use continues to be a significant public health problem with limited treatment options and no approved pharmacotherapies. Cognitive-behavioral therapy (CBT) remains the mainstay treatment for preventing relapse, however, people with chronic cocaine use display cognitive impairments that are associated with poor response to CBT. Emerging evidence in animal and human studies suggests that the peroxisome proliferator-activated receptor-gamma (PPAR- γ) agonist, pioglitazone, improves white matter integrity that is essential for cognitive function. This project will determine whether adjunctive use of pioglitazone enhances the effect of CBT in preventing relapse during the early phase of recovery from cocaine use disorder. This paper describes the design of a mechanism-focused phase 2 randomized clinical trial that aims first to evaluate the effects of pioglitazone on targeted mechanisms related to white matter integrity, cognitive function, and cocaine craving; and second, to evaluate the extent to which improvements on target mechanisms predict CBT response. Positive results will support pioglitazone as a potential cognitive enhancing agent to advance to later stage medication development research.
Collapse
Affiliation(s)
- Joy M Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, USA.
| | - Scott D Lane
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Michael F Weaver
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | | | - Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Charles E Green
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, USA; Center for Clinical Research and Evidence-Based Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| |
Collapse
|
7
|
Chen KM, Peng CY, Shyu LY, Lan KP, Lai SC. Peroxisome-Proliferator Activator Receptor γ in Mouse Model with Meningoencephalitis Caused by Angiostrongylus cantonensis. J Parasitol 2021; 107:205-213. [PMID: 33684197 DOI: 10.1645/19-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Peroxisome-proliferator activator receptor γ (PPARγ) has an anti-inflammatory role that inhibits the nuclear factor-κB (NF-κB) pathway and regulates the expressions of pro-inflammatory proteins, whereas its role in parasitic meningoencephalitis remains unknown. In this study we investigated the role of PPARγ and related mechanisms in eosinophilic meningoencephalitis caused by the rat lungworm Angiostrongylus cantonensis. We observed increased protein NF-κB expression in mouse brain tissue using GW9662, which is the specific antagonist of PPARγ, in a mouse model of angiostrongyliasis. Then we investigated NF-κB-related downstream proteins, such as COX-2, NOSs, and IL-1β, with Western blot or enzyme-linked immunosorbent assay and found that the protein expression was upregulated. The results of gelatin zymography also showed that the MMP-9 activities were upregulated. Treatment with GW9662 increased the permeability of the blood-brain barrier and the number of eosinophils in cerebrospinal fluid. These results suggested that in angiostrongyliasis, PPARγ may play an anti-inflammation role in many inflammatory mediators, including NOS-related oxidative stress, cytokines, and matrix metalloproteinase cascade by decreasing the NF-κB action.
Collapse
Affiliation(s)
- Ke-Min Chen
- Department of Parasitology, Chung Shan Medical University, 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan
| | - Chi-Yang Peng
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ling-Yuh Shyu
- Department of Parasitology, Chung Shan Medical University, 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan
| | - Kuang-Pin Lan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Shih-Chan Lai
- Department of Parasitology, Chung Shan Medical University, 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
8
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
9
|
Liu W, Li S, Wu YK, Yan X, Zhu YM, Jiang FY, Jiang Y, Zou LH, Wang TT. Metabolic profiling of rats poisoned with paraquat and treated with Xuebijing using a UPLC-QTOF-MS/MS metabolomics approach. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4562-4571. [PMID: 33001064 DOI: 10.1039/d0ay00968g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Xuebijing (XBJ) is a compound Chinese medicine that contains Paeoniae Radix Rubra, ChuanXiong Rhizoma, Salvia Miltiorrhiza Radix et Rhizoma, Carthami Flos, and Angelicae Sinensis Radix. It is widely used in China to treat sepsis. Previous studies have demonstrated that XBJ can decrease mortality in patients with moderate paraquat poisoning. However, the mechanism by which it exerts this effect is not completely clear. In this study, an ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS)-based metabolomics approach was used to perform a metabolic profiling analysis. Principal component analysis (PCA), random forest (RF), and partial least squares discriminant analysis (PLS-DA) were used to identify metabolites to clarify the mechanism of XBJ's activity. XBJ clearly alleviated lung injury in a Sprague Dawley (SD) rat model of paraquat (PQ) poisoning. Seven metabolites related to four pathways, including those involved in sphingolipid and phospholipid metabolism, amino acid metabolism, unsaturated fatty acid metabolism, and pantothenic acid and CoA biosynthesis, were present at different levels in PQ-poisoned rats treated with XBJ compared with untreated rats. XBJ can ameliorate the effects of PQ poisoning in SD rats. Using a metabolomics approach enabled us to gain new insight into the mechanism underlying this effect.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pharmacy, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zeng XM, Liu DH, Han Y, Huang ZQ, Zhang JW, Huang Q. Assessment of inflammatory markers and mitochondrial factors in a rat model of sepsis-induced myocardial dysfunction. Am J Transl Res 2020; 12:901-911. [PMID: 32269722 PMCID: PMC7137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to investigate the expression of inflammatory markers and mitochondrial function-related genes, as well as their temporal relationship with cardiac myocyte injury in a rat model of sepsis. The sepsis model was constructed using cecal ligation and puncture (CLP). Two hours after CLP, the levels of inflammatory cytokines (interleukin [IL]-1β, IL-6, and TNFα) and myocardial function markers (serum brain natriuretic peptide [BNP], cardiac troponin-I [cTNI], and procalcitonin [PCT]) were increased significantly, falling from around 9 hours postoperatively. The concentration of nitric oxide (NO) in the heart tissue was increased 6 hours after CLP. The heart rate (HR) of rats that underwent CLP decreased 2 hours after surgery and then increased to above-normal values. The left ventricular short axis shortening (FS) and left ventricular ejection fraction (LVEF) were decreased at 2 hours postoperatively and reached a minima at 6 hours. Stroke volume (SV), cardiac output (CO), and changes and heart index (CI) results indicated myocardial dysfunction. Western blot analysis demonstrated the increased expression of mitochondrial function-related proteins and activation of mitochondrial apoptotic pathways. Hematoxylin and eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays revealed that the proportion of proapoptotic cells was significantly higher in rats that underwent CLP than sham surgery at 2 to 24 hours postoperatively. Taken together, our results indicate that-in the rat model-CLP-induced sepsis leads to impaired cardiac function. Furthermore, induction of the expression of mitochondrial function-related genes indicated that myocardial cell mitochondrial function was disrupted, further aggravating cardiomyocyte apoptosis. These results provide a theoretical basis for the treatment of sepsis-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Xiao-Mei Zeng
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - De-Hong Liu
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - Yong Han
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - Zhi-Qiang Huang
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - Ji-Wen Zhang
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - Qun Huang
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| |
Collapse
|
11
|
Haga H, Yamada R, Izumi H, Shinoda Y, Kawahata I, Miyachi H, Fukunaga K. Novel fatty acid-binding protein 3 ligand inhibits dopaminergic neuronal death and improves motor and cognitive impairments in Parkinson's disease model mice. Pharmacol Biochem Behav 2020; 191:172891. [PMID: 32126223 DOI: 10.1016/j.pbb.2020.172891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 11/19/2022]
Abstract
The main symptom of Parkinson's disease (PD) is motor dysfunction and remarkably approximately 30-40% of PD patients exhibit cognitive impairments. Recently, we have developed MF8, a heart-type fatty acid-binding protein (FABP3)-specific ligand, which can inhibit α-synuclein (α-syn) oligomerization induced by arachidonic acid in FABP3 overexpressing neuro2A cells. The present study aimed to determine whether MF8 attenuates dopaminergic neuronal death and motor and cognitive impairments in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. MF8 can penetrate the blood-brain barrier and its peak brain concentration (21.5 ± 2.1 nM) was achieved 6 h after the oral administration (1.0 mg/kg). We also compared its effects and pharmacological action with those of L-DOPA (3,4-dihydroxy-l-phenylalanine). PD model mice were developed by administering MPTP (25 mg/kg, i.p.) once a day for five consecutive days. Twenty-four hours after the final MPTP injection, mice were administered MF8 (0.3, 1.0 mg/kg, p.o.) or L-DOPA (25 mg/kg, i.p.) once a day for 28 consecutive days and subjected to behavioral and histochemical studies. MF8 (1.0 mg/kg, p.o.), but not L-DOPA, inhibited the dopaminergic neuronal death in the ventral tegmental area and the substantia nigra pars compacta region of the MPTP-treated mice. MF8 also improved both, motor and cognitive functions, while L-DOPA ameliorated only motor dysfunction. Taken together, our results showed that MF8 attenuated the MPTP-induced dopaminergic neuronal death associated with PD pathology. We present MF8 as a novel disease-modifying therapeutic molecule for PD, which acts via a mechanism different from that of L-DOPA.
Collapse
Affiliation(s)
- Hidaka Haga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryo Yamada
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
12
|
Lv C, Huang L. Xenobiotic receptors in mediating the effect of sepsis on drug metabolism. Acta Pharm Sin B 2020; 10:33-41. [PMID: 31993305 PMCID: PMC6977532 DOI: 10.1016/j.apsb.2019.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/28/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis is an infection-induced systemic inflammatory syndrome. The immune response in sepsis is characterized by the activation of both proinflammatory and anti-inflammatory pathways. When sepsis occurs, the expression and activity of many inflammatory cytokines are markedly affected. Xenobiotic receptors are chemical-sensing transcription factors that play essential roles in the transcriptional regulation of drug-metabolizing enzymes (DMEs). Xenobiotic receptors mediate the functional crosstalk between sepsis and drug metabolism because the inflammatory cytokines released during sepsis can affect the expression and activity of xenobiotic receptors and thus impact the expression and activity of DMEs. Xenobiotic receptors in turn may affect the clinical outcomes of sepsis. This review focuses on the sepsis-induced inflammatory response and xenobiotic receptors such as pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR), glucocorticoid receptor (GR), and constitutive androstane receptor (CAR), DMEs such as CYP1A, CYP2B6, CYP2C9, and CYP3A4, and drug transporters such as p-glycoprotein (P-gp), and multidrug resistance-associated protein (MRPs) that are affected by sepsis. Understanding the xenobiotic receptor-mediated effect of sepsis on drug metabolism will help to improve the safe use of drugs in sepsis patients and the development of new xenobiotic receptor-based therapeutic strategies for sepsis.
Collapse
Key Words
- AHR, aryl hydrocarbon receptor
- AP-1, adaptor protein 1
- ARNT, AHR nuclear translocator
- CLP, cecum ligation and puncture
- COX-2, cyclooxygenase 2
- CYPs, cytochrome P450s
- DMEs, drug-metabolizing enzymes
- DREs, dioxin response elements
- Drug metabolism
- Drug transporters
- Drug-metabolizing enzymes
- GC, glucocorticoid
- GR, glucocorticoid receptor
- GREs, glucocorticoid receptor response elements
- Gsts, phase II glutathione S-transferase
- HSP90, heat shock protein 90
- IBD, inflammatory bowel disease
- IL-1β, interleukin-1β
- IRF3, interferon regulatory factor 3
- IRF7, interferon regulatory factor 7
- Inflammatory cytokines
- LPS, lipopolysaccharide
- Mrp, phase III multidrug-resistant protein
- NF-κB, nuclear factor-kappa B
- NOS, nitric oxide synthase
- NR, nuclear receptor
- Oatp2, organic anion transport polypeptide 2
- P-gp, p-glycoprotein
- PAS, Per/ARNT/Sim
- PCN, pregnenolone-16α-carbonitrile
- PKC, protein kinase C
- PLA2, phospholipase A2
- PRRs, pattern recognition receptors
- PXR, pregnane X receptor
- SRC1, steroid receptor coactivator 1
- STAT3, signal transducers and activators of transcription 3
- Sepsis
- Sult, sulfonyl transferase
- TNF-α, tumor necrosis factor
- Ugts, UDP-glucuronic transferase
- Xenobiotic receptors
Collapse
|
13
|
Bando M, Masumoto S, Kuroda M, Tsutsumi R, Sakaue H. Effect of olive oil consumption on aging in a senescence-accelerated mice-prone 8 (SAMP8) model. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:241-247. [PMID: 31656282 DOI: 10.2152/jmi.66.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Background : Mediterranean diets have been linked to a reduced risk of cancer, vascular illnesses, Parkinson's and Alzheimer's disease. Olive oil is the primary fat source in the Mediterranean diet ; however, only a few studies have investigated the effect of olive oil on aging. In the present study, we aimed to determine whether consumption of olive oil significantly influences aging and memory in senescence-accelerated mouse-prone 8 (SAMP8). Methods : SAMP8 and senescence-accelerated mouse resistant 1 (SAMR1) mice were fed either 7% soy oil or 1% olive oil and 6% soy oil during a six-month study period. Reduction in memory in passive avoidance learning was examined after two months from the initiation of the experiment. Results : The weight of organs including the liver, kidney, spleen, and fat tissue changed significantly and memory performance was reduced in SAMP8 than in SAMR1 mice. There were no significant differences in SAMP8 and SAMR1 mice; however, blood triglyceride level decreased significantly in SAMP8 mice fed on olive oil. Conclusions : These results suggest that consuming olive oil may not have a protective role in aging and memory recall, but beneficial effects may be related to improvement in lipid metabolism. J. Med. Invest. 66 : 241-247, August, 2019.
Collapse
Affiliation(s)
- Masahiro Bando
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Saeko Masumoto
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
14
|
Omega-9 Oleic Acid, the Main Compound of Olive Oil, Mitigates Inflammation during Experimental Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6053492. [PMID: 30538802 PMCID: PMC6260523 DOI: 10.1155/2018/6053492] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
The Mediterranean diet, rich in olive oil, is beneficial, reducing the risk of cardiovascular diseases and cancer. Olive oil is mostly composed of the monounsaturated fatty acid omega-9. We showed omega-9 protects septic mice modulating lipid metabolism. Sepsis is initiated by the host response to infection with organ damage, increased plasma free fatty acids, high levels of cortisol, massive cytokine production, leukocyte activation, and endothelial dysfunction. We aimed to analyze the effect of omega-9 supplementation on corticosteroid unbalance, inflammation, bacterial elimination, and peroxisome proliferator-activated receptor (PPAR) gamma expression, an omega-9 receptor and inflammatory modulator. We treated mice for 14 days with omega-9 and induced sepsis by cecal ligation and puncture (CLP). We measured systemic corticosterone levels, cytokine production, leukocyte and bacterial counts in the peritoneum, and the expression of PPAR gamma in both liver and adipose tissues during experimental sepsis. We further studied omega-9 effects on leukocyte rolling in mouse cremaster muscle-inflamed postcapillary venules and in the cerebral microcirculation of septic mice. Here, we demonstrate that omega-9 treatment is associated with increased levels of the anti-inflammatory cytokine IL-10 and decreased levels of the proinflammatory cytokines TNF-α and IL-1β in peritoneal lavage fluid of mice with sepsis. Omega-9 treatment also decreased systemic corticosterone levels. Neutrophil migration from circulation to the peritoneal cavity and leukocyte rolling on the endothelium were decreased by omega-9 treatment. Omega-9 also decreased bacterial load in the peritoneal lavage and restored liver and adipose tissue PPAR gamma expression in septic animals. Our data suggest a beneficial anti-inflammatory role of omega-9 in sepsis, mitigating leukocyte rolling and leukocyte influx, balancing cytokine production, and controlling bacterial growth possibly through a PPAR gamma expression-dependent mechanism. The significant reduction of inflammation detected after omega-9 enteral injection can further contribute to the already known beneficial properties facilitated by unsaturated fatty acid-enriched diets.
Collapse
|
15
|
Tunctan B, Kucukkavruk SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S. Bexarotene, a Selective RXRα Agonist, Reverses Hypotension Associated with Inflammation and Tissue Injury in a Rat Model of Septic Shock. Inflammation 2018; 41:337-355. [PMID: 29188497 DOI: 10.1007/s10753-017-0691-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor (RXR). The aim of this study was to investigate effects of bexarotene, a selective RXRα agonist, on the changes in renal, cardiac, hepatic, and pulmonary expression/activity of inducible nitric oxide synthase (iNOS) and cytochrome P450 (CYP) 4F6 in relation to PPARα/β/γ-RXRα heterodimer formation in a rat model of septic shock. Rats were injected with dimethyl sulfoxide or bexarotene 1 h after administration of saline or lipopolysaccharide (LPS). Mean arterial pressure (MAP) and heart rate (HR) were recorded from rats, which had received either saline or LPS before and after 1, 2, 3, and 4 h. Serum iNOS, LTB4, myeloperoxidase (MPO), and lactate dehydrogenase (LDH) levels as well as tissue iNOS and CYP4F6 mRNA expression in addition to PPARα/β/γ and RXRα proteins were measured. LPS-induced decrease in MAP and increase in HR were associated with a decrease in PPARα/β/γ-RXRα heterodimer formation and CYP4F6 mRNA expression. LPS also caused an increase in systemic iNOS, LTB4, MPO, and LDH levels as well as iNOS mRNA expression. Bexarotene at 0.1 mg/kg (i.p.) prevented the LPS-induced changes, except tachycardia. The results suggest that increased formation of PPARα/β/γ-RXRα heterodimers and CYP4F6 expression/activity in addition to decreased iNOS expression contributes to the beneficial effect of bexarotene to prevent the hypotension associated with inflammation and tissue injury during rat endotoxemia.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey.
| | - Sefika P Kucukkavruk
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Meryem Temiz-Resitoglu
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Demet S Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Ayse N Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| |
Collapse
|
16
|
Subash J, Alexander T, Beamer V, McMichael A. A proposed mechanism for central centrifugal cicatricial alopecia. Exp Dermatol 2018; 29:190-195. [PMID: 29660185 DOI: 10.1111/exd.13664] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Central centrifugal cicatricial alopecia (CCCA) has an unknown mechanism. Analyzing other scarring diseases (lichen planopilaris, fibrotic kidney disease and scleroderma) may help to clarify the mechanism of scarring in CCCA. These diseases were chosen for comparison due to either their location of disease (skin or scalp specifically), or prominence in patients of African descent. Genetics, possible triggers, an autoimmune lymphocytic response, and epithelial to mesenchymal transition are potentially involved. Possible common pathways in scarring diseases and a better understanding of the CCCA mechanism will lead to further research into the pathogenesis and potential treatments of CCCA.
Collapse
Affiliation(s)
- Jacob Subash
- Department of Dermatology, Wake Forest University, Winston-Salem, NC, USA
| | | | - Victoria Beamer
- Department of Dermatology, Wake Forest University, Winston-Salem, NC, USA
| | - Amy McMichael
- Department of Dermatology, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
17
|
Busch D, Kapoor A, Rademann P, Hildebrand F, Bahrami S, Thiemermann C, Osuchowski MF. Delayed activation of PPAR-β/δ improves long-term survival in mouse sepsis: effects on organ inflammation and coagulation. Innate Immun 2018; 24:262-273. [PMID: 29697010 DOI: 10.1177/1753425918771748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR)-β/δ reduces tissue injury in murine endotoxemia. We hypothesized that the PPAR-β/δ-agonist GW0742 improves long-term outcome after sepsis caused by cecal ligation and puncture (CLP). Fifty-one CD-1 female mice underwent CLP and received either vehicle (control), GW0742 (0.03 mg/kg/injection; five post-CLP i.v. injections), GSK0660 (PPAR-β/δ-antagonist) or both and were monitored for 28 d. Another 20 CLP mice treated with GW0742 and vehicle were sacrificed 24 h post-CLP to assess coagulopathy. Compared to vehicle, survival of CLP-mice treated with GW0742 was higher by 35% at d 7 and by 50% at d 28. CLP mice treated with GW0742 had 60% higher IFN-γ but circulating monocyte chemoattractant protein-1 and chemokine ligand were lower at 48 h post-CLP. Compared to vehicle, CLP mice treated with GW0742 exhibited a 50% reduction in the circulating plasminogen activator inhibitor-1 associated with an increase in platelet number at 24 h post-CLP (but no changes occurred in anti-thrombin-III, plasminogen, fibrinogen and clotting-times). CLP mice treated with GW0742 exhibited a similar increase in most of the biochemical markers of organ injury/dysfunction (lactate dehydrogenase, alanine aminotransferase, creatine kinase, creatinine, blood urea nitrogen, and triglycerides) measured. Treatment with GW0742 consistently improved long-term survival in septic CD-1 mice by partially modulating the post-CLP systemic cytokine response and coagulation systems.
Collapse
Affiliation(s)
- Daniel Busch
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria.,2 Department of General-, Visceral-, Thoracic- and Vascular Surgery, Helios Hanseklinikum Stralsund, Germany
| | - Amar Kapoor
- 3 Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, London, UK
| | - Pia Rademann
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria.,4 Center for Experimental Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Soheyl Bahrami
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Christoph Thiemermann
- 3 Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, London, UK
| | - Marcin F Osuchowski
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| |
Collapse
|
18
|
Schmitz JM, Green CE, Hasan KM, Vincent J, Suchting R, Weaver MF, Moeller FG, Narayana PA, Cunningham KA, Dineley KT, Lane SD. PPAR-gamma agonist pioglitazone modifies craving intensity and brain white matter integrity in patients with primary cocaine use disorder: a double-blind randomized controlled pilot trial. Addiction 2017; 112:1861-1868. [PMID: 28498501 PMCID: PMC5593771 DOI: 10.1111/add.13868] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/14/2017] [Accepted: 05/05/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Pioglitazone (PIO), a potent agonist of PPAR-gamma, is a promising candidate treatment for cocaine use disorder (CUD). We tested the effects of PIO on targeted mechanisms relevant to CUD: cocaine craving and brain white matter (WM) integrity. Feasibility, medication compliance and tolerability were evaluated. DESIGN Two-arm double-blind randomized controlled proof-of-concept pilot trial of PIO or placebo (PLC). SETTING Single-site out-patient treatment research clinic in Houston, TX, USA. PARTICIPANTS Thirty treatment-seeking adults, 18 to 60 years old, with CUD. Eighteen participants (8 = PIO; 10 = PLC) completed diffusion tensor imaging (DTI) of WM integrity at pre-/post-treatment. INTERVENTION Study medication was dispensed at thrice weekly visits along with once-weekly cognitive behavioral therapy for 12 weeks. MEASUREMENTS Measures of target engagement mechanisms of interest included cocaine craving assessed by the Brief Substance Craving Scale (BSCS), the Obsessive Compulsive Drug Use Scale (OCDUS), a visual analog scale (VAS) and change in WM integrity. Feasibility measures included number completing treatment, medication compliance (riboflavin detection) and tolerability (side effects, serious adverse events). FINDINGS Target engagement change in mechanisms of interest, defined as a ≥ 0.75 Bayesian posterior probability of an interaction existing favoring PIO over PLC, was demonstrated on measures of craving (BSCS, VAS) and WM integrity indexed by fractional anisotropy (FA) values. Outcomes indicated greater decrease in craving and greater increase in FA values in the PIO group. Feasibility was demonstrated by high completion rates among those starting treatment (21/26 = 80%) and medication compliance (≥ 80%). There were no reported serious adverse events for PIO. CONCLUSIONS Compared with placebo, patients receiving pioglitazone show a higher likelihood of reduced cocaine craving and improved brain white matter integrity as a function of time in treatment. Pioglitazone shows good feasibility as a treatment for cocaine use disorder.
Collapse
Affiliation(s)
- Joy M Schmitz
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Charles E Green
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- UT-Houston Center for Clinical Research and Evidence-Based Medicine, Houston, TX, USA
| | - Khader M Hasan
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica Vincent
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert Suchting
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael F Weaver
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Ponnada A Narayana
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kathryn A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T Dineley
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott D Lane
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
19
|
The Role of Nuclear Hormone Receptors in Cannabinoid Function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:291-328. [PMID: 28826538 DOI: 10.1016/bs.apha.2017.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the early 2000s, evidence has been accumulating that most cannabinoid compounds interact with the nuclear hormone family peroxisome proliferator-activated receptors (PPARs). This can be through direct binding of these compounds to PPARs, metabolism of cannabinoid to other PPAR-activating chemicals, or indirect activation of PPAR through cell signaling pathways. Delivery of cannabinoids to the nucleus may be facilitated by fatty acid-binding proteins and carrier proteins. All PPAR isoforms appear to be activated by cannabinoids, but the majority of evidence is for PPARα and γ. To date, little is known about the potential interaction of cannabinoids with other nuclear hormones. At least some (but not all) of the well-known biological actions of cannabinoids including neuroprotection, antiinflammatory action, and analgesic effects are partly mediated by PPAR-activation, often in combination with activation of the more traditional target sites of action. This has been best investigated for the endocannabinoid-like compounds palmitoylethanolamide and oleoylethanolamine acting at PPARα, and for phytocannabinoids or their derivatives activation acting at PPARγ. However, there are still many aspects of cannabinoid activation of PPAR and the role it plays in the biological and therapeutic effects of cannabinoids that remain to be investigated.
Collapse
|
20
|
Ratano P, Palmery M, Trezza V, Campolongo P. Cannabinoid Modulation of Memory Consolidation in Rats: Beyond the Role of Cannabinoid Receptor Subtype 1. Front Pharmacol 2017; 8:200. [PMID: 28446875 PMCID: PMC5388693 DOI: 10.3389/fphar.2017.00200] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/28/2017] [Indexed: 12/30/2022] Open
Abstract
The effects induced by exogenous manipulation of endocannabinoid neurotransmission on emotion and memory are often contradictory. Among the different factors involved, of particular interest is the binding affinity of endocannabinoids, and their analogs, for other receptor families beyond cannabinoid receptors, such as the peroxisome proliferator-activated receptors (PPARs), and the transient receptor potential cation channel subfamily V member 1 (TRPV1). The aim of this study was to investigate which receptor subtype mediates cannabinoid effects on memory consolidation for emotionally arousing experiences. We tested two cannabinoid compounds with different pharmacological properties in the inhibitory avoidance task, and evaluated whether the observed effects are mediated by cannabinoid, PPARα or TRPV1 receptor activation. We found that the synthetic cannabinoid agonist WIN55,212-2 and the FAAH inhibitor URB597 both enhanced memory consolidation for inhibitory avoidance training. WIN55,212-22 effects on memory consolidation were predominantly mediated by CB1 receptor activation but CB2 receptors were involved as well. The URB597-induced memory enhancement was dependent on the activation not only of CB1 and CB2 receptors but, notwithstanding, PPAR-α and TRPV1 receptors were involved as well. Our findings drive beyond the classical hypothesis centered on the unique role of CB1 receptor activation for cannabinoid effects on memory, and reveal new insights in the neural mechanisms of memory consolidation.
Collapse
Affiliation(s)
- Patrizia Ratano
- Department of Physiology and Pharmacology, Sapienza University of RomeRome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology, Sapienza University of RomeRome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre UniversityRome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of RomeRome, Italy
| |
Collapse
|
21
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
22
|
Zhang M, Xv GH, Wang WX, Meng DJ, Ji Y. Electroacupuncture improves cognitive deficits and activates PPAR-γ in a rat model of Alzheimer's disease. Acupunct Med 2016; 35:44-51. [PMID: 27401747 DOI: 10.1136/acupmed-2015-010972] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-associated neurodegenerative disorder that is associated with a progressive impairment of cognition. Acupuncture has protective effects, although the molecular mechanisms are largely unknown. The activation of peroxisome proliferator activated receptor γ (PPAR-γ) has an impact on the pathogenesis of AD. OBJECTIVE To test the hypothesis that electroacupuncture (EA) confers therapeutic benefits through activation of PPAR-γ in a rat model of AD. METHODS 80 male Sprague-Dawley rats were randomly divided into four groups (n=20 each): Control (healthy control group), Sham (sham-operated group), AD (untreated AD model group), and AD+EA (AD model group treated with EA). The AD model was induced in the latter two groups by injection of amyloid-β (Aβ)1-40 into the hippocampal CA1 area bilaterally. EA was administered at GV20 and BL23 six times per week for 4 weeks. The rats' behaviour was examined using the Morris water maze test, and protein expression of Aβ, hyperphosphorylated tau protein (p-Tau), PPAR-γ, and hyperphosphorylated p38 mitogen activated protein kinase (p38MAPK) in the hippocampal CA1 region was examined by immunohistochemistry and Western blotting. RESULTS EA significantly improved cognitive deficits and reduced Aβ and p-Tau Ser404 protein concentrations in the hippocampal CA1 region. AD decreased PPAR-γ and increased p-p38MAPK, while EA significantly upregulated PPAR-γ expression and significantly downregulated p-p38MAPK expression. CONCLUSIONS Acupuncture at GV20 and BL23 might have a beneficial effect on rats with AD via activation of PPAR-γ and inhibition of p-p38MAPK expression.
Collapse
Affiliation(s)
- Min Zhang
- Nursing College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.,Medical College of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Gui-Hua Xv
- Nursing College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei-Xin Wang
- Department of General Surgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Di-Juan Meng
- Nursing College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yan Ji
- Nursing College, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
23
|
A multidrug cocktail approach attenuates ischemic-type biliary lesions in liver transplantation from non-heart-beating donors. Med Hypotheses 2016; 91:47-52. [DOI: 10.1016/j.mehy.2016.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/20/2015] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
|
24
|
O'Sullivan SE. An update on PPAR activation by cannabinoids. Br J Pharmacol 2016; 173:1899-910. [PMID: 27077495 PMCID: PMC4882496 DOI: 10.1111/bph.13497] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 03/16/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023] Open
Abstract
Some cannabinoids activate the different isoforms of PPARs (α, β and γ), as shown through the use of reporter gene assays, binding studies, selective antagonists and knockout studies. Activation of all isoforms, but primarily PPARα and γ, mediates some (but not all) of the analgesic, neuroprotective, neuronal function modulation, anti-inflammatory, metabolic, anti-tumour, gastrointestinal and cardiovascular effects of some cannabinoids, often in conjunction with activation of the more traditional target sites of action such as the cannabinoid CB1 and CB2 receptors and the TRPV1 ion channel. PPARs also mediate some of the effects of inhibitors of endocannabinoid degradation or transport. Cannabinoids may be chaperoned to the PPARs by fatty acid binding proteins. The aims of this review are to update the evidence supporting PPAR activation by cannabinoids and to review the physiological responses to cannabinoids that are mediated, and not mediated, by PPAR activation.
Collapse
|
25
|
Ruijters EJB, Haenen GRMM, Willemsen M, Weseler AR, Bast A. Food-Derived Bioactives Can Protect the Anti-Inflammatory Activity of Cortisol with Antioxidant-Dependent and -Independent Mechanisms. Int J Mol Sci 2016; 17:239. [PMID: 26891295 PMCID: PMC4783970 DOI: 10.3390/ijms17020239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022] Open
Abstract
In chronic inflammatory diseases the anti-inflammatory effect of glucocorticoids (GCs) is often decreased, leading to GC resistance. Inflammation is related with increased levels of reactive oxygen species (ROS), leading to oxidative stress which is thought to contribute to the development of GC resistance. Plant-derived compounds such as flavonoids are known for their ability to protect against ROS. In this exploratory study we screened a broad range of food-derived bioactives for their antioxidant and anti-inflammatory effects in order to investigate whether their antioxidant effects are associated with the ability to preserve the anti-inflammatory effects of cortisol. The anti-inflammatory potency of the tested compounds was assessed by measuring the oxidative stress–induced GC resistance in human macrophage-like cells. Cells were pre-treated with H2O2 (800 µM) with and without bioactives and then exposed to lipopolysaccharides (LPS) (10 ng/mL) and cortisol (100 nM). The level of inflammation was deducted from the concentration of interleukin-8 (IL-8) in the medium. Intracellular oxidative stress was measured using the fluorescent probe 2′,7′-dichlorofluorescein (DCFH). We found that most of the dietary bioactives display antioxidant and anti-inflammatory action through the protection of the cortisol response. All compounds, except for quercetin, revealing antioxidant activity also protect the cortisol response. This indicates that the antioxidant activity of compounds plays an important role in the protection of the GC response. However, next to the antioxidant activity of the bioactives, other mechanisms also seem to be involved in this protective, anti-inflammatory effect.
Collapse
Affiliation(s)
- Erik J B Ruijters
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Health Sciences, Maastricht University, Maastricht 3600 MD, The Netherlands.
| | - Guido R M M Haenen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Health Sciences, Maastricht University, Maastricht 3600 MD, The Netherlands.
| | - Mathijs Willemsen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Health Sciences, Maastricht University, Maastricht 3600 MD, The Netherlands.
| | - Antje R Weseler
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Health Sciences, Maastricht University, Maastricht 3600 MD, The Netherlands.
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Health Sciences, Maastricht University, Maastricht 3600 MD, The Netherlands.
| |
Collapse
|
26
|
Zhang Y, Gao T, Hu S, Lin B, Yan D, Xu Z, Zhang Z, Mao Y, Mao H, Wang L, Wang G, Xiong Y, Zuo B. The Functional SNPs in the 5' Regulatory Region of the Porcine PPARD Gene Have Significant Association with Fat Deposition Traits. PLoS One 2015; 10:e0143734. [PMID: 26599230 PMCID: PMC4658063 DOI: 10.1371/journal.pone.0143734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/08/2015] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor delta (PPARD) is a key regulator of lipid metabolism, insulin sensitivity, cell proliferation and differentiation. In this study, we identified two Single Nucleotide Polymorphisms (SNPs, g.1015 A>G and g.1018 T>C) constituting four haplotypes (GT, GC, AC and AT) in the 5’ regulatory region of porcine PPARD gene. Functional analysis of the four haplotypes showed that the transcriptional activity of the PPARD promoter fragment carrying haplotype AC was significantly lower than that of the other haplotypes in 3T3-L1, C2C12 and PK-15 cells, and haplotype AC had the lowest binding capacities to the nuclear extracts. Transcription factor 7-like 2 (TCF7L2) enhanced the transcription activities of promoter fragments of PPARD gene carrying haplotypes GT, GC and AT in C2C12 and 3T3-L1 cells, and increased the protein expression of PPARD gene in C2C12 myoblasts. TCF7L2 differentially bound to the four haplotypes, and the binding capacity of TCF7L2 to haplotype AC was the lowest. There were significant associations between -655A/G and fat deposition traits in three pig populations including the Large White × Meishan F2 pigs, France and American Large White pigs. Pigs with genotype GG had significantly higher expression of PPARD at both mRNA and protein level than those with genotype AG. These results strongly suggested that the SNPs in 5’ regulatory region of PPARD genes had significant impact on pig fat deposition traits.
Collapse
Affiliation(s)
- Yunxia Zhang
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Tengsen Gao
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shanyao Hu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Bin Lin
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Dechao Yan
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zijun Zhang
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Yuanliang Mao
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Huimin Mao
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Litong Wang
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Guoshui Wang
- The Tianpeng Group, Jiangshan, Zhejiang, P. R. China
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
27
|
PPAR-Alpha Agonist Used at the Acute Phase of Experimental Ischemic Stroke Reduces Occurrence of Thrombolysis-Induced Hemorrhage in Rats. PPAR Res 2015; 2015:246329. [PMID: 26106408 PMCID: PMC4464007 DOI: 10.1155/2015/246329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
The impact of fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-α) agonist, on the risk of thrombolysis-induced hemorrhage during the acute phase of stroke in a rat model of stroke was studied. One-hour middle cerebral artery occlusion followed by thrombolysis with tissue plasminogen activator was made in rats receiving either fenofibrate or vehicle for 72 h after stroke. Evaluation of infarct, hemorrhage, middle cerebral artery vasoreactivity, and immunochemistry (CD11b for microglial activation, myeloperoxidase, and ICAM-1 for neutrophil infiltration) was performed. The PPAR-alpha agonist significantly reduced the risk of hemorrhage after thrombolysis in parallel with a decrease in the infarct volume and in the stroke-induced vascular endothelial dysfunction. These effects are concomitant with a reduction in microglial activation and neutrophil infiltration in infarct area. Our results strengthen the idea that using drugs such as fenofibrate, with pleiotropic properties due to PPAR-alpha agonism, may be of value to reduce thrombolysis-induced hemorrhage during acute stroke.
Collapse
|
28
|
The Antifibrosis Effects of Peroxisome Proliferator-Activated Receptor δ on Rat Corneal Wound Healing after Excimer Laser Keratectomy. PPAR Res 2014; 2014:464935. [PMID: 25477952 PMCID: PMC4248330 DOI: 10.1155/2014/464935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/17/2014] [Indexed: 12/16/2022] Open
Abstract
Corneal stromal fibrosis characterized by myofibroblasts and abnormal extracellular matrix (ECM) is usually the result of inappropriate wound healing. The present study tested the hypothesis that the ligand activation of peroxisome proliferator-activated receptor (PPAR) δ had antifibrosis effects in a rat model of corneal damage. Adult Sprague-Dawley rats underwent bilateral phototherapeutic keratectomy (PTK). The eyes were randomized into four groups: PBS, GW501516 (a selective agonist of PPARδ), GSK3787 (a selective antagonist of PPARδ), or GW501516 combined with GSK3787. The agents were subconjunctivally administered twice a week until sacrifice. The cellular aspects of corneal wound healing were evaluated with in vivo confocal imaging and postmortem histology. A myofibroblast marker (α-smooth muscle actin) and ECM production (fibronectin, collagen type III and collagen type I) were examined by immunohistochemistry and RT-PCR. At the early stages of wound healing, GW501516 inhibited reepithelialization and promoted angiogenesis. During the remodeling phase of wound healing, GW501516 attenuated the activation and proliferation of keratocytes, which could be reversed by GSK3787. GW501516 decreased transdifferentiation from keratocytes into myofibroblasts, ECM synthesis, and corneal haze. These results demonstrate that GW501516 controls corneal fibrosis and suggest that PPARδ may potentially serve as a therapeutic target for treating corneal scars.
Collapse
|
29
|
Zolezzi JM, Bastías-Candia S, Santos MJ, Inestrosa NC. Alzheimer's disease: relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs. Front Aging Neurosci 2014; 6:176. [PMID: 25120477 PMCID: PMC4112937 DOI: 10.3389/fnagi.2014.00176] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/03/2014] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of age-related dementia. With the expected aging of the human population, the estimated morbidity of AD suggests a critical upcoming health problem. Several lines of research are focused on understanding AD pathophysiology, and although the etiology of the disease remains a matter of intense debate, increased brain levels of amyloid-β (Aβ) appear to be a critical event in triggering a wide range of molecular alterations leading to AD. It has become evident in recent years that an altered balance between production and clearance is responsible for the accumulation of brain Aβ. Moreover, Aβ clearance is a complex event that involves more than neurons and microglia. The status of the blood-brain barrier (BBB) and choroid plexus, along with hepatic functionality, should be considered when Aβ balance is addressed. Furthermore, it has been proposed that exposure to sub-toxic concentrations of metals, such as copper, could both directly affect these secondary structures and act as a seeding or nucleation core that facilitates Aβ aggregation. Recently, we have addressed peroxisomal proliferator-activated receptors (PPARs)-related mechanisms, including the direct modulation of mitochondrial dynamics through the PPARγ-coactivator-1α (PGC-1α) axis and the crosstalk with critical aging- and neurodegenerative-related cellular pathways. In the present review, we revise the current knowledge regarding the molecular aspects of Aβ production and clearance and provide a physiological context that gives a more complete view of this issue. Additionally, we consider the different structures involved in AD-altered Aβ brain balance, which could be directly or indirectly affected by a nuclear receptor (NR)/PPAR-related mechanism.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Laboratorio de Biología Celular y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá Arica, Chile
| | - Sussy Bastías-Candia
- Laboratorio de Biología Celular y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá Arica, Chile
| | - Manuel J Santos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes Punta Arenas, Chile
| |
Collapse
|
30
|
Abstract
Background: Lichen planopilaris is a type of primary scarring alopecia that is characterized by perifollicular lymphocytic inflammation and fibrosis. The cause remains poorly understood, although recent research has begun to unravel some of the molecular mechanisms implicated in the pathogenesis. Objective: To present a case of biopsy-proven lichen planopilaris in a patient who had previously suffered serious head injury. Lichen planopilaris developed only in the areas of trauma. Conclusion: Our findings highlight the possible association between scalp trauma and the development of lichen planopilaris. Further research is needed to understand the role of scalp trauma in the pathogenesis of scarring alopecia.
Collapse
Affiliation(s)
| | - Jeff C. Donovan
- Division of Dermatology, Sunnybrook Health Sciences Centre, Toronto, ON
| |
Collapse
|
31
|
Kui B, Balla Z, Végh ET, Pallagi P, Venglovecz V, Iványi B, Takács T, Hegyi P, Rakonczay Z. Recent advances in the investigation of pancreatic inflammation induced by large doses of basic amino acids in rodents. J Transl Med 2014; 94:138-149. [PMID: 24365745 DOI: 10.1038/labinvest.2013.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 12/16/2022] Open
Abstract
It has been known for approximately 30 years that large doses of the semi-essential basic amino acid L-arginine induce severe pancreatic inflammation in rats. Recently, it has been demonstrated that L-arginine can also induce pancreatitis in mice. Moreover, other basic amino acids like L-ornithine and L-lysine can cause exocrine pancreatic damage without affecting the endocrine parenchyma and the ducts in rats. The utilization of these noninvasive severe basic amino acid-induced pancreatitis models is becoming increasingly popular and appreciated as these models nicely reproduce most laboratory and morphological features of human pancreatitis. Consequently, the investigation of basic amino acid-induced pancreatitis may offer us a better understanding of the pathogenesis and possible treatment options of the human disease.
Collapse
Affiliation(s)
- Balázs Kui
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Eszter T Végh
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Béla Iványi
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
32
|
Telmisartan activates endogenous peroxisome proliferator-activated receptor-δ and may have anti-fibrotic effects in human mesangial cells. Hypertens Res 2013; 37:422-31. [DOI: 10.1038/hr.2013.157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/19/2013] [Accepted: 11/14/2013] [Indexed: 01/17/2023]
|
33
|
Management strategies for acute spinal cord injury: current options and future perspectives. Curr Opin Crit Care 2013; 18:651-60. [PMID: 23104069 DOI: 10.1097/mcc.0b013e32835a0e54] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Spinal cord injury is a devastating acute neurological condition with loss of function and poor long-term prognosis. This review summarizes current management strategies and innovative concepts on the horizon. RECENT FINDINGS The routine use of steroids in patients with spinal cord injuries has been largely abandoned and considered a 'harmful standard of care'. Prospective trials have shown that early spine stabilization within 24 h results in decreased secondary complication rates. Neuronal plasticity and axonal regeneration in the adult spinal cord are limited due to myelin-associated inhibitory molecules, such as Nogo-A. The experimental inhibition of Nogo-A ameliorates axonal sprouting and functional recovery in animal models. SUMMARY General management strategies for acute spinal cord injury consist of protection of airway, breathing, oxygenation and control of blood loss with maintenance of blood pressure. Unstable spine fractures should be stabilized early to allow unrestricted mobilization of patients with spinal cord injuries and to decrease preventable complications. Steroids are largely considered obsolete and have been abandoned in clinical guidelines. Nogo-A represents a promising new pharmacological target to promote sprouting of injured axons and restore function. Prospective clinical trials of Nogo-A inhibition in patients with spinal cord injuries are currently under way.
Collapse
|
34
|
Peroxisome proliferator-activated receptors and Alzheimer's disease: hitting the blood-brain barrier. Mol Neurobiol 2013; 48:438-51. [PMID: 23494748 DOI: 10.1007/s12035-013-8435-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/26/2013] [Indexed: 01/20/2023]
Abstract
The blood-brain barrier (BBB) is often affected in several neurodegenerative disorders, such as Alzheimer's disease (AD). Integrity and proper functionality of the neurovascular unit are recognized to be critical for maintenance of the BBB. Research has traditionally focused on structural integrity more than functionality, and BBB alteration has usually been explained more as a consequence than a cause. However, ongoing evidence suggests that at the early stages, the BBB of a diseased brain often shows distinct expression patterns of specific carriers such as members of the ATP-binding cassette (ABC) transport protein family, which alter BBB traffic. In AD, amyloid-β (Aβ) deposits are a pathological hallmark and, as recently highlighted by Cramer et al. (2012), Aβ clearance is quite fundamental and is a less studied approach. Current knowledge suggests that BBB traffic plays a more important role than previously believed and that pharmacological modulation of the BBB may offer new therapeutic alternatives for AD. Recent investigations carried out in our laboratory indicate that peroxisome proliferator-activated receptor (PPAR) agonists are able to prevent Aβ-induced neurotoxicity in hippocampal neurons and cognitive impairment in a double transgenic mouse model of AD. However, even when enough literature about PPAR agonists and neurodegenerative disorders is available, the problem of how they exert their functions and help to prevent and rescue Aβ-induced neurotoxicity is poorly understood. In this review, along with highlighting the main features of the BBB and its role in AD, we will discuss information regarding the modulation of BBB components, including the possible role of PPAR agonists as BBB traffic modulators.
Collapse
|
35
|
Paterniti I, Impellizzeri D, Crupi R, Morabito R, Campolo M, Esposito E, Cuzzocrea S. Molecular evidence for the involvement of PPAR-δ and PPAR-γ in anti-inflammatory and neuroprotective activities of palmitoylethanolamide after spinal cord trauma. J Neuroinflammation 2013; 10:20. [PMID: 23374874 PMCID: PMC3579707 DOI: 10.1186/1742-2094-10-20] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background Palmitoylethanolamide (PEA) is an endogenous fatty acid amide displaying anti-inflammatory and analgesic actions. Moreover, several data have suggested that PEA reduced inflammation and tissue injury associated with spinal cord trauma and showed a regulatory role for peroxisome proliferator-activated receptor (PPAR)-α signaling in the neuroprotective effect of PEA. However, several other mechanisms could explain the anti-inflammatory and anti-hyperalgesic effects of PEA, including the activation of PPAR-δ and PPAR-γ. The aim of the present study was to carefully investigate the exact contribution of PPAR-δ and PPAR-γ in addition to PPAR-α, in the protective effect of PEA on secondary inflammatory damage associated with an experimental model of spinal cord injury (SCI). Methods SCI was induced in mice through a spinal cord compression by the application of vascular clips (force of 24 g) to the dura via a four-level T5 to T8 laminectomy, and PEA (10 mg/kg, intraperitoneally, 1 and 6 hours after SCI) was injected into wildtype mice and into mice lacking PPAR-α (PPAR-αKO). To deepen the ability of specific PPAR-δ and PPAR-γ antagonists to reverse the effect of PEA, mice were administered GSK0660 or GW9662, 30 minutes before PEA injection. Results Genetic ablation of PPAR-α in mice exacerbated spinal cord damage, while PEA-induced neuroprotection seemed be abolished in PPARαKO mice. Twenty-four hours after spinal cord damage, immunohistological and biochemical studies were performed on spinal cord tissue. Our results indicate that PPAR-δ and PPAR-γ also mediated the protection induced by PEA. In particular, PEA was less effective in PPAR-αKO, GSK0660-treated or GW9662-pretreated mice, as evaluated by the degree of spinal cord inflammation and tissue injury, neutrophil infiltration, proinflammmatory cytokine, inducible nitric oxide synthase expression and motor function. PEA is also able to restore PPAR-δ and PPAR-γ expression in spinal cord tissue. Conclusion This study indicates that PPAR-δ and PPAR-γ can also contribute to the anti-inflammatory activity of PEA in SCI.
Collapse
Affiliation(s)
- Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, Messina 31-98166, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
O'Sullivan SE. Cannabinoid activation of peroxisome proliferator-activated receptors: an update and review of the physiological relevance. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Videla LA, Pettinelli P. Misregulation of PPAR Functioning and Its Pathogenic Consequences Associated with Nonalcoholic Fatty Liver Disease in Human Obesity. PPAR Res 2012; 2012:107434. [PMID: 23304111 PMCID: PMC3526338 DOI: 10.1155/2012/107434] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/06/2012] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease in human obesity is characterized by the multifactorial nature of the underlying pathogenic mechanisms, which include misregulation of PPARs signaling. Liver PPAR-α downregulation with parallel PPAR-γ and SREBP-1c up-regulation may trigger major metabolic disturbances between de novo lipogenesis and fatty acid oxidation favouring the former, in association with the onset of steatosis in obesity-induced oxidative stress and related long-chain polyunsaturated fatty acid n-3 (LCPUFA n-3) depletion, insulin resistance, hypoadiponectinemia, and endoplasmic reticulum stress. Considering that antisteatotic strategies targeting PPAR-α revealed that fibrates have poor effectiveness, thiazolidinediones have weight gain limitations, and dual PPAR-α/γ agonists have safety concerns, supplementation with LCPUFA n-3 appears as a promising alternative, which achieves both significant reduction in liver steatosis scores and a positive anti-inflammatory outcome. This latter aspect is of importance as PPAR-α downregulation associated with LCPUFA n-3 depletion may play a role in increasing the DNA binding capacity of proinflammatory factors, NF-κB and AP-1, thus constituting one of the major mechanisms for the progression of steatosis to steatohepatitis.
Collapse
Affiliation(s)
- Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70000, Santiago 7, Chile
| | - Paulina Pettinelli
- Ciencias de la Salud, Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| |
Collapse
|
38
|
Beach A, Burstein MT, Richard VR, Leonov A, Levy S, Titorenko VI. Integration of peroxisomes into an endomembrane system that governs cellular aging. Front Physiol 2012; 3:283. [PMID: 22936916 PMCID: PMC3424522 DOI: 10.3389/fphys.2012.00283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/28/2012] [Indexed: 01/01/2023] Open
Abstract
The peroxisome is an organelle that has long been known for its essential roles in oxidation of fatty acids, maintenance of reactive oxygen species (ROS) homeostasis and anaplerotic replenishment of tricarboxylic acid (TCA) cycle intermediates destined for mitochondria. Growing evidence supports the view that these peroxisome-confined metabolic processes play an essential role in defining the replicative and chronological age of a eukaryotic cell. Much progress has recently been made in defining molecular mechanisms that link cellular aging to fatty acid oxidation, ROS turnover, and anaplerotic metabolism in peroxisomes. Emergent studies have revealed that these organelles not only house longevity-defining metabolic reactions but can also regulate cellular aging via their dynamic communication with other cellular compartments. Peroxisomes communicate with other organelles by establishing extensive physical contact with lipid bodies, maintaining an endoplasmic reticulum (ER) to peroxisome connectivity system, exchanging certain metabolites, and being involved in the bidirectional flow of some of their protein and lipid constituents. The scope of this review is to summarize the evidence that peroxisomes are dynamically integrated into an endomembrane system that governs cellular aging. We discuss recent progress in understanding how communications between peroxisomes and other cellular compartments within this system influence the development of a pro- or anti-aging cellular pattern. We also propose a model for the integration of peroxisomes into the endomembrane system governing cellular aging and critically evaluate several molecular mechanisms underlying such integration.
Collapse
Affiliation(s)
- Adam Beach
- Department of Biology, Concordia University, Montreal PQ, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Lamers C, Schubert-Zsilavecz M, Merk D. Therapeutic modulators of peroxisome proliferator-activated receptors (PPAR): a patent review (2008–present). Expert Opin Ther Pat 2012; 22:803-41. [DOI: 10.1517/13543776.2012.699042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|