1
|
Rosdy MS, Rofiee MS, Samsulrizal N, Salleh MZ, Teh LK. Understanding the effects of Moringa oleifera in chronic unpredictable stressed zebrafish using metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114290. [PMID: 34090909 DOI: 10.1016/j.jep.2021.114290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa leaves have been used for thousands of years to maintain skin health and mental fitness. People also use it to relieves pain and stress. AIM OF THE STUDY To determine the effects of Moringa oleifera leaves ethanol-aqueous (ratio 7:3) extract (MOLE) on the chronically stressed zebrafish. METHOD The changes in the stress-related behaviour and the metabolic pathways in response to MOLE treatment in zebrafish were studied. A chronic unpredictable stress model was adopted in which zebrafish were induced with different stressors for 14 days. Stress-related behaviour was assessed using a depth-preference test and a light and dark test. Three doses of MOLE (500, 1000, and 2000 mg/L) were administered to the zebrafish. Upon sacrifice, the brains were harvested and processed for LC-MS QTOF based, global metabolomics analysis. RESULTS We observed significant changes in the behavioural parameters, where the swimming time at the light phase and upper phase of the tank were increased in the chronically stressed zebrafish treated with MOLE compared to those zebrafish which were not treated. Further, distinctive metabolite profiles were observed in zebrafish with different treatments. Several pathways that shed light on effects of MOLE were identified. MOLE is believed to relieve stress by regulating pathways that are involved in the metabolism of purine, glutathione, arginine and proline, D-glutamine, and D-glutamate. CONCLUSION MOLE is potentially an effective stress reliever. However, its effects in human needs to be confirmed with a systematic randomised control trial.
Collapse
Affiliation(s)
- Muhammad Shazly Rosdy
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Mohd Salleh Rofiee
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | | | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia.
| |
Collapse
|
2
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
3
|
Ong SLM, de Vos IJHM, Meroshini M, Poobalan Y, Dunn NR. Microfibril-associated glycoprotein 4 (Mfap4) regulates haematopoiesis in zebrafish. Sci Rep 2020; 10:11801. [PMID: 32678226 PMCID: PMC7366704 DOI: 10.1038/s41598-020-68792-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Microfibril-associated glycoprotein 4 (MFAP4) is an extracellular matrix protein belonging to the fibrinogen-related protein superfamily. MFAP4 is produced by vascular smooth muscle cells and is highly enriched in the blood vessels of the heart and lung, where it is thought to contribute to the structure and function of elastic fibers. Genetic studies in humans have implicated MFAP4 in the pathogenesis of Smith-Magenis syndrome, in which patients present with multiple congenital abnormalities and mental retardation, as well as in the severe cardiac malformation left-sided congenital heart disease. Comprehensive genetic analysis of the role of MFAP4 orthologues in model organisms during development and tissue homeostasis is however lacking. Here, we demonstrate that zebrafish mfap4 transcripts are detected embryonically, resolving to the macrophage lineage by 24 h post fertilization. mfap4 null mutant zebrafish are unexpectedly viable and fertile, without ostensible phenotypes. However, tail fin amputation assays reveal that mfap4 mutants have reduced numbers of macrophages, with a concomitant increase in neutrophilic granulocytes, although recruitment of both cell types to the site of injury was unaffected. Molecular analyses suggest that loss of Mfap4 alters the balance between myeloid and lymphoid lineages during both primitive and definitive haematopoiesis, which could significantly impact the downstream function of the immune system.
Collapse
Affiliation(s)
- Sheena L M Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.,Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building, #17-01, Singapore, 308232, Singapore.,Department of Genetics, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - M Meroshini
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Clinical Sciences Building, Singapore, 308232, Singapore
| | - Yogavalli Poobalan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.,Engine Biosciences, 160 Robinson Road, 23-20 SBF Center, Singapore, 068914, Singapore
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Clinical Sciences Building, Singapore, 308232, Singapore.
| |
Collapse
|
4
|
Cornet V, Douxfils J, Mandiki SNM, Kestemont P. Early-life infection with a bacterial pathogen increases expression levels of innate immunity related genes during adulthood in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103672. [PMID: 32151677 DOI: 10.1016/j.dci.2020.103672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Early-life exposure to different stressors can lead to various consequences on fish health status in later life development. To evaluate the effects of Aeromonas salmonicida achromogenes infection in the early-life on immunity in adulthood, zebrafish were either early-infected at 18 days post-fertilization (dpf), chronically infected from 18 to 35 dpf, or late infected at 35 dpf and then grown up to 61 dpf to be re-infected with the pathogen. The age of first infection was shown to influence both, level and timing of the immune gene expressions, especially for inflammation-related genes. In addition, evidence for an innate immune memory in zebrafish primarily infected with the pathogen at 35 dpf and re-infected at 61dpf provide new insights to consolidate the concept of a "trained" innate immunity in fish.
Collapse
Affiliation(s)
- Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), 5000, Namur, Belgium.
| | - Jessica Douxfils
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), 5000, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), 5000, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), 5000, Namur, Belgium
| |
Collapse
|
5
|
Rissone A, Burgess SM. Rare Genetic Blood Disease Modeling in Zebrafish. Front Genet 2018; 9:348. [PMID: 30233640 PMCID: PMC6127601 DOI: 10.3389/fgene.2018.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis results in the correct formation of all the different blood cell types. In mammals, it starts from specific hematopoietic stem and precursor cells residing in the bone marrow. Mature blood cells are responsible for supplying oxygen to every cell of the organism and for the protection against pathogens. Therefore, inherited or de novo genetic mutations affecting blood cell formation or the regulation of their activity are responsible for numerous diseases including anemia, immunodeficiency, autoimmunity, hyper- or hypo-inflammation, and cancer. By definition, an animal disease model is an analogous version of a specific clinical condition developed by researchers to gain information about its pathophysiology. Among all the model species used in comparative medicine, mice continue to be the most common and accepted model for biomedical research. However, because of the complexity of human diseases and the intrinsic differences between humans and other species, the use of several models (possibly in distinct species) can often be more helpful and informative than the use of a single model. In recent decades, the zebrafish (Danio rerio) has become increasingly popular among researchers, because it represents an inexpensive alternative compared to mammalian models, such as mice. Numerous advantages make it an excellent animal model to be used in genetic studies and in particular in modeling human blood diseases. Comparing zebrafish hematopoiesis to mammals, it is highly conserved with few, significant differences. In addition, the zebrafish model has a high-quality, complete genomic sequence available that shows a high level of evolutionary conservation with the human genome, empowering genetic and genomic approaches. Moreover, the external fertilization, the high fecundity and the transparency of their embryos facilitate rapid, in vivo analysis of phenotypes. In addition, the ability to manipulate its genome using the last genome editing technologies, provides powerful tools for developing new disease models and understanding the pathophysiology of human disorders. This review provides an overview of the different approaches and techniques that can be used to model genetic diseases in zebrafish, discussing how this animal model has contributed to the understanding of genetic diseases, with a specific focus on the blood disorders.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Diepstraten ST, Hart AH. Modelling human haemoglobin switching. Blood Rev 2018; 33:11-23. [PMID: 30616747 DOI: 10.1016/j.blre.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Genetic lesions of the β-globin gene result in haemoglobinopathies such as β-thalassemia and sickle cell disease. To discover and test new molecular medicines for β-haemoglobinopathies, cell-based and animal models are now being widely utilised. However, multiple in vitro and in vivo models are required due to the complex structure and regulatory mechanisms of the human globin gene locus, subtle species-specific differences in blood cell development, and the influence of epigenetic factors. Advances in genome sequencing, gene editing, and precision medicine have enabled the first generation of molecular therapies aimed at reactivating, repairing, or replacing silenced or damaged globin genes. Here we compare and contrast current animal and cell-based models, highlighting their complementary strengths, reflecting on how they have informed the scope and direction of the field, and describing some of the novel molecular and precision medicines currently under development or in clinical trial.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Adam H Hart
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
7
|
Tian Y, Xu J, Feng S, He S, Zhao S, Zhu L, Jin W, Dai Y, Luo L, Qu JY, Wen Z. The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells. J Exp Med 2017; 214:3347-3360. [PMID: 28931624 PMCID: PMC5679161 DOI: 10.1084/jem.20170488] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/05/2017] [Accepted: 08/21/2017] [Indexed: 01/05/2023] Open
Abstract
Tian et al. demonstrate that, in addition to giving rise to hematopoietic stem cells, the ventral endothelium of aorta in zebrafish also directly converts to non–hematopoietic stem cell hematopoietic precursors capable of generating a transient wave of CD4 Tαβ lymphocytes. T lymphocytes are key cellular components of the adaptive immune system and play a central role in cell-mediated immunity in vertebrates. Despite their heterogeneities, it is believed that all different types of T lymphocytes are generated exclusively via the differentiation of hematopoietic stem cells (HSCs). Using temporal–spatial resolved fate-mapping analysis and time-lapse imaging, here we show that the ventral endothelium in the zebrafish aorta–gonad–mesonephros and posterior blood island, the hematopoietic tissues previously known to generate HSCs and erythromyeloid progenitors, respectively, gives rise to a transient wave of T lymphopoiesis independent of HSCs. This HSC-independent T lymphopoiesis occurs early and generates predominantly CD4 Tαβ cells in the larval but not juvenile and adult stages, whereas HSC-dependent T lymphopoiesis emerges late and produces various subtypes of T lymphocytes continuously from the larval stage to adulthood. Our study unveils the existence, origin, and ontogeny of HSC-independent T lymphopoiesis in vivo and reveals the complexity of the endothelial-hematopoietic transition of the aorta.
Collapse
Affiliation(s)
- Ye Tian
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Jin Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Shachuan Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Sicong He
- Center of Systems Biology and Human Health, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Shizheng Zhao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Lu Zhu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Wan Jin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Yimei Dai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, P.R. China
| | - Jianan Y Qu
- Center of Systems Biology and Human Health, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China .,Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, Shenzhen, P.R. China
| |
Collapse
|
8
|
Deveau AP, Bentley VL, Berman JN. Using zebrafish models of leukemia to streamline drug screening and discovery. Exp Hematol 2016; 45:1-9. [PMID: 27720937 DOI: 10.1016/j.exphem.2016.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
Current treatment strategies for acute leukemias largely rely on nonspecific cytotoxic drugs that result in high therapy-related morbidity and mortality. Cost-effective, pertinent animal models are needed to link in vitro studies with the development of new therapeutic agents in clinical trials on a high-throughput scale. However, targeted therapies have had limited success moving from bench to clinic, often due to unexpected off-target effects. The zebrafish has emerged as a reliable in vivo tool for modeling human leukemia. Zebrafish genetic and xenograft models of acute leukemia provide an unprecedented opportunity to conduct rapid, phenotype-based screens. This allows for the identification of relevant therapies while simultaneously evaluating drug toxicity, thus circumventing the limitations of target-centric approaches.
Collapse
Affiliation(s)
- Adam P Deveau
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Victoria L Bentley
- Undergraduate Medical Program, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason N Berman
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada; Departments of Microbiology and Immunology and Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
9
|
Wan Y, Zhang Q, Zhang Z, Song B, Wang X, Zhang Y, Jia Q, Cheng T, Zhu X, Leung AYH, Yuan W, Jia H, Fang X. Transcriptome analysis reveals a ribosome constituents disorder involved in the RPL5 downregulated zebrafish model of Diamond-Blackfan anemia. BMC Med Genomics 2016; 9:13. [PMID: 26961822 PMCID: PMC4785739 DOI: 10.1186/s12920-016-0174-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 03/03/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diamond-Blackfan anemia (DBA) was the first ribosomopathy associated with mutations in ribosome protein (RP) genes. The clinical phenotypes of DBA include failure of erythropoiesis, congenital anomalies and cancer predisposition. Mutations in RPL5 are reported in approximately 9 ~ 21 % of DBA patients, which represents the most common pathological condition related to a large-subunit ribosomal protein. However, it remains unclear how RPL5 downregulation results in severe phenotypes of this disease. RESULTS In this study, we generated a zebrafish model of DBA with RPL5 morphants and implemented high-throughput RNA-seq and ncRNA-seq to identify key genes, lncRNAs, and miRNAs during zebrafish development and hematopoiesis. We demonstrated that RPL5 is required for both primitive and definitive hematopoiesis processes. By comparing with other DBA zebrafish models and processing functional coupling network, we identified some common regulated genes, lncRNAs and miRNAs, that might play important roles in development and hematopoiesis. CONCLUSIONS Ribosome biogenesis and translation process were affected more in RPL5 MO than in other RP MOs. Both P53 dependent (for example, cell cycle pathway) and independent pathways (such as Aminoacyl-tRNA biosynthesis pathway) play important roles in DBA pathology. Our results therefore provide a comprehensive basis for the study of molecular pathogenesis of RPL5-mediated DBA and other ribosomopathies.
Collapse
Affiliation(s)
- Yang Wan
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Qian Zhang
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhaojun Zhang
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Binfeng Song
- />Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiaomin Wang
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yingchi Zhang
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Qiong Jia
- />Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Tao Cheng
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Xiaofan Zhu
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | | | - Weiping Yuan
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Haibo Jia
- />Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiangdong Fang
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
10
|
Inactivation of 3-hydroxybutyrate dehydrogenase 2 delays zebrafish erythroid maturation by conferring premature mitophagy. Proc Natl Acad Sci U S A 2016; 113:E1460-9. [PMID: 26929344 DOI: 10.1073/pnas.1600077113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are the site of iron utilization, wherein imported iron is incorporated into heme or iron-sulfur clusters. Previously, we showed that a cytosolic siderophore, which resembles a bacterial siderophore, facilitates mitochondrial iron import in eukaryotes, including zebrafish. An evolutionarily conserved 3-hydroxy butyrate dehydrogenase, 3-hydroxy butyrate dehydrogenase 2 (Bdh2), catalyzes a rate-limiting step in the biogenesis of the eukaryotic siderophore. We found that inactivation of bdh2 in developing zebrafish embryo results in heme deficiency and delays erythroid maturation. The basis for this erythroid maturation defect is not known. Here we show that bdh2 inactivation results in mitochondrial dysfunction and triggers their degradation by mitophagy. Thus, mitochondria are prematurely lost in bdh2-inactivated erythrocytes. Interestingly, bdh2-inactivated erythroid cells also exhibit genomic alterations as indicated by transcriptome analysis. Reestablishment of bdh2 restores mitochondrial function, prevents premature mitochondrial degradation, promotes erythroid development, and reverses altered gene expression. Thus, mitochondrial communication with the nucleus is critical for erythroid development.
Collapse
|
11
|
Roberto V, Tiago D, Gautvik K, Cancela M. Evidence for the conservation of miR-223 in zebrafish (Danio rerio): Implications for function. Gene 2015; 566:54-62. [DOI: 10.1016/j.gene.2015.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/05/2015] [Accepted: 04/09/2015] [Indexed: 01/15/2023]
|
12
|
Raghavachari N. Gene expression profiling of hematopoietic stem cells (HSCs). Methods Mol Biol 2015; 1185:91-119. [PMID: 25062624 DOI: 10.1007/978-1-4939-1133-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transcriptomic analysis to decipher the molecular phenotype of hematopoietic stem cells, regulatory mechanisms directing their life cycle, and the molecular signals mediating proliferation, mobilization, migration, and differentiation is believed to unravel disease-specific disturbances in hematological diseases and assist in the development of novel cell-based clinical therapies in this era of genomic medicine. The recent advent in genomic tools and technologies is now enabling the study of such comprehensive transcriptional characterization of cell types in a robust and successful manner. This chapter describes detailed protocols for isolating RNA from purified population of hematopoietic cells and gene expression profiling of those purified cells using both microarrays (Affymetrix) and RNA-Seq technology (Illumina Platform).
Collapse
Affiliation(s)
- Nalini Raghavachari
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, Gateway Building, Suite 3C307, 7201 Wisconsin Avenue, Bethesda, MD, 20892-9205, USA,
| |
Collapse
|
13
|
Prykhozhij SV, Berman JN. The progress and promise of zebrafish as a model to study mast cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:74-83. [PMID: 24508982 DOI: 10.1016/j.dci.2014.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
Immunological and hematological research using the zebrafish (Danio rerio) has significantly advanced our understanding of blood lineage ontology, cellular functions and mechanisms, and provided opportunities for disease modeling. Mast cells are an immunological cell type involved in innate and adaptive immune systems, hypersensitivity reactions and cancer progression. The application of zebrafish to study mast cell biology exploits the developmental and imaging opportunities inherent in this model system to enable detailed genetic and molecular studies of this lineage outside of traditional mammalian models. In this review, we first place the importance of mast cell research in zebrafish into the context of comparative studies of mast cells in other fish species and highlight its advantages due to superior experimental tractability and direct visualization in transparent embryos. We discuss current and future tools for mast cell research in zebrafish and the notable results of using zebrafish for understanding mast cell fate determination and our development of a systemic mastocytosis model.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Jason N Berman
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
14
|
CBFβ and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish. Blood 2014; 124:70-8. [PMID: 24850758 DOI: 10.1182/blood-2013-10-531988] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CBFβ and RUNX1 form a DNA-binding heterodimer and are both required for hematopoietic stem cell (HSC) generation in mice. However, the exact role of CBFβ in the production of HSCs remains unclear. Here, we generated and characterized 2 zebrafish cbfb null mutants. The cbfb(-/-) embryos underwent primitive hematopoiesis and developed transient erythromyeloid progenitors, but they lacked definitive hematopoiesis. Unlike runx1 mutants, in which HSCs are not formed, nascent, runx1(+)/c-myb(+) HSCs were formed in cbfb(-/-) embryos. However, the nascent HSCs were not released from the aorta-gonad-mesonephros (AGM) region, as evidenced by the accumulation of runx1(+) cells in the AGM that could not enter circulation. Moreover, wild-type embryos treated with an inhibitor of RUNX1-CBFβ interaction, Ro5-3335, phenocopied the hematopoietic defects in cbfb(-/-) mutants, rather than those in runx1(-/-) mutants. Finally, we found that cbfb was downstream of the Notch pathway during HSC development. Our data suggest that runx1 and cbfb are required at 2 different steps during early HSC development. CBFβ is not required for nascent HSC emergence but is required for the release of HSCs from AGM into circulation. Our results also indicate that RUNX1 can drive the emergence of nascent HSCs in the AGM without its heterodimeric partner CBFβ.
Collapse
|
15
|
Iwanami N. Zebrafish as a model for understanding the evolution of the vertebrate immune system and human primary immunodeficiency. Exp Hematol 2014; 42:697-706. [PMID: 24824573 DOI: 10.1016/j.exphem.2014.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/21/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023]
Abstract
Zebrafish is an important vertebrate model that provides the opportunity for the combination of genetic interrogation with advanced live imaging in the analysis of complex developmental and physiologic processes. Among the many advances that have been achieved using the zebrafish model, it has had a great impact on immunology. Here, I discuss recent work focusing on the genetic underpinnings of the development and function of lymphocytes in fish. Lymphocytes play critical roles in vertebrate-specific acquired immune systems of jawless and jawed fish. The unique opportunities afforded by the ability to carry out forward genetic screens and the rapidly evolving armamentarium of reverse genetics in fish usher in a new immunologic research that complements the traditional models of chicken and mouse. Recent work has greatly increased our understanding of the molecular components of the zebrafish immune system, identifying evolutionarily conserved and fish-specific functions of immune-related genes. Interestingly, some of the genes whose mutations underlie the phenotypes in immunodeficient zebrafish were also identified in immunodeficient human patients. In addition, because of the generally conserved structure and function of immune facilities, the zebrafish also provides a versatile model to examine the functional consequences of genetic variants in immune-relevant genes in the human population. Thus, I propose that genetic approaches using the zebrafish hold great potential for a better understanding of molecular mechanisms of human primary immunodeficiencies and the evolution of vertebrate immune systems.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
16
|
Pten regulates homeostasis and inflammation-induced migration of myelocytes in zebrafish. J Hematol Oncol 2014; 7:17. [PMID: 24598081 PMCID: PMC4015859 DOI: 10.1186/1756-8722-7-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/27/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Loss of the tumor suppressor phosphatase and tensin homolog (PTEN) is frequently observed in hematopoietic malignancies. Although PTEN has been implicated in maintaining the quiescence of hematopoietic stem cells (HSCs), its role in hematopoiesis during ontogeny remains largely unexplored. METHODS The expression of hematopoietic marker genes was analyzed via whole mount in situ hybridization assay in ptena and ptenb double mutant zebrafish. The embryonic myelopoiesis was characterized by living imaging and whole mount in situ immunofluorescence with confocal microscopy, as well as cell-specific chemical staining for neutrophils and macrophages. Analyses of the involved signaling pathway were carried out by inhibitor treatment and mRNA injection. RESULTS Pten-deficient zebrafish embryos exhibited a strikingly increased number of myeloid cells, which were further characterized as being immune deficient. In accordance with this finding, the inhibition of phosphoinositide 3-kinase (PI3K) or the mechanistic target of rapamycin (mTOR) corrected the expansive myelopoiesis in the pten-deficient embryos. Further mechanistic studies revealed that the expression of cebpa, a critical transcription factor in myeloid precursor cells, was downregulated in the pten-deficient myeloid cells, whereas the injection of cebpa mRNA markedly ameliorated the dysmyelopoiesis induced by the loss of pten. CONCLUSIONS Our data provide in vivo evidence that definitive myelopoiesis in zebrafish is critically regulated by pten via the elevation of cebpa expression.
Collapse
|
17
|
Samokhvalov IM. Deconvoluting the ontogeny of hematopoietic stem cells. Cell Mol Life Sci 2014; 71:957-78. [PMID: 23708646 PMCID: PMC11113969 DOI: 10.1007/s00018-013-1364-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/15/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Two different models describe the development of definitive hematopoiesis and hematopoietic stem cells (HSCs). In one of these, the visceral yolk sac serves as a starting point of relatively lengthy developmental process culminating in the fetal liver hematopoiesis. In another, the origin of adult hematopoiesis is split between the yolk sac and the dorsal aorta, which has a peculiar capacity to generate definitive HSCs. Despite a large amount of experimental data consistent with the latter view, it becomes increasingly unsustainable in the light of recent cell tracing studies. Moreover, analysis of the published studies supporting the aorta-centered version uncovers significant caveats in standard experimental approach and argumentation. As a result, the theory cannot offer feasible cellular mechanisms of the HSC emergence. This review summarizes key efforts to discern the developmental pathway of the adult-type HSCs and attempts to put forward a hypothesis on the inflammatory mechanisms of hematopoietic ontogenesis.
Collapse
Affiliation(s)
- Igor M Samokhvalov
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China,
| |
Collapse
|
18
|
Su Z, Si W, Li L, Zhou B, Li X, Xu Y, Xu C, Jia H, Wang QK. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development. Int J Biochem Cell Biol 2014; 49:53-63. [PMID: 24448023 DOI: 10.1016/j.biocel.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/24/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is a dynamic process by which peripheral blood lineages are developed. It is a process tightly regulated by many intrinsic and extrinsic factors, including transcriptional factors and signaling molecules. However, the epigenetic regulation of hematopoiesis, for example, regulation via microRNAs (miRNAs), remains incompletely understood. Here we show that miR-144 regulates hematopoiesis and vascular development in zebrafish. Overexpression of miR-144 inhibited primitive hematopoiesis as demonstrated by a reduced number of circulating blood cells, reduced o-dianisidine staining of hemoglobin, and reduced expression of hbαe1, hbβe1, gata1 and pu.1. Overexpression of miR-144 also inhibited definitive hematopoiesis as shown by reduced expression of runx1 and c-myb. Mechanistically, miR-144 regulates hematopoiesis by repressing expression of meis1 involved in hematopoiesis. Both real-time RT-PCR and Western blot analyses showed that overexpression of miR-144 repressed expression of meis1. Bioinformatic analysis predicts a target binding sequence for miR-144 at the 3'-UTR of meis1. Deletion of the miR-144 target sequence eliminated the repression of meis1 expression mediated by miR-144. The miR-144-mediated abnormal phenotypes were partially rescued by co-injection of meis1 mRNA and could be almost completely rescued by injection of both meis1 and gata1 mRNA. Finally, because meis1 is involved in vascular development, we tested the effect of miR-144 on vascular development. Overexpression of miR-144 resulted in abnormal vascular development of intersegmental vessels in transgenic zebrafish with Flk1p-EGFP, and the defect was rescued by co-injection of meis1 mRNA. These findings establish miR-144 as a novel miRNA that regulates hematopoiesis and vascular development by repressing expression of meis1.
Collapse
Affiliation(s)
- Zhenhong Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, Key Discipline of Pharmacy of Hubei Department of Education, Medical College, Hubei Polytechnic University, Huangshi, Hubei, PR China
| | - Wenxia Si
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bisheng Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiuchun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, PR China; Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
19
|
Vilboux T, Lev A, Malicdan MCV, Simon AJ, Järvinen P, Racek T, Puchalka J, Sood R, Carrington B, Bishop K, Mullikin J, Huizing M, Garty BZ, Eyal E, Wolach B, Gavrieli R, Toren A, Soudack M, Atawneh OM, Babushkin T, Schiby G, Cullinane A, Avivi C, Polak-Charcon S, Barshack I, Amariglio N, Rechavi G, van der Werff ten Bosch J, Anikster Y, Klein C, Gahl WA, Somech R. A congenital neutrophil defect syndrome associated with mutations in VPS45. N Engl J Med 2013; 369:54-65. [PMID: 23738510 PMCID: PMC3787600 DOI: 10.1056/nejmoa1301296] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neutrophils are the predominant phagocytes that provide protection against bacterial and fungal infections. Genetically determined neutrophil disorders confer a predisposition to severe infections and reveal novel mechanisms that control vesicular trafficking, hematopoiesis, and innate immunity. METHODS We clinically evaluated seven children from five families who had neutropenia, neutrophil dysfunction, bone marrow fibrosis, and nephromegaly. To identify the causative gene, we performed homozygosity mapping using single-nucleotide polymorphism arrays, whole-exome sequencing, immunoblotting, immunofluorescence, electron microscopy, a real-time quantitative polymerase-chain-reaction assay, immunohistochemistry, flow cytometry, fibroblast motility assays, measurements of apoptosis, and zebrafish models. Correction experiments were performed by transfecting mutant fibroblasts with the nonmutated gene. RESULTS All seven affected children had homozygous mutations (Thr224Asn or Glu238Lys, depending on the child's ethnic origin) in VPS45, which encodes a protein that regulates membrane trafficking through the endosomal system. The level of VPS45 protein was reduced, as were the VPS45 binding partners rabenosyn-5 and syntaxin-16. The level of β1 integrin was reduced on the surface of VPS45-deficient neutrophils and fibroblasts. VPS45-deficient fibroblasts were characterized by impaired motility and increased apoptosis. A zebrafish model of vps45 deficiency showed a marked paucity of myeloperoxidase-positive cells (i.e., neutrophils). Transfection of patient cells with nonmutated VPS45 corrected the migration defect and decreased apoptosis. CONCLUSIONS Defective endosomal intracellular protein trafficking due to biallelic mutations in VPS45 underlies a new immunodeficiency syndrome involving impaired neutrophil function. (Funded by the National Human Genome Research Institute and others.).
Collapse
Affiliation(s)
- Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|