1
|
Madkor HR, Abd El-Aziz MK, Abd El-Maksoud MS, Ibrahim IM, Ali FEM. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances. Curr Diabetes Rev 2025; 21:21-37. [PMID: 38173073 DOI: 10.2174/0115733998275428231210055650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications. METHODOLOGY In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin- producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations. CONCLUSION This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.
Collapse
Affiliation(s)
- Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | | | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
2
|
Lu Y, Tian H, Peng H, Wang Q, Bunnell BA, Bazan NG, Hong S. Novel lipid mediator 7 S,14 R-docosahexaenoic acid: biogenesis and harnessing mesenchymal stem cells to ameliorate diabetic mellitus and retinal pericyte loss. Front Cell Dev Biol 2024; 12:1380059. [PMID: 38533089 PMCID: PMC10963555 DOI: 10.3389/fcell.2024.1380059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Stem cells can be used to treat diabetic mellitus and complications. ω3-docosahexaenoic acid (DHA) derived lipid mediators are inflammation-resolving and protective. This study found novel DHA-derived 7S,14R-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-docosahexaenoic acid (7S,14R-diHDHA), a maresin-1 stereoisomer biosynthesized by leukocytes and related enzymes. Moreover, 7S,14R-diHDHA can enhance mesenchymal stem cell (MSC) functions in the amelioration of diabetic mellitus and retinal pericyte loss in diabetic db/db mice. Methods: MSCs treated with 7S,14R-diHDHA were delivered into db/db mice i.v. every 5 days for 35 days. Results: Blood glucose levels in diabetic mice were lowered by 7S,14R-diHDHA-treated MSCs compared to control and untreated MSC groups, accompanied by improved glucose tolerance and higher blood insulin levels. 7S,14R-diHDHA-treated MSCs increased insulin+ β-cell ratio and decreased glucogan+ α-cell ratio in islets, as well as reduced macrophages in pancreas. 7S,14R-diHDHA induced MSC functions in promoting MIN6 β-cell viability and insulin secretion. 7S,14R-diHDHA induced MSC paracrine functions by increasing the generation of hepatocyte growth factor and vascular endothelial growth factor. Furthermore, 7S,14R-diHDHA enhanced MSC functions to ameliorate diabetes-caused pericyte loss in diabetic retinopathy by increasing their density in retina in db/db mice. Discussion: Our findings provide a novel strategy for improving therapy for diabetes and diabetic retinopathy using 7S,14R-diHDHA-primed MSCs.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Haibin Tian
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji University, Shanghai, China
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Quansheng Wang
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bruce A. Bunnell
- Tulane University School of Medicine, Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA, United States
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| |
Collapse
|
3
|
Quaglia M, Merlotti G, Fornara L, Colombatto A, Cantaluppi V. Extracellular Vesicles Released from Stem Cells as a New Therapeutic Strategy for Primary and Secondary Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23105760. [PMID: 35628570 PMCID: PMC9142886 DOI: 10.3390/ijms23105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Current treatment of primary and secondary glomerulopathies is hampered by many limits and a significant proportion of these disorders still evolves towards end-stage renal disease. A possible answer to this unmet challenge could be represented by therapies with stem cells, which include a variety of progenitor cell types derived from embryonic or adult tissues. Stem cell self-renewal and multi-lineage differentiation ability explain their potential to protect and regenerate injured cells, including kidney tubular cells, podocytes and endothelial cells. In addition, a broad spectrum of anti-inflammatory and immunomodulatory actions appears to interfere with the pathogenic mechanisms of glomerulonephritis. Of note, mesenchymal stromal cells have been particularly investigated as therapy for Lupus Nephritis and Diabetic Nephropathy, whereas initial evidence suggest their beneficial effects in primary glomerulopathies such as IgA nephritis. Extracellular vesicles mediate a complex intercellular communication network, shuttling proteins, nucleic acids and other bioactive molecules from origin to target cells to modulate their functions. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, reparative and immunomodulatory properties of parental cells and are increasingly recognized as a cell-free alternative to stem cell-based therapies for different diseases including glomerulonephritis, also considering the low risk for potential adverse effects such as maldifferentiation and tumorigenesis. We herein summarize the renoprotective potential of therapies with stem cells and extracellular vesicles derived from progenitor cells in glomerulonephritis, with a focus on their different mechanisms of actions. Technological progress and growing knowledge are paving the way for wider clinical application of regenerative medicine to primary and secondary glomerulonephritis: this multi-level, pleiotropic therapy may open new scenarios overcoming the limits and side effects of traditional treatments, although the promising results of experimental models need to be confirmed in the clinical setting.
Collapse
|
4
|
Ali A, Kuo W, Kuo C, Lo J, Chen MYC, Daddam JR, Ho T, Viswanadha VP, Shibu MA, Huang C. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton's jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med 2021; 6:e10234. [PMID: 34589606 PMCID: PMC8459600 DOI: 10.1002/btm2.10234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/28/2023] Open
Abstract
Recent studies indicate that umbilical cord stem cells are cytoprotective against several disorders. One critical limitation in using stem cells is reduction in their viability under stressful conditions, such as diabetes. However, the molecular intricacies responsible for diabetic conditions are not fully elucidated. In this study, we found that high glucose (HG) conditions induced loss of chaperone homeostasis, stabilized PTEN, triggered the downstream signaling cascade, and induced apoptosis and oxidative stress in Wharton's jelly derived mesenchymal stem cells (WJMSCs). Increased Carboxyl terminus of Hsc70 interacting protein (CHIP) expression promoted phosphatase and tensin homolog (PTEN) degradation via the ubiquitin-proteasome system and shortened its half-life during HG stress. Docking studies confirmed the interaction of CHIP with PTEN and FOXO3a with the Bim promoter region. Further, it was found that the chaperone system is involved in CHIP-mediated PTEN proteasomal degradation. CHIP depletion stabilizes PTEN whereas PTEN inhibition showed an inverse effect. CHIP overactivation suppressed the binding of FOXO3a with bim. Coculturing CHIP overexpressed WJMSCs suppressed HG-induced apoptosis and oxidative stress in embryo derived cardiac cell lines. CHIP overexpressing and PTEN silenced WJMSCs ameliorated diabetic effects in streptozotocin (STZ) induced diabetic rats and further improved their body weight and heart weight, and rescued from hyperglycemia-induced cardiac injury. Considering these, the current study suggests that CHIP confers resistance to apoptosis and acts as a potentiation factor in WJMSCs to provide protection from degenerative effects of diabetes.
Collapse
Affiliation(s)
- Ayaz Ali
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
| | - Wei‐Wen Kuo
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
- Ph.D. Program for Biotechnology Industry, China Medical UniversityTaichungTaiwan
| | - Chia‐Hua Kuo
- Laboratory of Exercise BiochemistryUniversity of TaipeiTaipeiTaiwan
| | - Jeng‐Fan Lo
- Institute of Oral Biology, National Yang‐Ming UniversityTaipeiTaiwan
| | | | - Jayasimha R. Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
| | - Tsung‐Jung Ho
- Department of Chinese MedicineHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualienTaiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
| | | | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
| | - Chih‐Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
- Center of General Education, Buddhist Tzu Chi Medical FoundationTzu Chi University of Science and TechnologyHualienTaiwan
| |
Collapse
|
5
|
Ali A, Shibu MA, Kuo CH, Lo JF, Chen RJ, Day CH, Ho TJ, PadmaViswanadha V, Kuo WW, Huang CY. CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells attenuate hyperglycemia-induced oxidative stress-mediated kidney injuries in diabetic rats. Free Radic Biol Med 2021; 173:70-80. [PMID: 34298092 DOI: 10.1016/j.freeradbiomed.2021.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Accumulating studies have demonstrated the protective roles of mesenchymal stem cells against several disorders. However, one of their crucial limitations is reduced viability under stress conditions, including the hyperglycemia induced by diabetes. The molecular mechanisms involved in diabetes-induced kidney injuries are not fully elucidated. In this study, we found that high glucose (HG) reduced human proximal tubular epithelial cell viability. Further, hyperglycemia induced oxidative stress-mediated apoptosis and fibrosis in HK-2 cells via activation of the mitogen-activated protein kinases (MAPKs) including c-Jun N-terminal kinase JNK and p38 kinase. Carboxyl terminus of HSP70 interacting protein (CHIP) overactivation considerably rescued cell viability under HG stress. Moreover, Western blot analysis, flow cytometry, and MitoSOX staining revealed that hyperglycemia-induced mitochondrial oxidative stress production and apoptosis were attenuated in CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Co-culture with CHIP-expressing WJMSCs maintained HK-2 cell viability, and inhibited apoptosis and fibrosis by attenuating HG-induced ROS-mediated MAPK activation. CHIP-overexpressing WJMSCs also rescued the decreased kidney weight and hyperglycemia-induced kidney damage observed in streptozotocin-induced diabetic rats. Cumulatively, the current research findings demonstrate that CHIP suppresses hyperglycemia-induced oxidative stress and confers resistance to MAPK-induced apoptosis and fibrosis, and suggests that CHIP protects WJMSCs and the high quality WJMSCs have therapeutic effects against diabetes-induced kidney injuries.
Collapse
Affiliation(s)
- Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jeng-Feng Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
6
|
Xing S, Tian JZ, Yang SH, Huang XT, Ding YF, Lu QY, Yang JS, Yang WJ. Setd4 controlled quiescent c-Kit + cells contribute to cardiac neovascularization of capillaries beyond activation. Sci Rep 2021; 11:11603. [PMID: 34079011 PMCID: PMC8172824 DOI: 10.1038/s41598-021-91105-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Blood vessels in the adult mammal exist in a highly organized and stable state. In the ischemic heart, limited expansion capacity of the myocardial vascular bed cannot satisfy demands for oxygen supply and the myocardium eventually undergoes irreversible damage. The predominant contribution of endogenous c-Kit+ cells is understood to be in the development and homeostasis of cardiac endothelial cells, which suggests potential for their targeting in treatments for cardiac ischemic injury. Quiescent cells in other tissues are known to contribute to the long-term maintenance of a cell pool, preserve proliferation capacity and, upon activation, facilitate tissue homeostasis and regeneration in response to tissue injury. Here, we present evidence of a Setd4-expressing quiescent c-Kit+ cell population in the adult mouse heart originating from embryonic stages. Conditional knock-out of Setd4 in c-Kit-CreERT2;Setd4f/f;Rosa26TdTomato mice induced an increase in vascular endothelial cells of capillaries in both neonatal and adult mice. We show that Setd4 regulates quiescence of c-Kit+ cells by the PI3K-Akt-mTOR signaling pathway via H4K20me3 catalysis. In myocardial infarction injured mice, Setd4 knock-out resulted in attenuated cardiomyocyte apoptosis, decreased infarction size and improved cardiac function. Lineage tracing in Setd4-Cre;Rosa26mT/mG mice showed that Setd4+ cells contribute to each cardiac lineage. Overall, Setd4 epigenetically controls c-Kit+ cell quiescence in the adult heart by facilitating heterochromatin formation via H4K20me3. Beyond activation, endogenous quiescent c-Kit+ cells were able to improve cardiac function in myocardial infarction injured mice via the neovascularization of capillaries.
Collapse
Affiliation(s)
- Sheng Xing
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Ze Tian
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Hua Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ting Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Fu Ding
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Yun Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Shu Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Liu D, Zheng W, Pan S, Liu Z. Concise review: current trends on applications of stem cells in diabetic nephropathy. Cell Death Dis 2020; 11:1000. [PMID: 33221823 PMCID: PMC7680458 DOI: 10.1038/s41419-020-03206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy, with high prevalence, is the main cause of renal failure in diabetic patients. The strategies for treating DN are limited with not only high cost but an unsatisfied effect. Therefore, the effective treatment of DN needs to be explored urgently. In recent years, due to their self-renewal ability and multi-directional differentiation potential, stem cells have exerted therapeutic effects in many diseases, such as graft-versus-host disease, autoimmune diseases, pancreatic diseases, and even acute kidney injury. With the development of stem cell technology, stem cell-based regenerative medicine has been tried to be applied to the treatment of DN. Related stem cells include embryonic stem cells, induced pluripotent stem cells, mesenchymal cells, and endothelial progenitor cells. Undoubtedly, stem cell transplantation has achieved certain results in the treatment of DN animal models. However, stem cell therapy still remains certain thorny issues during treatment. For instance, poor engraftment and limited differentiation of stem cells caused by the diabetic microenvironment, differentiation into unwanted cell lineages, and malignant transformation or genetic aberrations of stem cells. At present, various researches on the therapeutic effects of stem cells in DN with different opinions are reported and the specific mechanism of stem cells is still unclear. We review here the potential mechanism of stem cells as new therapeutic agents in the treatment of DN. Also, we review recent findings and updated information about not only the utilization of stem cells on DN in both preclinical and clinical trials but limitations and future expectations of stem cell-based therapy for DN.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Wen Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China. .,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China. .,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China. .,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
8
|
Mohsen ROM, Halawa AM, Hassan R. Role of bone marrow-derived stem cells versus insulin on filiform and fungiform papillae of diabetic albino rats (light, fluorescent and scanning electron microscopic study). Acta Histochem 2019; 121:812-822. [PMID: 31358295 DOI: 10.1016/j.acthis.2019.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood glucose levels. DM affects many body's organs and caused by insulin production deficiency or by the ineffectiveness of the produced insulin. Administration of exogenous insulin is required for management of type I DM; however, it does not cure the disease. Bone marrow-mesenchymal stem cells (BM-MSCs) have been highlighted to offer a novel cell based approach for treatment of diabetes because of their anti-diabetic effect, direct differentiation into a variety of cell types, or release of paracrine factors. AIM To examine the effect of BM-MSCs versus insulin on true filiform and fungiform papillae of diabetic rats. MATERIALS AND METHODS Fifty six male Wistar albino rats weighing 200-250 g were equally divided into: Control group (Gp I): Rats did not receive any drug. Diabetic group (Gp II): Rats received a single intra-peritoneal injection of streptozotocin (40 mg/kg). BM-MSCs treated diabetic group (Gp III): After DM confirmation; rats received a single intravenous injection of BM-MSCs (million units) through tail vein. Insulin treated diabetic group (Gp IV): After DM confirmation; rats received a daily subcutaneous injection of insulin (5IU/kg). After four weeks, half of the tongue specimens were processed and stained by Hematoxyline & Eosin and Anti-proliferating cell nuclear antigen (Anti-PCNA) then examined by light microscope. Fluorescent microscope was used to detect homing of injected labeled BM-MSCs in rats' filiform and fungiform papillae. While the other half were examined by scanning electron microscope. RESULTS True filiform and fungiform papillae of Gp II showed significant histological and morphological alterations. In treated groups, Gp III and Gp IV, both papillae showed marked improvements, being more noticeable in Gp IV. There was a significant increase in the number of Anti-PCNA positive cells and a significant decrease in fasting blood glucose level in Gp III and Gp IV in comparison to Gp II. CONCLUSIONS DM had degenerative effects on true filiform and fungiform papillae. Administration of BM-MSCs reduced the deleterious effects of DM on both papillae. Insulin injection caused more obvious improvements in both papillae of diabetic rats than BM-MSCs.
Collapse
|
9
|
Li H, Rong P, Ma X, Nie W, Chen C, Yang C, Zhang J, Dong Q, Wang W. Paracrine effect of mesenchymal stem cell as a novel therapeutic strategy for diabetic nephropathy. Life Sci 2018; 215:113-118. [PMID: 30399376 DOI: 10.1016/j.lfs.2018.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022]
Abstract
Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus (DM) and the main reason for end-stage renal diseases (ESRD). Based on the role of mesenchymal stem cells (MSCs) in regenerative medicine, the MSC therapy has been considered a promising strategy to ameliorate the progression of DN. In this article, we review the therapeutic potential of MSCs in DN, mainly involving MSC paracrine mechanism based on trophic factors and extracellular vesicles. Knowledge of mechanism underlying the therapeutic action of MSCs on DN can provide much needed new drug targets for this disease.
Collapse
Affiliation(s)
- Hongde Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Nie
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cejun Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiong Dong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes. J Cell Biochem 2018; 119:9433-9443. [PMID: 30074271 DOI: 10.1002/jcb.27260] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Exosomes derived from adipose tissue-derived mesenchymal stem cells (AD-MSCs) have immunomodulatory effects of T-cell inflammatory response and reduction of clinical symptoms on streptozotocin-induced of the type-1 diabetes mellitus (T1DM). Beside control group and untreated T1DM mice, a group of T1DM mice was treated with intraperitoneal injections of characterized exosomes derived from autologous AD-MSCs. Body weight and blood glucose levels were measured during the procedure. Histopathology and immunohistochemistry were used for evaluation of pancreatic islets using hemotoxylin and eosin (H&E) staining and anti-insulin antibody. Isolated splenic mononuclear cells (MNCs) were subjected to splenocytes proliferation assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, immunophenotyping of regulatory T cells and cytokines. A significant increase in the levels of interleukin-4 (IL-4), IL-10, and transforming growth factor-β, and a decrease in the levels of IL-17 and interferon-γ in concordance with the significant increase in the Treg cell ratio in splenic MNCs (P < 0.05) was shown in T1DM mice treated with AD-MSC's exosomes as compared to T1DM untreated mice. This amelioration of autoimmune reaction after treatment of T1DM mice with the AD-MSC exosomes was confirmed with a significant increase in islets using H&E staining and Immunohistochemistry analyses. As expected, body weight, blood glucose levels in a survival of T1DM mice treated with AD-MSC's exosomes were maintained stable in comparison to untreated T1DM mice. It can be concluded that AD-MSC's exosomes exert ameliorative effects on autoimmune T1DM through increasing regulatory T-cell population and their products without a change in the proliferation index of lymphocytes, which makes them more effective and practical candidates.
Collapse
Affiliation(s)
- Shahrzad Nojehdehi
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ardeshir Hesampour
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Shima Rasouli
- Department of Immunology, Student's Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Peng BY, Dubey NK, Mishra VK, Tsai FC, Dubey R, Deng WP, Wei HJ. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res 2018; 2018:7806435. [PMID: 30046616 PMCID: PMC6036791 DOI: 10.1155/2018/7806435] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/19/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
High morbidity and mortality of diabetes mellitus (DM) throughout the human population is a serious threat which needs to be addressed cautiously. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are most prevalent forms. Disruption in insulin regulation and resistance leads to increased formation and accumulation of advanced end products (AGEs), which further enhance oxidative and nitrosative stress leading to microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular complications. These complications affect the normal function of organ and tissues and may cause life-threatening disorders, if hyperglycemia persists and improperly controlled. Current and traditional treatment procedures are only focused on to regulate the insulin level and do not cure the diabetic complications. Pancreatic transplantation seemed a viable alternative; however, it is limited due to lack of donors. Cell-based therapy such as stem cells is considered as a promising therapeutic agent against DM and diabetic complications owing to their multilineage differentiation and regeneration potential. Previous studies have demonstrated the various impacts of both pluripotent and multipotent stem cells on DM and its micro- and macrovascular complications. Therefore, this review summarizes the potential of stem cells to treat DM and its related complications.
Collapse
Affiliation(s)
- Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taipei City 110, Taiwan
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala, India
| | - Feng-Chou Tsai
- Department of Stem Cell Research, Cosmetic Clinic Group, Taipei City 110, Taiwan
| | - Rajni Dubey
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| |
Collapse
|
12
|
Prospect of Using Cell Product for the Therapy of Skin Defects in Diabetes Mellitus. Bull Exp Biol Med 2017; 164:266-268. [PMID: 29178052 DOI: 10.1007/s10517-017-3970-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/03/2023]
Abstract
The effectiveness of autologous cell product in the therapy of skin burn wounds was studied in C57B1/6 male mice against the background of streptozotocin-induced diabetes mellitus. In animals with and without modeled diabetes mellitus, significant decrease in skin defect area was observed after single administration of the cell product (bone marrow multipotent mesenchymal stromal cells, fibroblasts or media conditioned by these cells).
Collapse
|
13
|
Prathipati P, Nandi SS, Mishra PK. Stem Cell-Derived Exosomes, Autophagy, Extracellular Matrix Turnover, and miRNAs in Cardiac Regeneration during Stem Cell Therapy. Stem Cell Rev Rep 2017; 13:79-91. [PMID: 27807762 DOI: 10.1007/s12015-016-9696-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell therapy (SCT) raises the hope for cardiac regeneration in ischemic hearts. However, underlying molecular mechanisms for repair of dead myocardium by SCT in the ischemic heart is poorly understood. Growing evidences suggest that cardiac matrix stiffness and differential expressions of miRNAs play a crucial role in stem cell survival and differentiation. However, their roles on transplanted stem cells, for myocardial repair of the ischemic heart, remain unclear. Transplanted stem cells may act in an autocrine and/or paracrine manner to regenerate the dead myocardium. Paracrine mediators such as stem cell-derived exosomes are emerging as a novel therapeutic strategy to overcome some of the limitations of SCT. These exosomes carry microRNAs (miRNAs) that may regulate stem cell differentiation into a specific lineage. MicroRNAs may also contribute to stiffness of surrounding matrix by regulating extracellular matrix (ECM) turnover. The survival of transplanted stem cell depends on its autophagic process that maintains cellular homeostasis. Therefore, exosomes, miRNAs, extracellular matrix turnover, and autophagy may have an integral role in improving the efficacy of SCT. This review elaborates the specific roles of these regulatory components on cardiac regeneration in the ischemic heart during SCT.
Collapse
Affiliation(s)
- Priyanka Prathipati
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shyam Sundar Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Chen TS, Liou SY, Kuo CH, Pan LF, Yeh YL, Liou J, Padma VV, Yao CH, Kuo WW, Huang CY. Green tea epigallocatechin gallate enhances cardiac function restoration through survival signaling expression in diabetes mellitus rats with autologous adipose tissue-derived stem cells. J Appl Physiol (1985) 2017; 123:1081-1091. [PMID: 28546469 DOI: 10.1152/japplphysiol.00471.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
The present study tests a hypothesis that cardioprotective effects mediated by autologous adipose-derived stem cells (ADSC) in rats afflicted with insulin-dependent diabetes mellitus (IDDM) may be synergistically enhanced by oral treatment with green tea epigallocatechin gallate (EGCG). Wistar rats were divided into sham, DM, DM+ADSC (autologous transplanted 1 × 106 cells per rat), and DM+ADSC+E (E, green tea oral administration EGCG). Heart tissues were isolated from all rats, and investigations were performed after 2-mo treatment. In the sham, DM, and DM+ADSC groups, we found that DM induced cardiac dysfunction (sham and DM) and autologous ADSC transplantation could partially recover cardiac functions (DM and DM+ADSC) in DM rats. Compared with DM+ADSC, significant improvement in cardiac functions can be observed in DM+ADSC+E in echocardiographic data, histological observations, and even cellular protein expression. Oral green tea EGCG administration and autologous ADSC transplantation show synergistically beneficial effects on diabetic cardiac myopathy in DM rats. NEW & NOTEWORTHY Cardiomyopathy can be induced in rats with diabetes mellitus (DM). Heart function can be restored in DM rats with adipose-derived stem cell treatment. Oral epigallocatechin gallate (EGCG) administration synergistically enhances cardiac function in DM rats with stem cell treatment. The EGCG and stem cell treatment cross-effect occurs via survival protein expression.
Collapse
Affiliation(s)
- Tung-Sheng Chen
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Show-Yih Liou
- Formosan Blood Purification Foundation, Taipei, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Lung-Fa Pan
- Division of Cardiology, Armed Force Taichung General Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Jeffery Liou
- Comprehensive Weight Management Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - V. Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chun-Hsu Yao
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; and
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Zafarvahedian E, Roohi A, Sepand MR, Ostad SN, Ghahremani MH. Effect of metformin and celecoxib on cytotoxicity and release of GDF-15 from human mesenchymal stem cells in high glucose condition. Cell Biochem Funct 2017; 35:407-413. [PMID: 28975647 DOI: 10.1002/cbf.3289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) have therapeutic potential for treatment of diabetes. However, in vitro behavior of MSCs in high glucose condition as well as presence of glucose lowering agents is not fully understood. Because MSCs have an important role in tissue repair, we examined the effects of metformin and celecoxib on viability of MSCs in different glucose conditions. MSCs, from umbilical cord blood, were cultured in normoglycemic (glucose 5.5 mM), midglycemic (glucose 10 mM), and hyperglycemic (glucose 25 mM) conditions, and the cell viability was evaluated by MTT assay. The cytotoxicity and secretion of GDF-15 were further tested in MSCs treated with metformin and celecoxib in various glucose concentrations. Our results showed that high glucose condition lowered viability of MSCs. Metformin treatment also inhibited proliferation of MSCs, but its toxicity was not changed in high glucose condition. Celecoxib induced cytotoxicity in MSCs, and the toxicity was increased in high glucose condition. Metformin and celecoxib induced release from MSCs; however, high glucose inhibited the metformin-induced GDF-15 release. These findings suggested that metformin did not increase the cytotoxicity of high glucose condition in MSCs. Moreover, celecoxib treatment in diabetic condition can reduce the viability of MSCs to proliferate and regenerate perhaps via change in release of GDF-15.
Collapse
Affiliation(s)
- Elaheh Zafarvahedian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Poisoning Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Chung SW, Choi BM, Kim JY, Lee YS, Yoon JP, Oh KS, Park KS. Altered Gene and Protein Expressions in Torn Rotator Cuff Tendon Tissues in Diabetic Patients. Arthroscopy 2017; 33:518-526.e1. [PMID: 27789071 DOI: 10.1016/j.arthro.2016.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To analyze and compare the gene and protein expression characteristics in torn rotator cuff tendon tissues between diabetic and nondiabetic patients. METHODS This was a pilot study. Twelve samples of rotator cuff tendon tissue from diabetic patients (mean age, 62.3 ± 9.9 years) and 12 age- and sex-matched nondiabetic tendon tissues (62.3 ± 9.9 years) were acquired from the torn tendon end of medium rotator cuff tears during arthroscopic surgery, after applying the same inclusion and exclusion criteria. Expressions of various genes of interest, including collagens I and III, matrix metalloprotease (MMP)-2, MMP-3, MMP-9, MMP-13, interleukin (IL)-1, IL-6, insulin-like growth factor-1, vascular endothelial growth factor, tenomodulin, tumor necrosis factor-α, and p53, were analyzed with real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, immunohistochemistry and western blot assay were performed for the genes that revealed significantly different expressions in real-time qRT-PCR between groups. RESULTS Gene expression levels of MMP-9, MMP-13, IL-6, and tenomodulin were significantly higher in the diabetic than in the nondiabetic group by real-time qRT-PCR analyses (P = .011, .004, .009, and .010, respectively). The density of cells expressing MMP-9 and IL-6 was significantly increased in the torn tendons of the diabetic patients on immunohistochemical analysis, and the density of MMP-9 and IL-6 protein expressions was significantly higher in the diabetic group on western blot (P = .018 and .044, respectively). CONCLUSIONS Diabetic torn cuff tendon tissues showed MMP-9 and IL-6 overexpressions compared with controls. CLINICAL RELEVANCE The overexpressions of MMP-9 and IL-6 may be one of the explanations for the high healing failure rate after rotator cuff repair in the diabetic patients.
Collapse
Affiliation(s)
- Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Bo Mi Choi
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ja Yeon Kim
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yong-Soo Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jong Pil Yoon
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Oh
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea; Korea University College of Medicine, Seoul, Republic of Korea.
| | - Kyung Sik Park
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Ahmed AS, Li J, Abdul AMD, Ahmed M, Östenson CG, Salo PT, Hewitt C, Hart DA, Ackermann PW. Compromised Neurotrophic and Angiogenic Regenerative Capability during Tendon Healing in a Rat Model of Type-II Diabetes. PLoS One 2017; 12:e0170748. [PMID: 28122008 PMCID: PMC5266316 DOI: 10.1371/journal.pone.0170748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic diseases such as diabetes mellitus type-II (DM-II) may increase the risk of suffering painful connective tissue disorders and tendon ruptures. The pathomechanisms, however, by which diabetes adversely affects connective tissue matrix metabolism and regeneration, still need better definition. Our aim was to study the effect of DM-II on expressional changes of neuro- and angiotrophic mediators and receptors in intact and healing Achilles tendon. The right Achilles tendon was transected in 5 male DM-II Goto-Kakizaki (GK) and 4 age-matched Wistar control rats. The left Achilles tendons were left intact. At week 2 post-injury, NGF, BDNF, TSP, and receptors TrkA, TrkB and Nk1 gene expression was studied by quantitative RT-PCR (qRT-PCR) and their protein distribution by immunohistochemistry in intact and injured tendons. The expression of tendon-related markers, Scleraxis (SCX) and Tenomodulin (TNMD), was evaluated by qRT-PCR in intact and injured tendons. Injured tendons of diabetic GK rats exhibited significantly down-regulated Ngf and Tsp1 mRNA and corresponding protein levels, and down-regulated Trka gene expression compared to injured Wistar controls. Intact tendons of DM-II GK rats displayed reduced mRNA levels for Ngf, Tsp1 and Trkb compared to corresponding intact non-diabetic tendons. Up-regulated Scx and Tnmd gene expression was observed in injured tendons of normal and diabetic GK rats compared to intact Wistar controls. However, these molecules were not up-regulated in injured DM-II GK rats compared to their corresponding controls. Our results suggest that DM-II has detrimental effects on neuro- and angiotrophic pathways, and such effects may reflect the compromised repair seen in diabetic Achilles tendon. Thus, novel approaches for regeneration of injured, including tendinopathic, and surgically repaired diabetic tendons may include therapeutic molecular modulation of neurotrophic pathways such as NGF and its receptors.
Collapse
MESH Headings
- Achilles Tendon/injuries
- Achilles Tendon/metabolism
- Achilles Tendon/physiopathology
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Gene Expression
- Male
- Neovascularization, Physiologic/physiology
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- Rats
- Rats, Wistar
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Substance P/genetics
- Substance P/metabolism
- Tendon Injuries/metabolism
- Tendon Injuries/physiopathology
- Wound Healing/physiology
Collapse
Affiliation(s)
- Aisha S. Ahmed
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Jian Li
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Alim M. D. Abdul
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Mahmood Ahmed
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Family and Community Medicine (CeFAM), Huddinge, Sweden
| | - Claes-Göran Östenson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Paul T. Salo
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Carolyn Hewitt
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - David A. Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Paul W. Ackermann
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
18
|
Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3027109. [PMID: 28168007 PMCID: PMC5267085 DOI: 10.1155/2017/3027109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder affecting increasing number of people in developed countries. Therefore new strategies for treatment of T2D and its complications are of special interest. Nowadays, cellular therapies involving mesenchymal stromal cells that reside in adipose tissue (ASCs) constitute a promising approach; however, there are still many obstacles concerning safety and effectiveness that need to be overcome before ASCs could be engaged for the treatment of diabetes mellitus. One of the challenges is preventing ASCs from deterioration caused by elevated oxidative stress present in diabetes milieu. In the current study we investigated the effect of basic fibroblast growth factor (bFGF) treatment on ASCs isolated from patients with diagnosed T2D. We demonstrate here that cell exposition to bFGF in 5 and 10 ng/mL dosages results in improved morphology, increased proliferative activity, reduced cellular senescence and apoptosis, and decreased oxidative stress, indicating recovery of ASCs' function impaired by T2D. Therefore our results provide a support for bFGF as a potential therapeutic agent for improving stem cell-based approaches for the treatment of diabetes mellitus and its complications.
Collapse
|
19
|
Wehbe T, Chahine NA, Sissi S, Abou-Joaude I, Chalhoub L. Bone marrow derived stem cell therapy for type 2 diabetes mellitus. Stem Cell Investig 2016; 3:87. [PMID: 28066789 DOI: 10.21037/sci.2016.11.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022]
Abstract
In this study, 6 patients with type 2 diabetes (T2D) underwent autologous bone marrow mononuclear stem cell (BM-MNSC) infusion into the celiac and superior mesenteric arteries without pretreatment with any myeloablative or immune-suppressive therapy. Five of 6 (83%) showed normalization of their fasting glucose and the glycosylated hemoglobin (HbA1C) with significant reduction of their medication requirements. The HbA1C dropped on average 2.2 points. The three patients with diabetic complications showed improvement or stabilization and most patients reported improved energy and stamina. The durations of response varied between 6 months and 2 years. No patients had any significant adverse effects.
Collapse
Affiliation(s)
- Tarek Wehbe
- Hematology Department, the Lebanese Canadian and Notre Dame University Hospitals, Beirut, Lebanon
| | - Nassim Abi Chahine
- Neurosurgery Department, the Lebanese Canadian Hospital, Beirut, Lebanon
| | - Salam Sissi
- Endocrinology Department, Al-Saydet Hospital, Zgharta, Lebanon
| | - Isabelle Abou-Joaude
- Endocrinology Department, The Middle East and Notre Dame University Hospitals, Beirut, Lebanon
| | - Louis Chalhoub
- Endocrinology Department, the Lebanese Canadian Hospital, Beirut, Lebanon
| |
Collapse
|
20
|
Witkowski S, Guhanarayan G, Burgess R. Glucose and acute exercise influence factors secreted by circulating angiogenic cells in vitro. Physiol Rep 2016; 4:4/3/e12649. [PMID: 26847726 PMCID: PMC4758925 DOI: 10.14814/phy2.12649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022] Open
Abstract
Circulating angiogenic cells (CAC) influence vascular repair through the secretion of proangiogenic factors and cytokines. While CAC are deficient in patients with diabetes and exercise has a beneficial effect on CACs, the impact of these factors on paracrine secretion from CAC is unknown. We aimed to determine whether the in vitro secretion of selected cytokines and nitric oxide (NO) from CAC is influenced by hyperglycemia and acute exercise. Colony‐forming unit CAC (CFU‐CAC) were cultured from young active men (n = 9, 24 ± 2 years) at rest and after exercise under normal (5 mmol/L) and elevated (15 mmol/L) glucose. Preliminary relative multiplex cytokine analysis revealed that CAC conditioned culture media contained three of six measured cytokines: transforming growth factor‐beta‐1 (TGFβ1), tumor necrosis factor alpha (TNFα), and monocyte chemotactic protein‐1 (MCP‐1). Single quantitative cytokine analysis was used to determine the concentration of each cytokine from the four conditions. NO was measured via Griess assay. There was a significant effect of CAC exposure to in vivo exercise on in vitro TGFβ1 secretion (P = 0.024) that was independent of glucose concentration. There was no effect of glucose or acute exercise on TNFα or MCP‐1 concentration (both P > 0.05). The concentration of NO from CFU‐CAC cultured in elevated glucose was lower following acute exercise (P = 0.002) suggesting that exercise did not maintain NO secretion under hyperglycemic conditions. Our results identify paracrine signaling factors that may be responsible for the proangiogenic function of CFU‐CAC and an influence of acute exercise and elevated glucose on CFU‐CAC soluble factor secretion.
Collapse
Affiliation(s)
- Sarah Witkowski
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Gayatri Guhanarayan
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Rachel Burgess
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
21
|
Cheng NC, Hsieh TY, Lai HS, Young TH. High glucose-induced reactive oxygen species generation promotes stemness in human adipose-derived stem cells. Cytotherapy 2016; 18:371-83. [PMID: 26780864 DOI: 10.1016/j.jcyt.2015.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Adipose-derived stem cells (ASCs) represent an important source of cell therapy to treat diabetic complications. However, hyperglycemia may alter several cellular functions, so the present study aimed to investigate the influence of a diabetic environment on the stemness and differentiation capabilities of ASCs. METHODS Human ASCs were obtained from subcutaneous adipose tissues of diabetic (dASCs) and nondiabetic donors (nASCs) and characterized. To reproduce an in vitro hyperglycemia environment, the nASCs were also cultured under prolonged high-glucose (HG; 4.5 g/L) or low-glucose (LG; 1.0 g/L) conditions. RESULTS The expression of cell surface markers in dASCs and nASC was similar and characteristic of mesenchymal stem cells. Although dASCs or HG-treated nASCs exhibited decreased proliferation, enhanced expression of the pluripotent markers Sox-2, Oct-4, and Nanog was observed. Moreover, HG-treated nASCs exhibited decreased cell migration, enhanced senescence, and significantly higher intracellular reactive oxygen species (ROS), whereas their adipogenic and osteogenic differentiation capacities remained comparable to LG-treated cells. With antioxidant treatment, HG-treated nASCs showed improved cell proliferative activity without stemness enhancement. This HG-induced biological response was associated with ROS-mediated AKT attenuation. When cultured in an appropriate induction medium, the HG-treated nASCs and dASCs exhibited enhanced potential of transdifferentiation into neuron-like cells. DISCUSSION Despite lower proliferative activity and higher senescence in a diabetic environment, ASCs also exhibit enhanced stemness and neurogenic transdifferentiation potential via a ROS-mediated mechanism. The information is important for future application of autologous ASCs in diabetic patients.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yu Hsieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Yang G, Cheng Q, Liu S, Zhao J. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy. PLoS One 2015; 10:e0137245. [PMID: 26340671 PMCID: PMC4560440 DOI: 10.1371/journal.pone.0137245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022] Open
Abstract
The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01), 1.23-fold (p < 0.01), and 2.13-fold (p < 0.001), respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01) in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia.
Collapse
Affiliation(s)
- Guang Yang
- Department of Geriatric Nephrology, Chinese People’s Liberation Army General Hospital, State Key Laboratory of Kidney Disease, Beijing, China
| | - Qingli Cheng
- Department of Geriatric Nephrology, Chinese People’s Liberation Army General Hospital, State Key Laboratory of Kidney Disease, Beijing, China
- * E-mail:
| | - Sheng Liu
- Department of Geriatric Nephrology, Chinese People’s Liberation Army General Hospital, State Key Laboratory of Kidney Disease, Beijing, China
| | - Jiahui Zhao
- Department of Geriatric Nephrology, Chinese People’s Liberation Army General Hospital, State Key Laboratory of Kidney Disease, Beijing, China
| |
Collapse
|
23
|
Clinical significance of granulation tissue after transoral laser microsurgery for glottic cancer. The Journal of Laryngology & Otology 2015; 129:377-82. [DOI: 10.1017/s0022215115000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground:Granulation tissue after transoral laser microsurgery can make it difficult to distinguish between normal healing and tumour recurrence.Materials and methods:We carried out a retrospective analysis of 316 consecutive glottic carcinomas (Tis–T3). Presence of granulation tissue at one and six months was correlated with demographic and clinical data, tumour and surgical characteristics, and tumour relapse.Results:Granulation tissue appeared in 53.8 per cent of patients at month 1, resolving spontaneously in 41.8 per cent. Revision surgery was performed in 60.1 per cent and was effective in 41.1 per cent. At month 6, 14.9 per cent of patients presented with granulation tissue. In 74.5 per cent the tissue was surgically removed and was positive for malignancy in 62.9 per cent. Tumour relapse presented in 29.4 per cent with granulation tissue at month 1 and in 61.7 per cent at month 6 (p= 0.000). Granulation tissue at month 1 correlated with thyroid cartilage exposure and continued smoking. At month 6, granulation tissue correlated with thyroid cartilage exposure, the affected surgical margins and diabetes.Conclusion:Granulation tissue after transoral laser microsurgery is frequent. When it persists at six months, revision surgery is formally recommended.
Collapse
|
24
|
Azzabi F, Rottmar M, Jovaisaite V, Rudin M, Sulser T, Boss A, Eberli D. Viability, differentiation capacity, and detectability of super-paramagnetic iron oxide-labeled muscle precursor cells for magnetic-resonance imaging. Tissue Eng Part C Methods 2014; 21:182-91. [PMID: 24988198 DOI: 10.1089/ten.tec.2014.0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell therapies are a promising approach for the treatment of a variety of human conditions including stress urinary incontinence, but their success greatly depends on the biodistribution, migration, survival, and differentiation of the transplanted cells. Noninvasive in vivo cell tracking therefore presents an important aspect for translation of such a procedure into the clinics. Upon labeling with superparamagnetic iron oxide (SPIO) nanoparticles, cells can be tracked by magnetic resonance imaging (MRI), but possible adverse effect of the labeling have to be considered when labeling stem cells with SPIOs. In this study, human muscle precursor cells (hMPC) were labeled with increasing concentrations of SPIO nanoparticles (100-1600 μg/mL) and cell viability and differentiation capacity upon labeling was assessed in vitro. While a linear dependence between cell viability and nanoparticle concentration could be observed, differentiation capacity was not affected by the presence of SPIOs. Using a nude mouse model, a concentration (400 μg/mL) could be defined that allows reliable detection of hMPCs by MRI but does not influence myogenic in vivo differentiation to mature and functional muscle tissue. This suggests that such an approach can be safely used in a clinical setting to track muscle regeneration in patients undergoing cell therapy without negative effects on the functionality of the bioengineered muscle.
Collapse
Affiliation(s)
- Fahd Azzabi
- 1 Division of Urology, University Hospital Zurich , Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
Ninomiya T, Hiraga T, Hosoya A, Ohnuma K, Ito Y, Takahashi M, Ito S, Asashima M, Nakamura H. Enhanced Bone-Forming Activity of Side Population Cells in the Periodontal Ligament. Cell Transplant 2014; 23:691-701. [DOI: 10.3727/096368913x663587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Regeneration of alveolar bone is critical for the successful treatment of periodontal diseases. The periodontal ligament (PDL) has been widely investigated as a source of cells for the regeneration of periodontal tissues. In the present study where we attempted to develop an effective strategy for alveolar bone regeneration, we examined the osteogenic potential of side population (SP) cells, a stem cell-containing population that has been shown to be highly abundant in several kinds of tissues, in PDL cells. Isolated SP cells from the rat PDL exhibited a superior ability to differentiate into osteoblastic cells compared with non-SP (NSP) and unsorted PDL cells in vitro. The mRNA expressions of osteoblast markers and bone morphogenetic protein (BMP) 2 were significantly upregulated in SP cells and were further increased by osteogenic induction. To examine the bone-forming activity of SP cells in vivo, PDL SP cells isolated from green fluorescent protein (GFP)-transgenic rats were transplanted with hydroxyapatite (HA) disks into wild-type animals. SP cells exhibited a high ability to induce the mineralized matrix compared with NSP and unsorted PDL cells. At 12 weeks after the implantation, some of the pores in the HA disks with SP cells were filled with mineralized matrices, which were positive for bone matrix proteins, such as osteopontin, bone sialoprotein, and osteocalcin. Furthermore, osteoblast- and osteocyte-like cells on and in the bone-like mineralized matrices were GFP positive, suggesting that the matrices were directly formed by the transplanted cells. These results suggest that PDL SP cells possess enhanced osteogenic potential and could be a potential source for cell-based regenerative therapy for alveolar bone.
Collapse
Affiliation(s)
- Tadashi Ninomiya
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Akihiro Hosoya
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Kiyoshi Ohnuma
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yuzuru Ito
- Research Center for Stem Cell Engineering (SCRC), National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Masafumi Takahashi
- Division of Bioimaging Sciences, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Susumu Ito
- Division of Instrumental Analysis, Research Center for Human and Environmental Sciences, Shinshu University, Matsumoto, Nagano, Japan
| | - Makoto Asashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Research Center for Stem Cell Engineering (SCRC), National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Hiroaki Nakamura
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
26
|
Ahmed AS, Li J, Schizas N, Ahmed M, Ostenson CG, Salo P, Hewitt C, Hart DA, Ackermann PW. Expressional changes in growth and inflammatory mediators during Achilles tendon repair in diabetic rats: new insights into a possible basis for compromised healing. Cell Tissue Res 2014; 357:109-17. [PMID: 24797839 DOI: 10.1007/s00441-014-1871-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/13/2014] [Indexed: 01/21/2023]
Abstract
Dysregulation of growth and inflammatory mediators might contribute to defective tissue homeostasis and healing, as commonly observed in sedentary lifestyles and in conditions such as diabetes mellitus type-2. The present study aims to assess expression changes in growth and inflammatory mediators in the intact and healing Achilles tendon of type-2 diabetic rats. The study utilized 11 male diabetic Goto-Kakizaki (GK) and 10 age- and sex-matched Wistar control rats. The right Achilles tendon was transected in all animals, whereas the left Achilles tendon remained intact. At 2 weeks post-injury, intact and injured tendons were assessed for gene expression for VEGF, Tβ-4, TGF-β1, IGF-1, COX-2, iNOS, HIF-1α, and IL-1β by quantitative reverse transcription plus the polymerase chain reaction, and their protein distribution was studied by immunolocalization. In injured tendons of diabetic GK rats, VEGF and Tβ-4 mRNA and corresponding protein levels were significantly down-regulated compared with those of injured Wistar controls. Compared with intact tendons of diabetic GK rats, TGF-β1, IGF-1, and COX-2 RNA levels were higher, whereas iNOS mRNA levels were lower in injured tendons of diabetic GK rats. Within Wistar controls, healing at 2 weeks post-injury led to significantly down-regulated VEGF and iNOS mRNA levels in injured tendons, whereas TGF-β1 and HIF-1α mRNA levels increased compared with intact tendons. Thus, dysregulation of inflammatory and growth mediators occurs in type-2 diabetes injured tendons. Our data suggest that therapeutic modulation of Tβ-4 and VEGF represent a new regenerative approach in operated, injured, or degenerative tendon diseases in diabetes.
Collapse
Affiliation(s)
- Aisha S Ahmed
- Department of Clinical Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden,
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Background Non-healing foot ulcers are the most common cause of non-traumatic amputation and hospitalization amongst diabetics in the developed world. Impaired wound neovascularization perpetuates a cycle of dysfunctional tissue repair and regeneration. Evidence implicates defective mobilization of marrow-derived progenitor cells (PCs) as a fundamental cause of impaired diabetic neovascularization. Currently, there are no FDA-approved therapies to address this defect. Here we report an endogenous PC strategy to improve diabetic wound neovascularization and closure through a combination therapy of AMD3100, which mobilizes marrow-derived PCs by competitively binding to the cell surface CXCR4 receptor, and PDGF-BB, which is a protein known to enhance cell growth, progenitor cell migration and angiogenesis. Methods and Results Wounded mice were assigned to 1 of 5 experimental arms (n = 8/arm): saline treated wild-type, saline treated diabetic, AMD3100 treated diabetic, PDGF-BB treated diabetic, and AMD3100/PDGF-BB treated diabetic. Circulating PC number and wound vascularity were analyzed for each group (n = 8/group). Cellular function was assessed in the presence of AMD3100. Using a validated preclinical model of type II diabetic wound healing, we show that AMD3100 therapy (10 mg/kg; i.p. daily) alone can rescue diabetes-specific defects in PC mobilization, but cannot restore normal wound neovascularization. Through further investigation, we demonstrate an acquired trafficking-defect within AMD3100-treated diabetic PCs that can be rescued by PDGF-BB (2 μg; topical) supplementation within the wound environment. Finally, we determine that combination therapy restores diabetic wound neovascularization and accelerates time to wound closure by 40%. Conclusions Combination AMD3100 and PDGF-BB therapy synergistically improves BM PC mobilization and trafficking, resulting in significantly improved diabetic wound closure and neovascularization. The success of this endogenous, cell-based strategy to improve diabetic wound healing using FDA-approved therapies is inherently translatable.
Collapse
|
28
|
Davey GC, Patil SB, O'Loughlin A, O'Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne) 2014; 5:86. [PMID: 24936198 PMCID: PMC4047679 DOI: 10.3389/fendo.2014.00086] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
The worldwide increase in the prevalence of Diabetes mellitus (DM) has highlighted the need for increased research efforts into treatment options for both the disease itself and its associated complications. In recent years, mesenchymal stromal cells (MSCs) have been highlighted as a new emerging regenerative therapy due to their multipotency but also due to their paracrine secretion of angiogenic factors, cytokines, and immunomodulatory substances. This review focuses on the potential use of MSCs as a regenerative medicine in microvascular and secondary complications of DM and will discuss the challenges and future prospects of MSCs as a regenerative therapy in this field. MSCs are believed to have an important role in tissue repair. Evidence in recent years has demonstrated that MSCs have potent immunomodulatory functions resulting in active suppression of various components of the host immune response. MSCs may also have glucose lowering properties providing another attractive and unique feature of this therapeutic approach. Through a combination of the above characteristics, MSCs have been shown to exert beneficial effects in pre-clinical models of diabetic complications prompting initial clinical studies in diabetic wound healing and nephropathy. Challenges that remain in the clinical translation of MSC therapy include issues of MSC heterogeneity, optimal mode of cell delivery, homing of these cells to tissues of interest with high efficiency, clinically meaningful engraftment, and challenges with cell manufacture. An issue of added importance is whether an autologous or allogeneic approach will be used. In summary, MSC administration has significant potential in the treatment of diabetic microvascular and secondary complications but challenges remain in terms of engraftment, persistence, tissue targeting, and cell manufacture.
Collapse
Affiliation(s)
- Grace C Davey
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland
| | - Swapnil B Patil
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland
| | - Aonghus O'Loughlin
- Department of Medicine, Galway University Hospital (GUH) , Galway , Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI) and Biosciences Building, National University of Ireland , Galway , Ireland ; Department of Medicine, Galway University Hospital (GUH) , Galway , Ireland
| |
Collapse
|
29
|
Li YJ, Duan CL, Liu JX. Salvianolic acid A promotes the acceleration of neovascularization in the ischemic rat myocardium and the functions of endothelial progenitor cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:218-227. [PMID: 24189032 DOI: 10.1016/j.jep.2013.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/13/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza (SM, also known as DanShen) is one of the well-known widely used Chinese herbal medicines in clinical, containing phenolic compounds and potent antioxidant properties. Salvianolic acid A (SAA) is the most potent component of SM. A modern experimental strategy for treating myocardial ischemia is to induce neovascularization of the heart by the use of "angiogens", mediators that induce the formation of blood vessels, or angiogenesis. Studies demonstrated that coronary collateral vessels protect ischemic myocardium after coronary obstruction; therefore, we sought to examine whether SAA could stimulate myocardial angiogenesis. MATERIALS AND METHODS Male Sprague-Dawley rats myocardial infarct (MI) induced by ligation of left anterior descending coronary artery (LAD) were randomly divided into five groups: sham-operated group; LAD occlusion + administration of physiological saline (vehicle treated group); LAD occlusion + administration of different concentrations of SAA (10, 5.0 and 2.5mg/kg/d). Infarct size and capillary density in the infarct region were measured with a previous experimental method. Immunohistological analysis was performed to measure vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor-2 (VEGFR-2) expressions. The secretion of matrix metalloproteinase type X (MMP-9) was evaluated in serum of post-ischemic rats. We also performed the experiments of SAA on rat endothelial progenitor cells (EPCs) numbers and the capacity of migration and vasculargenesis. RESULTS SAA potentiated the ischemia-induced neovascularization after 1week post-operation when compared to vehicle treated group. This effect could be attributed to an increased formation of VEGF, VEGFR-2, and MMP-9 as well as the promotion of numbers and functions of EPCs. CONCLUSION These findings show that SAA has potent proangiogenic properties by promoting the expression of proangiogenic factors, and the functions of EPCs, indicating that SAA might contribute to the protective effect against coronary disease. Chemical compound studied in this paper is salvianolic acid A (PubChem CID: 5281793).
Collapse
Affiliation(s)
- Yu-Juan Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chang-Ling Duan
- Research and Development Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jian-Xun Liu
- Research and Development Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
30
|
Mice long-term high-fat diet feeding recapitulates human cardiovascular alterations: an animal model to study the early phases of diabetic cardiomyopathy. PLoS One 2013; 8:e60931. [PMID: 23593350 PMCID: PMC3623942 DOI: 10.1371/journal.pone.0060931] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/04/2013] [Indexed: 11/30/2022] Open
Abstract
Background/Aim Hypercaloric diet ingestion and sedentary lifestyle result in obesity. Metabolic syndrome is a cluster of clinical features secondary to obesity, considered as a pre-diabetic condition and recognized as an independent risk factor for cardiovascular diseases. To better understand the relationship between obesity, metabolic syndrome and cardiovascular disease as well as for the development of novel therapeutic strategies, animal models that reproduce the etiology, course and outcomes of these pathologies are required. The aim of this work was to characterize the long-term effects of high-fat diet-induced obesity on the mice cardiovascular system, in order to make available a new animal model for diabetic cardiomyopathy. Methods/Results Male C57BL/6 mice were fed with a standardized high-fat diet (obese) or regular diet (normal) for 16 months. Metabolic syndrome was evaluated testing plasma glucose, triglycerides, cholesterol, insulin, and glucose tolerance. Arterial pressure was measured using a sphygmomanometer (non invasive method) and by hemodynamic parameters (invasive method). Cardiac anatomy was described based on echocardiography and histological studies. Cardiac function was assessed by cardiac catheterization under a stress test. Cardiac remodelling and metabolic biomarkers were assessed by RT-qPCR and immunoblotting. As of month eight, the obese mice were overweight, hyperglycaemic, insulin resistant, hyperinsulinemic and hypercholesterolemic. At month 16, they also presented normal arterial pressure but altered vascular reactivity (vasoconstriction), and cardiac contractility reserve reduction, heart mass increase, cardiomyocyte hypertrophy, cardiac fibrosis, and heart metabolic compensations. By contrast, the normal mice remained healthy throughout the study. Conclusions Mice fed with a high-fat diet for prolonged time recapitulates the etiology, course and outcomes of the early phases of human diabetic cardiomyopathy.
Collapse
|
31
|
Ahmed AS, Schizas N, Li J, Ahmed M, Östenson CG, Salo P, Hewitt C, Hart DA, Ackermann PW. Type 2 diabetes impairs tendon repair after injury in a rat model. J Appl Physiol (1985) 2012; 113:1784-91. [PMID: 23042903 DOI: 10.1152/japplphysiol.00767.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Type 2 diabetes adversely affects the properties of native connective tissue. The underlying mechanisms, however, by which diabetes alters connective tissue metabolism, especially tendon, are poorly defined. The aim of this study was to determine the effect of type 2 diabetes on the mechanical, histological, and molecular properties of the intact and healing Achilles tendon. The right Achilles tendon was transected in 11 male diabetic Goto-Kakizaki (GK) and 10 age- and sex-matched Wistar control rats, while the left Achilles tendon was left intact. At 2 wk postinjury the intact and injured tendons were assessed by biomechanical testing and histology. The gene expression of collagen I and III, biglycan, versican, MMP-13, and MMP-3 was measured by quantitative RT-PCR, and their protein distribution was studied by immunohistochemistry. Intact tendons exhibited only small differences between the groups. In injured tendons, however, a significantly smaller transverse area and lower stiffness was found in diabetic GK compared with Wistar control rats. This correlated with impaired structural organization of collagen fibers and a reduced expression of collagen I and III in the injured tendons of the diabetic GK compared with Wistar control. Moreover, MMP-3 gene expression was downregulated in the injured diabetic GK tendons compared with injured Wistar controls. Our results indicate that in a rat model of diabetes tendon healing is impaired mainly due to altered expression of collagen and MMPs reflecting decreased degradation of matrix proteins and impaired tissue remodeling. Further our data suggest that therapeutic modulation of collagens or MMPs might be targets for new regenerative approaches in operated, injured, or maybe also degenerative tendon diseases in diabetes.
Collapse
Affiliation(s)
- Aisha S Ahmed
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Keats EC, Khan ZA. Vascular stem cells in diabetic complications: evidence for a role in the pathogenesis and the therapeutic promise. Cardiovasc Diabetol 2012; 11:37. [PMID: 22524626 PMCID: PMC3476432 DOI: 10.1186/1475-2840-11-37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/23/2012] [Indexed: 12/25/2022] Open
Abstract
Long standing diabetes leads to structural and functional alterations in both the micro- and the macro-vasculature. Vascular endothelial cells (ECs) are the primary target of the hyperglycemia-induced adverse effects. Vascular stem cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an attractive target for cell therapy for diabetic patients. A number of studies have reported EPC dysfunction as a novel participant in the culmination of the diabetic complications. The controversy behind the identity of EPCs and the similarity between these progenitor cells to hematopoietic cells has led to conflicting results. MPCs, on the other hand, have not been examined for a potential role in the pathogenesis of the complications. These multipotent cells, however, do show a therapeutic role. In this article, we summarize the vascular changes that occur in diabetic complications highlighting some of the common features, the key findings that illustrate an important role of vascular stem cells (VSCs) in the pathogenesis of chronic diabetic complications, and provide mechanisms by which these cells can be used for therapy.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Diabetic Angiopathies/blood
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/surgery
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/transplantation
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- Mesenchymal Stem Cell Transplantation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Neovascularization, Physiologic
- Regeneration
- Treatment Outcome
Collapse
Affiliation(s)
- Emily C Keats
- Department of Pathology, University of Western Ontario, London, ON, Canada
| | - Zia A Khan
- Department of Pathology, University of Western Ontario, London, ON, Canada
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, Canada
- 4011 Dental Sciences Building, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| |
Collapse
|
33
|
Fadini GP, Avogaro A. It is all in the blood: the multifaceted contribution of circulating progenitor cells in diabetic complications. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:742976. [PMID: 22548049 PMCID: PMC3324138 DOI: 10.1155/2012/742976] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/27/2012] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus (DM) is a worldwide growing disease and represents a huge social and healthcare problem owing to the burden of its complications. Micro- and macrovascular diabetic complications arise from excess damage through well-known biochemical pathways. Interestingly, microangiopathy hits the bone marrow (BM) microenvironment with features similar to retinopathy, nephropathy and neuropathy. The BM represents a reservoir of progenitor cells for multiple lineages, not limited to the hematopoietic system and including endothelial cells, smooth muscle cells, cardiomyocytes, and osteogenic cells. All these multiple progenitor cell lineages are profoundly altered in the setting of diabetes in humans and animal models. Reduction of endothelial progenitor cells (EPCs) along with excess smooth muscle progenitor (SMP) and osteoprogenitor cells creates an imbalance that promote the development of micro- and macroangiopathy. Finally, an excess generation of BM-derived fusogenic cells has been found to contribute to diabetic complications in animal models. Taken together, a growing amount of literature attributes to circulating progenitor cells a multi-faceted role in the pathophysiology of DM, setting a novel scenario that puts BM and the blood at the centre of the stage.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padua, 35100 Padua, Italy
- Laboratory of Experimental Diabetology, Venetian Institute of Molecular Medicine (VIMM), 35100 Padua, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padua, 35100 Padua, Italy
| |
Collapse
|
34
|
Suresh AVS. Stem-cell therapy in medicine–how far we came and what we can expect? APOLLO MEDICINE 2012. [DOI: 10.1016/s0976-0016(12)60119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|