1
|
Mathur R, Cheng L, Lim J, Azad TD, Dziedzic P, Belkin E, Joseph I, Bhende B, Yellapantula S, Potu N, Lefebvre A, Shah V, Muehlschlegel S, Bosel J, Budavari T, Suarez JI. Evolving concepts in intracranial pressure monitoring - from traditional monitoring to precision medicine. Neurotherapeutics 2025; 22:e00507. [PMID: 39753383 PMCID: PMC11840348 DOI: 10.1016/j.neurot.2024.e00507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025] Open
Abstract
A wide range of acute brain injuries, including both traumatic and non-traumatic causes, can result in elevated intracranial pressure (ICP), which in turn can cause further secondary injury to the brain, initiating a vicious cascade of propagating injury. Elevated ICP is therefore a neurological injury that requires intensive monitoring and time-sensitive interventions. Patients at high risk for developing elevated ICP undergo placement of invasive ICP monitors including external ventricular drains, intraparenchymal ICP monitors, and lumbar drains. These monitors all generate an ICP waveform, but each has its own unique caveats in monitoring and accuracy. Current ICP monitoring and management clinical guidelines focus on the mean ICP derived from the ICP waveform, with standard thresholds of treating ICP greater than 20 mmHg or 22 mmHg applied broadly to a wide range of patients. However, this one-size fits all approach has been criticized and there is a need to develop personalized, evidence-based and possibly multi-factorial precision-medicine based approaches to the problem. This paper provides historical and physiological context to the problem of elevated ICP, provides an overview of the challenges of the current paradigm of ICP management strategies, and discusses advances in ICP waveform analysis, emerging non-invasive ICP monitoring techniques, and applications of machine learning to create predictive algorithms.
Collapse
Affiliation(s)
- Rohan Mathur
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Lin Cheng
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Josiah Lim
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| | - Tej D Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Peter Dziedzic
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Eleanor Belkin
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| | - Ivanna Joseph
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Bhagyashri Bhende
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | - Niteesh Potu
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Austen Lefebvre
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Vishank Shah
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Susanne Muehlschlegel
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Julian Bosel
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Tamas Budavari
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Topalli G, Fan Y, Cheung MY, Veeraraghavan A, Hirzallah M, Chi T. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1220-1232. [PMID: 39412968 DOI: 10.1109/tbcas.2024.3481414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
This paper presents a 9-mW ultrasonic through-transmission transceiver (TRX) for portable, non-invasive intracranial pressure (ICP) sensing. It employs two ultrasound transducers placed at the temporal bone windows to measure changes in the ultrasonic time-of-flight (ToF), based on which the skull expansion and the corresponding ICP waveform are derived. Key components include a high-efficiency Class-DE power amplifier (PA) with 95% efficiency and an output swing of 15.8 , along with a successive approximation register (SAR) delay-locked loop (DLL)-based time-to-digital converter (TDC) with 29.8 ps resolution and 122 ns range. Other than electrical characterization, the sensor is validated through two demonstrations using a water tank setup and a human head phantom setup, respectively. It demonstrates a high correlation of with a medical-grade invasive ICP sensor. The proposed system offers high accuracy, low power consumption, and reliable performance, making it a promising solution for real-time, portable, non-invasive ICP monitoring in various clinical settings.
Collapse
|
3
|
Nortvig MJ, Andersen MCS, Eriksen NL, Aunan-Diop JS, Pedersen CB, Poulsen FR. Utilizing retinal arteriole/venule ratio to estimate intracranial pressure. Acta Neurochir (Wien) 2024; 166:445. [PMID: 39514087 PMCID: PMC11549150 DOI: 10.1007/s00701-024-06343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Intracranial pressure (ICP) control is important to avoid secondary brain injury in patients with intracranial pathologies. Current methods for measuring ICP are invasive and carry risks of infection and hemorrhage. Previously we found correlation between ICP and the arteriole-venous ratio (A/V ratio) of retinal vessels in an outpatient setting. This study investigated the usability of fundoscopy for non-invasive ICP estimation with the addition of intraocular pressure (IOP) in patients in a neuro-intensive care unit (NICU). METHODS This single-center prospective cohort study was conducted at the NICU of Odense University Hospital from September 2020 to May 2021. Adult patients with a Glasgow Coma Score of 8 or less, who underwent invasive pressure neuromonitoring were included. Fundoscopy videos were captured daily and analyzed using deep learning algorithms. The A/V ratio was calculated and correlated with ICP. The data was analyzed using mixed-effect linear regression models. RESULTS Forty patients were enrolled. Fifteen were included in the final analysis. ICP ranged from -1 to 31 mmHg (mean: 10.9, SD: 5.7), and IOP ranged from 4 to 13 mmHg (mean: 7.4, SD: 2.1). The A/V ratio showed a significant negative correlation with ICP > 15 mmHg (regression slope: -0.0659, 95%-CI: [-0.0665;-0.0653], p < 0.001). No significant change in A/V ratio was observed for ICP ≤ 15 mmHg. A similar significant correlation was found for ICP > IOP (regression slope: -0.0055, 95%-CI: [-0.0062;-0.0048], p < 0.001). Taking the IOP into account did not improve the model. The sensitivity analysis showed a sensitivity of 80.08% and a specificity of 22.51%, with an AUC of 0.6389. CONCLUSION In line with our previous work, non-invasive fundoscopy is a potential tool for detecting elevated ICP. However, challenges such as image quality and diagnostic specificity remains. Further research with larger, multi-center studies are needed to validate the utility. Standardization may enhance the technique's clinical applicability.
Collapse
Affiliation(s)
- Mathias Just Nortvig
- Department of Neurosurgery, Odense University Hospital, 5000, Odense, Denmark.
- Clinical Institute and BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern, Southern Denmark, Denmark.
| | - Mikkel Christian Schou Andersen
- Department of Neurosurgery, Odense University Hospital, 5000, Odense, Denmark
- Clinical Institute and BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern, Southern Denmark, Denmark
| | - Niclas Lynge Eriksen
- Department of Neurosurgery, Odense University Hospital, 5000, Odense, Denmark
- Clinical Institute and BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern, Southern Denmark, Denmark
| | - Jan Saip Aunan-Diop
- Department of Neurosurgery, Odense University Hospital, 5000, Odense, Denmark
- Clinical Institute and BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern, Southern Denmark, Denmark
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, 5000, Odense, Denmark
- Clinical Institute and BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern, Southern Denmark, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, 5000, Odense, Denmark
- Clinical Institute and BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern, Southern Denmark, Denmark
| |
Collapse
|
4
|
Bastani Viarsagh S, Agar A, Lawlor M, Fraser C, Golzan M. Non-invasive assessment of intracranial pressure through the eyes: current developments, limitations, and future directions. Front Neurol 2024; 15:1442821. [PMID: 39524910 PMCID: PMC11545690 DOI: 10.3389/fneur.2024.1442821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Detecting and monitoring elevated intracranial pressure (ICP) is crucial in managing various neurologic and neuro-ophthalmic conditions, where early detection is essential to prevent complications such as seizures and stroke. Although traditional methods such as lumbar puncture, intraparenchymal and intraventricular cannulation, and external ventricular drainage are effective, they are invasive and carry risks of infection and brain hemorrhage. This has prompted the development of non-invasive techniques. Given that direct, non-invasive access to the brain is limited, a significant portion of research has focused on utilizing the eyes, which uniquely provide direct access to their internal structure and offer a cost-effective tool for non-invasive ICP assessment. This review explores the existing non-invasive ocular techniques for assessing chronically elevated ICP. Additionally, to provide a comprehensive perspective on the current landscape, invasive techniques are also examined. The discussion extends to the limitations inherent to each technique and the prospective pathways for future advancements in the field.
Collapse
Affiliation(s)
| | - Ashish Agar
- Ophthalmology Department, Prince of Wales Hospital, UNSW, Darlington, NSW, Australia
| | - Mitchell Lawlor
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Clare Fraser
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Mojtaba Golzan
- Vision Science Group (Orthoptics), Faculty of Health, UTS, Sydney, NSW, Australia
| |
Collapse
|
5
|
Pandit AS, China M, Jain R, Jalal AHB, Jelen M, Joshi SB, Skye C, Abdi Z, Aldabbagh Y, Alradhawi M, Banks PDW, Stasiak MK, Tan EBC, Yildirim FC, Ruffle JK, D'Antona L, Asif H, Thorne L, Watkins LD, Nachev P, Toma AK. The utility of MRI radiological biomarkers in determining intracranial pressure. Sci Rep 2024; 14:23238. [PMID: 39369053 PMCID: PMC11455934 DOI: 10.1038/s41598-024-73750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Intracranial pressure (ICP) is a physiological parameter that conventionally requires invasive monitoring for accurate measurement. Utilising multivariate predictive models, we sought to evaluate the utility of non-invasive, widely accessible MRI biomarkers in predicting ICP and their reversibility following cerebrospinal fluid (CSF) diversion. The retrospective study included 325 adult patients with suspected CSF dynamic disorders who underwent brain MRI scans within three months of elective 24-h ICP monitoring. Five MRI biomarkers were assessed: Yuh sella grade, optic nerve vertical tortuosity (VT), optic nerve sheath distension, posterior globe flattening and optic disc protrusion (ODP). The association between individual biomarkers and 24-h ICP was examined and reversibility of each following CSF diversion was assessed. Multivariate models incorporating these radiological biomarkers were utilised to predict 24-h median intracranial pressure. All five biomarkers were significantly associated with median 24-h ICP (p < 0.0001). Using a pair-wise approach, the presence of each abnormal biomarker was significantly associated with higher median 24-h ICP (p < 0.0001). On multivariate analysis, ICP was significantly and positively associated with Yuh sella grade (p < 0.0001), VT (p < 0.0001) and ODP (p = 0.003), after accounting for age and suspected diagnosis. The Bayesian multiple linear regression model predicted 24-h median ICP with a mean absolute error of 2.71 mmHg. Following CSF diversion, we found pituitary sella grade to show significant pairwise reversibility (p < 0.001). ICP was predicted with clinically useful precision utilising a compact Bayesian model, offering an easily interpretable tool using non-invasive MRI data. Brain MRI biomarkers are anticipated to play a more significant role in the screening, triaging, and referral of patients with suspected CSF dynamic disorders.
Collapse
Affiliation(s)
- Anand S Pandit
- High-Dimensional Neurology Group, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Musa China
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Division of Medicine, University College London, UCL, London, UK
| | - Raunak Jain
- Division of Medicine, University College London, UCL, London, UK
| | - Arif H B Jalal
- Division of Medicine, University College London, UCL, London, UK
| | - Maria Jelen
- Department of Psychology and Language Sciences, University College London, London, UK
| | - Shivani B Joshi
- Division of Medicine, University College London, UCL, London, UK
| | - Crystallynn Skye
- Division of Medicine, University College London, UCL, London, UK
| | - Zakee Abdi
- School of Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yousif Aldabbagh
- Division of Medicine, University College London, UCL, London, UK
| | | | - Ptolemy D W Banks
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Martyna K Stasiak
- Department of Psychology and Language Sciences, University College London, London, UK
| | - Emily B C Tan
- Division of Medicine, University College London, UCL, London, UK
| | - Fleur C Yildirim
- Department of Psychology and Language Sciences, University College London, London, UK
| | - James K Ruffle
- High-Dimensional Neurology Group, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Linda D'Antona
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Hasan Asif
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Lewis Thorne
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Laurence D Watkins
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Parashkev Nachev
- High-Dimensional Neurology Group, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ahmed K Toma
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
6
|
Patel V, Lu Q, Fodor R, Patel N. The Current State of Non-Invasive Measurement of Intracranial Pressure in Patients with Craniosynostosis: A Systematic Review. FACE 2024; 5:451-462. [DOI: 10.1177/27325016241259501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Introduction: Despite being invasive, direct measurements remain the gold standard to measure intra-cranial pressure (ICP) in patients with craniosynostosis. However, there has been persistent effort to develop non-invasive modalities to measure ICP, possibly avoiding some of the risks of direct measurements. Here, we conduct a systematic review of the evidence behind various non-invasive modalities to monitor ICP in patients with craniosynostosis. Methods: A systematic review was conducted using PubMed, Cochrane, and Web of Science databases to identify studies describing the use of non-invasive ICP measurements in patients with craniosynostosis. Studies were included if they assessed a non-invasive method of ICP monitoring against a direct/invasive ICP monitoring technique in patients with craniosynostosis. Non-English and non-human studies were excluded. Results: A total of 735 studies were screened, of which 52 were included in the study. Nine methods of non-invasive ICP measurement were identified, with varying sensitivities and specificities in detecting elevated ICP. Specifically, optical coherence tomography (OCT), and ocular ultrasonography demonstrated ability to accurately measure ICP when compared to direct measurements. Conclusion: Here, we present the first systemic-review of the current literature surrounding non-invasive modalities to measure ICP in patients with craniosynostosis. While direct measurement remains the gold-standard, multiple reviewed modalities have shown promise in accurately measuring ICP. Of these, OCT has the most rigorous evidence supporting its use. Ocular sonography has also shown promise, albeit without as robust evidence supporting its use. Regardless, further investigation is required before any modality is able to obviate the need for invasive, direct measurements.
Collapse
Affiliation(s)
| | - Quan Lu
- Northeast Ohio Medical University, Rootstown, OH, USA
| | - R’ay Fodor
- The Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
7
|
Bharadwaj S, Sundaram M, Chakrabarti D, Muthuchellappan R. Intracranial Pressure Monitoring Location: A Pilot Study on the Validation of Subdural Site with the Intraventricular Site. Asian J Neurosurg 2024; 19:402-407. [PMID: 39205879 PMCID: PMC11349393 DOI: 10.1055/s-0044-1787536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Introduction Knowledge of preoperative and intraoperative intracranial pressure (ICP) enables the neuroanesthesiologist to optimize cerebral perfusion pressure. However, ICP is rarely monitored during the intraoperative period. In this report, subdural site ICP measurement is validated with intraventricular ICP measurement, and the feasibility of subdural ICP monitoring during the intraoperative period is discussed. Materials and Methods In this prospective pilot study, ICP measurement at the subdural site was achieved with an intravenous cannula and the ventricular site with a ventricular cannula. Both were transduced using a fluid-filled pressure transducer and connected to the monitor for display of the number and the waveforms. Monitoring of intraoperative ICP using both the techniques was done in all patients recruited into the study. The correlation between the two modalities of measurement was studied by the Spearman correlation test and their limits of agreement were studied using the Bland-Altman plot. A case series describing the perioperative management based on the subdural ICP values are also described. Results Subdural ICP showed a strong correlation with intraventricular ICP ( r s = 0.93, p = 0.01). Agreement analysis using the Bland-Altman plot showed that the mean difference of ICP between the modalities was 1.44 mm Hg (95% confidence interval, -0.6 to 3.49, p = 0.122). Discussion This study validates the ICP values measured at the subdural site with the intraventricular site. Subdural site ICP monitoring can be achieved rapidly with readily available systems and helps in making intraoperative clinical decisions. Conclusion Cannula-based subdural ICP is a satisfactory alternative to intraventricular ICP monitoring in the intraoperative period.
Collapse
Affiliation(s)
- Suparna Bharadwaj
- Department of Neuro Anaesthesia and Neuro Critical Care, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Mouleeswaran Sundaram
- Department of Neuro Anaesthesia and Neuro Critical Care, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Dhritiman Chakrabarti
- Department of Neuro Anaesthesia and Neuro Critical Care, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Radhakrishnan Muthuchellappan
- Department of Neuro Anaesthesia and Neuro Critical Care, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Prem Senthil M, Anand S, Chakraborty R, Bordon JE, Constable PA, Brown S, Al-Dasooqi D, Simon S. Exploring the utility of retinal optical coherence tomography as a biomarker for idiopathic intracranial hypertension: a systematic review. J Neurol 2024; 271:4769-4793. [PMID: 38856724 PMCID: PMC11319609 DOI: 10.1007/s00415-024-12481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to examine the existing literature that investigated the effectiveness of optical coherence tomography (OCT) and optical coherence tomography angiography (OCT-A) as a biomarker for idiopathic intracranial hypertension (IIH). Our search was conducted on January 17th, 2024, and included the databases, Medline, Scopus, Embase, Cochrane, Latin American and Caribbean Health Sciences Literature (LILACS), International Standard Randomized Controlled Trial Number (ISRCTN) registry, and the International Clinical Trials Registry Platform (ICTRP). Our final review included 84 articles. In 74 studies, OCT was utilized as the primary ocular imaging method, while OCT-A was employed in two studies including eight studies that utilized both modalities. Overall, the results indicated that IIH patients exhibited significant increases in retinal nerve fiber layer (RNFL) thickness, total retinal and macular thickness, optic nerve head volume, and height, optic disc diameter and area, rim area, and thickness compared to controls. A significant correlation was observed between cerebrospinal fluid (CSF) pressure and OCT parameters including RNFL thickness, total retinal thickness, macular thickness, optic nerve head volume, and optic nerve head height. Interventions aimed at lowering CSF pressure were associated with a substantial improvement in these parameters. Nevertheless, studies comparing peripapillary vessel density using OCT-A between IIH patients and controls yielded conflicting results. Our systematic review supports OCT as a powerful tool to accurately monitor retinal axonal and optic nerve head changes in patients with IIH. Future research is required to determine the utility of OCT-A in IIH.
Collapse
Affiliation(s)
- Mallika Prem Senthil
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia.
| | - Saumya Anand
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Ranjay Chakraborty
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Jose Estevez Bordon
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Paul A Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Shannon Brown
- Central Library, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Dalia Al-Dasooqi
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Simu Simon
- University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
El-Hajj VG, Pettersson I, Gharios M, Ghaith AK, Bydon M, Edström E, Elmi-Terander A. Detection and Management of Elevated Intracranial Pressure in the Treatment of Acute Community-Acquired Bacterial Meningitis: A Systematic Review. Neurocrit Care 2024; 41:228-243. [PMID: 38356077 PMCID: PMC11335864 DOI: 10.1007/s12028-023-01937-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Acute bacterial meningitis (ABM) is associated with severe morbidity and mortality. The most prevalent pathogens in community-acquired ABM are Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. Other pathogens may affect specific patient groups, such as newborns, older patients, or immunocompromised patients. It is well established that ABM is associated with elevated intracranial pressure (ICP). However, the role of ICP monitoring and management in the treatment of ABM has been poorly described.An electronic search was performed in four electronic databases: PubMed, Web of Science, Embase, and the Cochrane Library. The search strategy chosen for this review used the following terms: Intracranial Pressure AND (management OR monitoring) AND bacterial meningitis. The search yielded a total of 403 studies, of which 18 were selected for inclusion. Eighteen studies were finally included in this review. Only one study was a randomized controlled trial. All studies employed invasive ICP monitoring techniques, whereas some also relied on assessment of ICP-based on clinical and/or radiological observations. The most commonly used invasive tools were external ventricular drains, which were used both to monitor and treat elevated ICP. Results from the included studies revealed a clear association between elevated ICP and mortality, and possibly improved outcomes when invasive ICP monitoring and management were used. Finally, the review highlights the absence of clear standardized protocols for the monitoring and management of ICP in patients with ABM. This review provides an insight into the role of invasive ICP monitoring and ICP-based management in the treatment of ABM. Despite weak evidence certainty, the present literature points toward enhanced patient outcomes in ABM with the use of treatment strategies aiming to normalize ICP using continuous invasive monitoring and cerebrospinal fluid diversion techniques. Continued research is needed to define when and how to employ these strategies to best improve outcomes in ABM.
Collapse
Affiliation(s)
| | - Ingrid Pettersson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maria Gharios
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Karim Ghaith
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Capio Spine Center Stockholm, Löwenströmska Hospital, Upplands-Väsby, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Capio Spine Center Stockholm, Löwenströmska Hospital, Upplands-Väsby, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Saeed A, Boulton R, O'Kane R, Shaw M, Moss L. A clinical evaluation of variation in paediatric intracranial pressure waveforms. BRAIN & SPINE 2024; 4:102859. [PMID: 39105102 PMCID: PMC11298851 DOI: 10.1016/j.bas.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Introduction Intracranial pressure (ICP) monitoring is commonly used in investigating the aetiology of chronic paediatric neurological conditions. A series of high-amplitude spikes has been observed in overnight ICP recordings of some children, many of whom have hydrocephalus or craniosynostosis. Research question This clinical evaluation aimed to define the spike pattern, describe the patient group in which it is most likely to occur, and conduct high-resolution waveform analysis. Material and methods ICP waveforms from 40 patients aged 0-5 years (inclusive), recorded between 2017 and 2021 at the Royal Hospital for Children Glasgow, were retrospectively analysed. The pattern was defined through visual inspection of regions of interest by two reviewers. Patients were stratified using demographic and clinical data. R software was used to perform regression and high-resolution waveform analyses. Results The spike pattern was defined as the presence of 2 consecutive spikes with an amplitude of at least 8 mmHg, with a gap of at least 30 min between spikes. In the adjusted Poisson regression, age was significantly associated with the number of spikes (IRR 0.8, 95% CI 0.70 to 0.92, p-value 0.001). Discussion and conclusion Younger age was significantly associated with an increased number of spikes in this cohort. Investigation of clinical consequences of the spikes is warranted.
Collapse
Affiliation(s)
- Amarah Saeed
- School of Medicine, University of Glasgow, Scotland, United Kingdom
| | - Richard Boulton
- Department of Clinical Physics and Bioengineering, NHS Greater Glasgow and Clyde, Scotland, United Kingdom
| | - Roddy O'Kane
- Royal Hospital for Children & Institute of Neurological Sciences, 1345 Govan Road, Glasgow, Scotland, United Kingdom
| | - Martin Shaw
- Department of Clinical Physics and Bioengineering, NHS Greater Glasgow and Clyde, Scotland, United Kingdom
| | - Laura Moss
- Department of Clinical Physics and Bioengineering, NHS Greater Glasgow and Clyde, Scotland, United Kingdom
| |
Collapse
|
11
|
Fotakopoulos G, Siasios I, Gatos C, Georgakopoulou VE, Trakas N, Sklapani P, Fountas KN. Acute intracranial hemorrhage during the installation of the LICOX microdialysis system: A case report. MEDICINE INTERNATIONAL 2024; 4:39. [PMID: 38827950 PMCID: PMC11140294 DOI: 10.3892/mi.2024.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Neuro-monitoring is widely employed for the evaluation of intubated patients in the intensive care unit with stroke, severe head trauma, subarachnoid hemorrhage and/or hepatic encephalopathy. The present study reports the case of a patient with acute intracranial hemorrhage following the insertion of neuromonitoring catheters, which required surgical management. The patient was a 14-year-old male who sustained a severe traumatic brain injury and underwent a right-sided hemicraniectomy. During the installation of the neuromonitoring catheters, an acute hemorrhage was noted with a rapidly elevating intracranial pressure. A craniotomy was performed to identify and coagulate the injured cortical vessel. As demonstrated herein, the thorough evaluation of the clotting profile of the patient, a meticulous surgical technique and obtaining a post-insertion computed tomography scan may minimize the risk of any neuromonitoring-associated hemorrhagic complications.
Collapse
Affiliation(s)
- George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| | - Ioannis Siasios
- Department of Neurosurgery, Papageorgiou Hospital, 56429 Thessaloniki, Greece
| | - Charalampos Gatos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| | | | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | | |
Collapse
|
12
|
Norager NH, Lilja-Cyron A, Riedel CS, Holst AV, Pedersen SH, Juhler M. Intracranial pressure following surgery of an unruptured intracranial aneurysm-a model for normal intracranial pressure in humans. Fluids Barriers CNS 2024; 21:44. [PMID: 38773608 PMCID: PMC11110356 DOI: 10.1186/s12987-024-00549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
OBJECTIVE Optimizing the treatment of several neurosurgical and neurological disorders relies on knowledge of the intracranial pressure (ICP). However, exploration of normal ICP and intracranial pressure pulse wave amplitude (PWA) values in healthy individuals poses ethical challenges, and thus the current documentation remains scarce. This study explores ICP and PWA values for healthy adults without intracranial pathology expected to influence ICP. METHODS Adult patients (age > 18 years) undergoing surgery for an unruptured intracranial aneurysm without any other neurological co-morbidities were included. Patients had a telemetric ICP sensor inserted, and ICP was measured in four different positions: supine, lateral recumbent, standing upright, and 45-degree sitting, at day 1, 14, 30, and 90 following the surgery. RESULTS ICP in each position did not change with time after surgery. Median ICP was 6.7 mmHg and median PWA 2.1 mmHg in the supine position, while in the upright standing position median ICP was - 3.4 mmHg and median PWA was 1.9 mmHg. After standardization of the measurements from the transducer site to the external acoustic meatus, the median ICPmidbrain was 8.3 mmHg in the supine position and 1.2 mmHg in the upright standing position. CONCLUSION Our study provides insights into normal ICP dynamics in healthy adults following a uncomplicated surgery for an unruptured aneurysm. These results suggest a slightly wider normal reference range for invasive intracranial pressure than previously suggested, and present the first normal values for PWA in different positions. Further studies are, however, essential to enhance our understanding of normal ICP. Trial registration The study was preregistered at www. CLINICALTRIALS gov (NCT03594136) (11 July 2018).
Collapse
Affiliation(s)
- Nicolas Hernandez Norager
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark.
| | - Alexander Lilja-Cyron
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
| | - Casper Schwartz Riedel
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
| | - Anders Vedel Holst
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
| | - Sarah Hornshoej Pedersen
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
| | - Marianne Juhler
- Clinic of Neurosurgery, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen East, Denmark
- Clinic of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Patil R, Patil AS, Chougule K, Gaude Y, Masareddy RS. Intranasal administration of innovative triamcinolone acetonide encapsulated cubosomal in situ gel: formulation and characterization. Drug Dev Ind Pharm 2024; 50:68-77. [PMID: 38148515 DOI: 10.1080/03639045.2023.2297275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
AIM The primary objective of the research was to develop a cubosomal in situ gel encapsulated with Triamcinolone acetonide (TCA) in order to enhance its penetration through the blood-brain barrier (BBB) when administered via the intranasal route, thus enabling efficient and rapid action. METHOD Cubosomes were formulated by top-down approach using glyceryl monooleate (GMO), using pluronics127 (PF127) and polyvinyl alcohol (PVA) in varying proportions based on the Box-Behnken design. High resolution transmission electron microscopy (HR-TEM) analysis confirmed the morphology of the cubosomes. The in situ gel was formulated and optimized. Experiments involving ex vivo permeation and histopathology analyses were undertaken to evaluate drug permeation and tissue effects. RESULTS The cubosomes exhibited a particle size (PS) of 197.9 nm, zeta potential (ZP) of -31.11 mV, and entrapment efficacy (EE) of 84.31%, with low deviation. Batch F4 (19% PF127) showed favorable results. In vitro and ex vivo permeation studies revealed drug release of 78.59% and 76.65%, respectively, after 8 h. Drug release followed the Hixson Crowell model of release kinetics. The histopathological examination revealed no signs of toxicity or adverse effects on the nasal mucosa of the sheep. The formulation exhibited short-term stability, maintaining its integrity and properties when stored at room temperature. CONCLUSION The utilization of an intranasal cubosomal in situ gel encapsulated with TCA was anticipated to lower intracranial pressure and improve patient adherence by offering effective relief for individuals suffering from Brain edema. This efficacy is attributed to its rapid onset of action and its safe and well-tolerated dosage form.
Collapse
Affiliation(s)
- Ruturaj Patil
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Archana S Patil
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Krutuja Chougule
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Yadishma Gaude
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Rajashree S Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| |
Collapse
|
14
|
Thavarajasingam SG, El-Khatib M, Vemulapalli KV, Ramsay DSC, Ponniah HS, Fernandes RT, Kramer A, Eide PK. Inadequacies in iNPH diagnosis: envisioning a paradigm shift towards integrated, multi-modal testing, and consensus-driven research for improved patient outcomes. Acta Neurochir (Wien) 2023; 165:4055-4058. [PMID: 37578505 DOI: 10.1007/s00701-023-05754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Affiliation(s)
- Santhosh G Thavarajasingam
- Faculty of Medicine, Imperial College London, London, UK.
- Imperial Brain and Spine Initiative, London, UK.
| | - Mahmoud El-Khatib
- Faculty of Medicine, Imperial College London, London, UK
- Imperial Brain and Spine Initiative, London, UK
| | - Kalyan V Vemulapalli
- Faculty of Medicine, Imperial College London, London, UK
- Imperial Brain and Spine Initiative, London, UK
| | - Daniele S C Ramsay
- Faculty of Medicine, Imperial College London, London, UK
- Imperial Brain and Spine Initiative, London, UK
| | - Hariharan Subbiah Ponniah
- Faculty of Medicine, Imperial College London, London, UK
- Imperial Brain and Spine Initiative, London, UK
| | - Rafael T Fernandes
- Imperial Brain and Spine Initiative, London, UK
- Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Andreas Kramer
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Per K Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Wang H, Chen J, Gao Z, Zeng Z. Iatrogenic pseudoaneurysm rupture of the middle cerebral artery after an intracranial pressure monitor placement: a case report and literature review. Neurol Sci 2023; 44:4103-4106. [PMID: 37561233 PMCID: PMC10570186 DOI: 10.1007/s10072-023-06987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Thalamic hemorrhage (TH) is a devastating disease with a high mortality rate; however, no specific form of therapy has been proven to reduce mortality. Patients with hemorrhagic stroke undergo intracranial pressure (ICP) monitoring. However, cases involving pseudoaneurysms caused by ICP monitoring in patients with intracerebral hemorrhage have not been reported previously. Here, we report a case of pseudoaneurysm caused by an ICP monitor that was fitted due to hypertensive cerebral hemorrhage.
Collapse
Affiliation(s)
- Haibin Wang
- Institute of Neurology, Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, No. 23Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Jinming Chen
- Institute of Neurology, Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, No. 23Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Zhiqiang Gao
- Institute of Neurology, Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, No. 23Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Zhaobin Zeng
- Institute of Neurology, Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, No. 23Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
16
|
Mollan SP, Momin SNA, Khatkar PS, Grech O, Sinclair AJ, Tsermoulas G. A Neuro-Ophthalmologist's Guide to Advances in Intracranial Pressure Measurements. Eye Brain 2023; 15:113-124. [PMID: 37790122 PMCID: PMC10543929 DOI: 10.2147/eb.s404642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
Cerebrospinal fluid disorders have a wide-ranging impact on vision, headache, cognition and a person's quality of life. Due to advances in technology and accessibility, intracranial pressure measurement and monitoring, usually managed by neurosurgeons, are being employed more widely in clinical practice. These developments are of direct importance for Ophthalmologists and Neurologists because the ability to readily measure intracranial pressure can aide management decisions. The aim of this review is to present the emerging evidence for intracranial pressure measurement methods and interpretation that is relevant to Neuro-ophthalmologists.
Collapse
Affiliation(s)
- Susan P Mollan
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK
- Translational Brain Science, Institute of Metabolism and Systems Research; Birmingham, University of Birmingham, Birmingham, UK
| | - Sehrish N A Momin
- Ophthalmology Department, The Aga Khan University Hospital, Karachi, Pakistan
| | | | - Olivia Grech
- Translational Brain Science, Institute of Metabolism and Systems Research; Birmingham, University of Birmingham, Birmingham, UK
| | - Alex J Sinclair
- Translational Brain Science, Institute of Metabolism and Systems Research; Birmingham, University of Birmingham, Birmingham, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Georgios Tsermoulas
- Translational Brain Science, Institute of Metabolism and Systems Research; Birmingham, University of Birmingham, Birmingham, UK
- Department of Neurosurgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Stein KY, Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Ibrahim Y, Zeiler FA. Intracranial Pressure Monitoring and Treatment Thresholds in Acute Neural Injury: A Narrative Review of the Historical Achievements, Current State, and Future Perspectives. Neurotrauma Rep 2023; 4:478-494. [PMID: 37636334 PMCID: PMC10457629 DOI: 10.1089/neur.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Since its introduction in the 1960s, intracranial pressure (ICP) monitoring has become an indispensable tool in neurocritical care practice and a key component of the management of moderate/severe traumatic brain injury (TBI). The primary utility of ICP monitoring is to guide therapeutic interventions aimed at maintaining physiological ICP and preventing intracranial hypertension. The rationale for such ICP maintenance is to prevent secondary brain injury arising from brain herniation and inadequate cerebral blood flow. There exists a large body of evidence indicating that elevated ICP is associated with mortality and that aggressive ICP control protocols improve outcomes in severe TBI patients. Therefore, current management guidelines recommend a cerebral perfusion pressure (CPP) target range of 60-70 mm Hg and an ICP threshold of >20 or >22 mm Hg, beyond which therapeutic intervention should be initiated. Though our ability to achieve these thresholds has drastically improved over the past decades, there has been little to no change in the mortality and morbidity associated with moderate-severe TBI. This is a result of the "one treatment fits all" dogma of current guideline-based care that fails to take individual phenotype into account. The way forward in moderate-severe TBI care is through the development of continuously derived individualized ICP thresholds. This narrative review covers the topic of ICP monitoring in TBI care, including historical context/achievements, current monitoring technologies and indications, treatment methods, associations with patient outcome and multi-modal cerebral physiology, present controversies surrounding treatment thresholds, and future perspectives on personalized approaches to ICP-directed therapy.
Collapse
Affiliation(s)
- Kevin Y. Stein
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Younis Ibrahim
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Verma D, Sadayandi RA, Anbazhagan S, Nagarajan K, Bidkar PU. Is optic nerve sheath diameter a promising screening tool to predict neurological outcomes and the need for secondary decompressive craniectomy in moderate to severe head injury patients? A prospective monocentric observational pilot study. Surg Neurol Int 2023; 14:276. [PMID: 37680910 PMCID: PMC10481796 DOI: 10.25259/sni_318_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
Background Optic nerve sheath diameter (ONSD) has been shown to be a noninvasive and quick method to calculate intracranial pressure (ICP) and subsequent neurologic outcomes, although with variable cutoffs. ICP can be indirectly assessed by noninvasive methods such as transcranial Doppler, ONSD, tympanic membrane displacement, and fundoscopy. Knowledge regarding the diagnostic accuracy of ONSD for predicting unfavorable outcomes within 72 hours (h) of moderate and severe head injury is limited. The objective of this study was to measure ONSD measurements at 24-h intervals in moderate to severe head injury patients and to find its association with clinical outcomes in the target population. Methods This prospective observational study was done on moderate to severe head injury patients. ONSD was measured twice at 24-h intervals over 48 h. The clinical outcome was divided into the favorable group (patients who were in conservative treatment with a stable Glasgow Coma Scale [GCS] score and discharged following treatment) and the unfavorable group (patients who had a drop in GCS motor score of one or more, or expired or underwent surgical intervention) within 72 h following traumatic brain injury. The Kruskal-Wallis test, Mann- Whitney test, and receiver operating characteristic curves were used to establish the association between ONSD and clinical outcomes. Results ONSD values measured at 24-h intervals >6.1 mm (P < 0.0146) and 6.2 mm (P < 0.0001) were found to be predictors of unfavorable outcomes (expired or underwent surgery), and hence the need for a secondary decompressive craniectomy (DC). Conclusion ONSD is an efficient screening tool to assess neurological outcomes in severe head injury patients. It can reliably predict the need for secondary DC at an earlier stage before secondary brain damage ensues in these patients.
Collapse
Affiliation(s)
- Dinesh Verma
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Ramesh Andi Sadayandi
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sathiaprabhu Anbazhagan
- Department of Neurosurgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Krishnan Nagarajan
- Department of Radiodiagnosis, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Prasanna Udupi Bidkar
- Department of Anaesthesiology and Critical Care, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
19
|
Stein KY, Amenta F, Gomez A, Froese L, Sainbhi AS, Vakitbilir N, Marquez I, Zeiler FA. Associations between intracranial pressure thresholds and multimodal monitoring in acute traumatic neural injury: a scoping review. Acta Neurochir (Wien) 2023; 165:1987-2000. [PMID: 37067617 DOI: 10.1007/s00701-023-05587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Current moderate/severe traumatic brain injury (TBI) guidelines suggest the use of an intracranial pressure (ICP) treatment threshold of 20 mmHg or 22 mmHg. Over the past decade, the use of various cerebral physiology monitoring devices has been incorporated into neurocritical care practice and termed "multimodal monitoring." Such modalities include those that monitor systemic hemodynamics, systemic and brain oxygenation, cerebral blood flow (CBF), cerebral autoregulation, electrophysiology, and cerebral metabolism. Given that the relationship between ICP and outcomes is not yet entirely understood, a comprehensive review of the literature on the associations between ICP thresholds and multimodal monitoring is still needed. METHODS We conducted a scoping review of the literature for studies that present an objective statistical association between ICP above/below threshold and any multimodal monitoring variable. MEDLINE, BIOSIS, Cochrane library, EMBASE, Global Health, and SCOPUS were searched from inception to July 2022 for relevant articles. Full-length, peer-reviewed, original works with a sample size of ≥50 moderate-severe TBI patients were included in this study. RESULTS A total of 13 articles were deemed eligible for final inclusion. The included articles were significantly heterogenous in terms of their designs, demographics, and results, making it difficult to draw any definitive conclusions. No literature describing the association between guideline-based ICP thresholds and measures of brain electrophysiology, cerebral metabolism, or direct metrics of CBF was found. CONCLUSION There is currently little literature that presents objective statistical associations between ICP thresholds and multimodal monitoring physiology. However, overall, the literature indicates that having ICP above guideline based thresholds is associated with increased blood pressure, increased cardiac decoupling, reduced parenchymal brain oxygen tension, and impaired cerebral autoregulation, with no association with CBF velocity within the therapeutic range of ICP. There was insufficient literature to comment on other multimodal monitoring measures.
Collapse
Affiliation(s)
- Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
| | - Fiorella Amenta
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Izabella Marquez
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Centre on Aging, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
20
|
Shim Y, Kim J, Kim HS, Oh J, Lee S, Ha EJ. Intracranial Pressure Monitoring for Acute Brain Injured Patients: When, How, What Should We Monitor. Korean J Neurotrauma 2023; 19:149-161. [PMID: 37431379 PMCID: PMC10329885 DOI: 10.13004/kjnt.2023.19.e32] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023] Open
Abstract
While there is no level I recommendation for intracranial pressure (ICP) monitoring, it is typically indicated for patients with severe traumatic brain injury (TBI) with a Glasgow Coma Scale (GCS) score of 3-8 (class II). Even for moderate TBI patients with GCS 9-12, ICP monitoring should be considered for risk of increased ICP. The impact of ICP monitoring on patient outcomes is still not well-established, but recent studies reported a reduction of early mortality (class III) in TBI patients. There is no standard protocol for the application of ICP monitoring. In cases where cerebrospinal fluid drainage is required, an external ventricular drain is commonly used. In other cases, parenchymal ICP monitoring devices are generally employed. Subdural or non-invasive forms are not suitable for ICP monitoring. The mean value of ICP is the parameter recommended for observation in many guidelines. In TBI, values above 22 mmHg are associated with increased mortality. However, recent studies proposed various parameters including cumulative time with ICP above 20 mmHg (pressure-time dose), pressure reactivity index, ICP waveform characteristics (pulse amplitude of ICP, mean ICP wave amplitude), and the compensatory reserve of the brain (reserve-amplitude-pressure), which are useful in predicting patient outcomes and guiding treatment. Further research is required for validation of these parameters compared to simple ICP monitoring.
Collapse
Affiliation(s)
- Youngbo Shim
- Department of Critical Care Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Jungook Kim
- Gachon University Gil Hospital Regional Trauma Center, Gachon, Korea
| | - Hye Seon Kim
- Department of Neurosurgery, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University, Incheon, Korea
| | - Jiwoong Oh
- Departments of Neurological Surgery and Critical Care Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seungioo Lee
- Departments of Neurological Surgery and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Jin Ha
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Usuah J, Jesuyajolu D, Bankole O, Ojo O. Improvised intracranial pressure monitoring devices for traumatic brain injury management in a low-income environment: A single-centre randomised study demonstrating feasibility. BRAIN & SPINE 2023; 3:101737. [PMID: 37383472 PMCID: PMC10293291 DOI: 10.1016/j.bas.2023.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 06/30/2023]
Abstract
Background The high cost and non-availability of standard ICP monitoring devices limit their use in low- and middle-income countries like Nigeria. This study aims to demonstrate the use of an improvised intraventricular ICP monitoring device as a feasible alternative. Research question Are improvised ICP Monitoring devices feasible and effective in resource-constrained settings? Materials and methods The study was a prospective single-institution investigation involving 54 adult patients that presented with severe TBI (GCS of 3-8) within 72 h of injury and required operative intervention. All patients underwent craniotomy or primary decompressive craniectomy (DC) to evacuate traumatic mass lesions. 14-day in-hospital mortality was used as a primary endpoint of the study. 25 patients had ICP monitoring postoperatively using the improvised device. Results The modified ICP device was replicated using a feeding tube and a manometer with 0.9% saline as a coupling agent. Based on hourly ICP recording (up to 72 h), patients were observed as having high ICP (>27 cm H2O) and normal ICP (27 cm H2O). In the ICP-monitored group, raised ICP was detected more than in the clinically assessed group (84% vs 12% p= <0.001). Discussion and conclusion There was a 3-time higher mortality rate among the non-ICP monitored participants (31%) compared to the ICP-monitored participants (12%), although this did not reach statistical significance due to the small sample size. This preliminary study has shown that this modified ICP monitoring system is a relatively feasible alternative for diagnosing and treating elevated ICP in severe TBI in resource-constrained environments.
Collapse
Affiliation(s)
- John Usuah
- Neurosurgery Unit, Department of Surgery, Lagos University Teaching Hospital, Lagos, Nigeria
- Department of Neurosurgery, Queen Elizabeth Hospital, University Hospital, Birmingham, United Kingdom
| | - Damilola Jesuyajolu
- Department of Neurosurgery, Surgery Interest Group of Africa, Lagos, Nigeria
| | - Olufemi Bankole
- Neurosurgery Unit, Department of Surgery, Lagos University Teaching Hospital, Lagos, Nigeria
- Department of Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Omotayo Ojo
- Neurosurgery Unit, Department of Surgery, Lagos University Teaching Hospital, Lagos, Nigeria
- Department of Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
22
|
Morgan WH, Khoo J, Vukmirovic A, Abdul-Rahman A, An D, Mehnert A, Obreschkow D, Chowdhury E, Yu DY. Correlation between retinal vein pulse amplitude, estimated intracranial pressure, and postural change. NPJ Microgravity 2023; 9:28. [PMID: 37002218 PMCID: PMC10066386 DOI: 10.1038/s41526-023-00269-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Spaceflight associated neuro-ocular syndrome (SANS) is common amongst astronauts on long duration space missions and is associated with signs consistent with elevated cerebrospinal fluid (CSF) pressure. Additionally, CSF pressure has been found to be elevated in a significant proportion of astronauts in whom lumbar puncture was performed after successful mission completion. We have developed a retinal photoplethysmographic technique to measure retinal vein pulsation amplitudes. This technique has enabled the development of a non-invasive CSF pressure measurement apparatus. We tested the system on healthy volunteers in the sitting and supine posture to mimic the range of tilt table extremes and estimated the induced CSF pressure change using measurements from the CSF hydrostatic indifferent point. We found a significant relationship between pulsation amplitude change and estimated CSF pressure change (p < 0.0001) across a range from 2.7 to 7.1 mmHg. The increase in pulse amplitude was highest in the sitting posture with greater estimated CSF pressure increase (p < 0.0001), in keeping with physiologically predicted CSF pressure response. This technique may be useful for non-invasive measurement of CSF pressure fluctuations during long-term space voyages.
Collapse
Affiliation(s)
- W H Morgan
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia.
- International Space Centre, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
| | - J Khoo
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| | - A Vukmirovic
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
- International Space Centre, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - A Abdul-Rahman
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
- Department of Ophthalmology, Counties Manukau DHB, Auckland, New Zealand
| | - D An
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| | - A Mehnert
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
- International Space Centre, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - D Obreschkow
- International Space Centre, 35 Stirling Hwy, Crawley, WA, 6009, Australia
- International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - E Chowdhury
- International Space Centre, 35 Stirling Hwy, Crawley, WA, 6009, Australia
- Information Technology, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - D Y Yu
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
23
|
Pelah AI, Zakrzewska A, Calviello LA, Forcht Dagi T, Czosnyka Z, Czosnyka M. Accuracy of Intracranial Pressure Monitoring-Single Centre Observational Study and Literature Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:3397. [PMID: 37050457 PMCID: PMC10098789 DOI: 10.3390/s23073397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Intracranial hypertension and adequacy of brain blood flow are primary concerns following traumatic brain injury. Intracranial pressure (ICP) monitoring is a critical diagnostic tool in neurocritical care. However, all ICP sensors, irrespective of design, are subject to systematic and random measurement inaccuracies that can affect patient care if overlooked or disregarded. The wide choice of sensors available to surgeons raises questions about performance and suitability for treatment. This observational study offers a critical review of the clinical and experimental assessment of ICP sensor accuracy and comments on the relationship between actual clinical performance, bench testing, and manufacturer specifications. Critically, on this basis, the study offers guidelines for the selection of ICP monitoring technologies, an important clinical decision. To complement this, a literature review on important ICP monitoring considerations was included. This study utilises illustrative clinical and laboratory material from 1200 TBI patients (collected from 1992 to 2019) to present several important points regarding the accuracy of in vivo implementation of contemporary ICP transducers. In addition, a thorough literature search was performed, with sources dating from 1960 to 2021. Sources considered to be relevant matched the keywords: "intraparenchymal ICP sensors", "fiberoptic ICP sensors", "piezoelectric strain gauge sensors", "external ventricular drains", "CSF reference pressure", "ICP zero drift", and "ICP measurement accuracy". Based on single centre observations and the 76 sources reviewed in this paper, this material reports an overall anticipated measurement accuracy for intraparenchymal transducers of around ± 6.0 mm Hg with an average zero drift of <2.0 mm Hg. Precise ICP monitoring is a key tenet of neurocritical care, and accounting for zero drift is vital. Intraparenchymal piezoelectric strain gauge sensors are commonly implanted to monitor ICP. Laboratory bench testing results can differ from in vivo observations, revealing the shortcomings of current ICP sensors.
Collapse
Affiliation(s)
- Adam I. Pelah
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Agnieszka Zakrzewska
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Leanne A. Calviello
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Teodoro Forcht Dagi
- Neurosurgery, Mayo School of Medicine and Science, Rochester, MN 55905, USA
- School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Zofia Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Institute of Electronic Systems, Warsaw University of Technology, 00-65 Warszawa, Poland
| |
Collapse
|
24
|
da Silva Junior EB, Hamasaki EE, Smaili HY, Wozniak A, Tristão ESY, Loureiro MDP, Milano JB, de Meneses MS, de Oliveira RM, Ramina R. Fiber-Optic Intracranial Pressure Monitoring System Using Wi-Fi-An In Vivo Study. Neurosurgery 2023; 92:647-656. [PMID: 36512829 DOI: 10.1227/neu.0000000000002250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Continuous invasive monitoring of intracranial pressure (ICP) is essential in neurocritical care for surveillance and management of raised ICP. Fluid-based systems and strain gauge microsensors remain the current standard. In the past few decades, several studies with wireless monitoring were developed aiming to reduce invasiveness and complications. OBJECTIVE To describe a novel Wi-Fi fiber-optic device for continuous ICP monitoring using smartphone in a swine model. METHODS Two ICP sensors (wireless prototype and wire-based reference) were implanted in the cerebral parenchyma of a swine model for a total of 120 minutes of continuous monitoring. Every 5 minutes, jugular veins compression was performed to evaluate ICP changes. The experimentation was divided in 3 phases for comparison and analysis. RESULTS Phase 1 showed agreement in ICP changes for both sensors during jugular compression and releasing, with a positive and strong Spearman correlation (r = 0.829, P < .001). Phase 2 started after inversion of the sensors in the burr holes; there was a positive and moderately weak Spearman correlation (r = 0.262, P < .001). For phase 3, the sensors were returned to the first burr holes; the prototype behaved similarly to the reference sensor, presenting a positive and moderately strong Spearman correlation (r = 0.669, P < .001). CONCLUSION A Wi-Fi ICP monitoring system was demonstrated in a comprehensive and feasible way. It was possible to observe, using smartphone, an adequate correlation regarding ICP variations. Further adaptations are already being developed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ricardo Ramina
- Department of Neurosurgery, Instituto de Neurologia de Curitiba, Curitiba, Brazil
| |
Collapse
|
25
|
Kozejova D, Varga R. Bistable magnetic microwire for contactless sensor of intracranial pressure. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2023; 569:170473. [DOI: 10.1016/j.jmmm.2023.170473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Yic CD, Pontet J, Mercado M, Muñoz M, Biestro A. Ultrasonographic measurement of the optic nerve sheath diameter to detect intracranial hypertension: an observational study. Ultrasound J 2023; 15:4. [PMID: 36729242 PMCID: PMC9895168 DOI: 10.1186/s13089-022-00304-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/15/2022] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES To evaluate the ultrasonographic measurement of optic nerve sheath diameter (ONSD) as a predictor of intracranial hypertension as compared to the invasive measurement of intracranial pressure (ICP). DESIGN Cross-sectional observational study. SETTING Intensive Care Unit (ICU) of two tertiary university hospitals in Montevideo, Uruguay. PATIENTS We included 56 adult patients, over 18 years of age, who required sedation, mechanical ventilation, and invasive ICP monitoring as a result of a severe acute neurologic injury (traumatic or non-traumatic) and had a Glascow Coma Score (GCS) equal to or less than 8 on admission to the ICU. INTERVENTIONS Ultrasonographic measurement of ONSD to detect intracranial hypertension. MEASUREMENTS AND MAIN RESULTS In our study, a logistic regression model was performed in which it was observed that the variable ONSD is statistically significant with a p value of 0.00803 (< 0.05). This model estimates and predicts the probability that a patient will have an ICP greater than 20 mmHg. From the analysis of the cut-off points, it is observed that a value of 5.7 mm of ONSD maximizes the sensitivity (92.9%) of the method (a greater number of individuals with ICP > 20 mmHg are correctly identified). CONCLUSIONS In sedated neurocritical patients, with structural Acute Brain Injury, the ONSD measurement correlates with the invasive measurement of ICP. It was observed that with ONSD values less than 5.7 mm, the probability of being in the presence of ICP above 20 mmHg is very low, while for ONSD values greater than 5.7 mm, said probability clearly increases.
Collapse
Affiliation(s)
- Christian Daniel Yic
- Department of Critical Care Medicine, Hospital de Clínicas, Asociación Española Primera en Salud, Guillermo Arrospide, 5338, Montevideo, Uruguay.
| | - Julio Pontet
- Department of Critical Care Medicine, Hospital Pasteur, Montevideo, Uruguay
| | - Mauricio Mercado
- Department of Critical Care Medicine, Hospital de Clínicas, Asociación Española Primera en Salud, Guillermo Arrospide, 5338, Montevideo, Uruguay
| | - Matias Muñoz
- Comisión Honoraria para la salud Cardiovascular, Montevideo, Uruguay
| | - Alberto Biestro
- Department of Critical Care Medicine, Hospital de Clínicas, Asociación Española Primera en Salud, Guillermo Arrospide, 5338, Montevideo, Uruguay
| |
Collapse
|
27
|
Dattilo M. Noninvasive methods to monitor intracranial pressure. Curr Opin Neurol 2023; 36:1-9. [PMID: 36630209 DOI: 10.1097/wco.0000000000001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Intracranial pressure (ICP) is determined by the production of and outflow facility of cerebrospinal fluid. Since alterations in ICP are implicated in several vision-threatening and life-threatening diseases, measurement of ICP is necessary and common. All current clinical methods to measure ICP are invasive and carry the risk for significant side effects. Therefore, the development of accurate, reliable, objective, and portal noninvasive devices to measure ICP has the potential to change the practice of medicine. This review discusses recent advances and barriers to the clinical implementation of noninvasive devices to determine ICP. RECENT FINDINGS Many noninvasive methods to determine ICP have been developed. Although most have significant limitations limiting their clinical utility, several noninvasive methods have shown strong correlations with invasively obtained ICP and have excellent potential to be developed further to accurately quantify ICP and ICP changes. SUMMARY Although invasive methods remain the mainstay for ICP determination and monitoring, several noninvasive biomarkers have shown promise to quantitatively assess and monitor ICP. With further refinement and advancement of these techniques, it is highly possible that noninvasive methods will become more commonplace and may complement or even supplant invasively obtained methods to determine ICP in certain situations.
Collapse
Affiliation(s)
- Michael Dattilo
- Emory Eye Center, Neuro-Ophthalmology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Yang J, Acharya D, Scammon WB, Schmitt S, Crane EC, Smith MA, Kainerstorfer JM. Cerebrovascular Impedance as a Function of Cerebral Perfusion Pressure. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:96-101. [PMID: 37234191 PMCID: PMC10208597 DOI: 10.1109/ojemb.2023.3236267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 09/30/2023] Open
Abstract
Goal: Cerebrovascular impedance is modulated by a vasoactive autoregulative mechanism in response to changes in cerebral perfusion pressure. Characterization of impedance and the limits of autoregulation are important biomarkers of cerebral health. We developed a method to quantify impedance based on the spectral content of cerebral blood flow and volume at the cardiac frequency, measured with diffuse optical methods. Methods: In three non-human primates, we modulated cerebral perfusion pressure beyond the limits of autoregulation. Cerebral blood flow and volume were measured with diffuse correlation spectroscopy and near-infrared spectroscopy, respectively. Results: We show that impedance can be used to identify the lower and upper limits of autoregulation. Conclusions: This impedance method may be an alternative method to measure autoregulation and a way of assessing cerebral health non-invasively at the clinical bedside.
Collapse
Affiliation(s)
- Jason Yang
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Deepshikha Acharya
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - William B. Scammon
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Samantha Schmitt
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghPA15213USA
| | - Emily C. Crane
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Matthew A. Smith
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghPA15213USA
| | - Jana M. Kainerstorfer
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
29
|
Bhide M, Singh O, Juneja D, Goel A. Bedside ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure in nontraumatic neuro-critically ill patients. World J Crit Care Med 2023; 12:10-17. [PMID: 36683966 PMCID: PMC9846868 DOI: 10.5492/wjccm.v12.i1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Delay in treatment of raised intracranial pressure (ICP) leads to poor clinical outcomes. Optic nerve sheath diameter (ONSD) by ultrasonography (US-ONSD) has shown good accuracy in traumatic brain injury and neurosurgical patients to diagnose raised ICP. However, there is a dearth of data in neuro-medical intensive care unit (ICU) where the spectrum of disease is different. AIM To validate the diagnostic accuracy of ONSD in non-traumatic neuro-critically ill patients. METHODS We prospectively enrolled 114 patients who had clinically suspected raised ICP due to non-traumatic causes admitted in neuro-medical ICU. US-ONSD was performed according to ALARA principles. A cut-off more than 5.7 mm was taken as significantly raised. Raised ONSD was corelated with raised ICP on radiological imaging. Clinical history, general and systemic examination findings, SOFA and APACHE 2 score and patient outcomes were recorded. RESULTS There was significant association between raised ONSD and raised ICP on imaging (P < 0.001). The sensitivity, specificity, positive and negative predictive value at this cut-off was 77.55%, 89.06%, 84.44% and 83.82% respectively. The positive and negative likelihood ratio was 7.09 and 0.25. The area under the receiver operating characteristic curves was 0.844. Using Youden's index the best cut off value for ONSD was 5.75 mm. Raised ONSD was associated with lower age (P = 0.007), poorer Glasgow Coma Scale (P = 0.009) and greater need for surgical intervention (P = 0.006) whereas no statistically significant association was found between raised ONSD and SOFA score, APACHE II score or ICU mortality. Our limitations were that it was a single centre study and we did not perform serial measurements or ONSD pre- and post-treatment or procedures for raised ICP. CONCLUSION ONSD can be used as a screening a test to detect raised ICP in a medical ICU and as a trigger to initiate further management of raised ICP. ONSD can be beneficial in ruling out a diagnosis in a low-prevalence population and rule in a diagnosis in a high-prevalence population.
Collapse
Affiliation(s)
- Madhura Bhide
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Omender Singh
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Deven Juneja
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Amit Goel
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| |
Collapse
|
30
|
Lin IH, Kamnaksh A, Aniceto R, McCullough J, Bekdash R, Eklund M, Ghatan PH, Risling M, Svensson M, Bellander BM, Nelson DW, Thelin EP, Agoston DV. Time-Dependent Changes in the Biofluid Levels of Neural Injury Markers in Severe Traumatic Brain Injury Patients-Cerebrospinal Fluid and Cerebral Microdialysates: A Longitudinal Prospective Pilot Study. Neurotrauma Rep 2023; 4:107-117. [PMID: 36895820 PMCID: PMC9989523 DOI: 10.1089/neur.2022.0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Monitoring protein biomarker levels in the cerebrospinal fluid (CSF) can help assess injury severity and outcome after traumatic brain injury (TBI). Determining injury-induced changes in the proteome of brain extracellular fluid (bECF) can more closely reflect changes in the brain parenchyma, but bECF is not routinely available. The aim of this pilot study was to compare time-dependent changes of S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), total Tau, and phosphorylated Tau (p-Tau) levels in matching CSF and bECF samples collected at 1, 3, and 5 days post-injury from severe TBI patients (n = 7; GCS 3-8) using microcapillary-based western analysis. We found that time-dependent changes in CSF and bECF levels were most pronounced for S100B and NSE, but there was substantial patient-to-patient variability. Importantly, the temporal pattern of biomarker changes in CSF and bECF samples showed similar trends. We also detected two different immunoreactive forms of S100B in both CSF and bECF samples, but the contribution of the different immunoreactive forms to total immunoreactivity varied from patient to patient and time point to time point. Our study is limited, but it illustrates the value of both quantitative and qualitative analysis of protein biomarkers and the importance of serial sampling for biofluid analysis after severe TBI.
Collapse
Affiliation(s)
- I-Hsuan Lin
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Jesse McCullough
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Ramsey Bekdash
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Michael Eklund
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Per Hamid Ghatan
- Department of Neuroscience, Uppsala University Hospital, Uppsala, Sweden
| | - Mårten Risling
- Department of Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - David W Nelson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Sharma R, Tsikvadze M, Peel J, Howard L, Kapoor N, Freeman WD. Multimodal monitoring: practical recommendations (dos and don'ts) in challenging situations and uncertainty. Front Neurol 2023; 14:1135406. [PMID: 37206910 PMCID: PMC10188941 DOI: 10.3389/fneur.2023.1135406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/06/2023] [Indexed: 05/21/2023] Open
Abstract
With the advancements in modern medicine, new methods are being developed to monitor patients in the intensive care unit. Different modalities evaluate different aspects of the patient's physiology and clinical status. The complexity of these modalities often restricts their use to the realm of clinical research, thereby limiting their use in the real world. Understanding their salient features and their limitations can aid physicians in interpreting the concomitant information provided by multiple modalities to make informed decisions that may affect clinical care and outcomes. Here, we present a review of the commonly used methods in the neurological intensive care unit with practical recommendations for their use.
Collapse
Affiliation(s)
- Rohan Sharma
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
- *Correspondence: Rohan Sharma
| | - Mariam Tsikvadze
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
| | - Jeffrey Peel
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
| | - Levi Howard
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
| | - Nidhi Kapoor
- Department of Neurology, Baptist Medical Center, Jacksonville, FL, United States
| | - William D. Freeman
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
| |
Collapse
|
32
|
Rodríguez Aparicio EE, Carrizosa Gonzalez JA, Rodriguez Lima DR. Optic nerve sheath diameter at high altitude: standardized measures in healthy volunteers. Ultrasound J 2022; 14:46. [PMCID: PMC9674817 DOI: 10.1186/s13089-022-00295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Increases in the diameter of the optic nerve sheath (ONSD) on ultrasound are associated with high intracranial pressure (hICP). The normal value varies with altitude and the population studied. The objective of this study is to describe the normal values of the ONSD in a healthy adult population of the city of Bogotá, Colombia, at 2640 meters above sea level (masl). Patients and methods A prospective observational study was conducted on a total of 247 healthy individuals recruited from May 2021 to May 2022 who were subjected to the color, low power, optic disk, safety, elevated frequency, dual (CLOSED) protocol for measuring the bilateral ONSD adjusted to the eyeball transverse diameter (ETD). Results A total of 230 individuals were analyzed; the average ONSD of the right eye (RE) was 0.449 cm (range 0.288–0.7) and that of the left eye (LE) was 0.454 cm (range 0.285–0.698); the correlation between RE and LE was 0.93 (p < 0.005), and the correlation of the ONSD/ETD ratios for the RE and LE was lower (r2 = 0.79, p < 0.005). A total of 10.8% of the studied population had values greater than 0.55 cm. Conclusions The median ONSD and ONSD/ETD ratio in the city of Bogotá are similar to those described in other populations; however, approximately 10.8% of the healthy population may present higher values, which would limit the use of ONSD on its own for clinical decision-making, only repeated measurements with significant changes in the ONSD and ONSD/ETD or asymmetries between the measurements of both eyes linked to clinical findings would allow the diagnosis of hICP.
Collapse
Affiliation(s)
- Edith Elianna Rodríguez Aparicio
- grid.418089.c0000 0004 0620 2607Critical and Intensive Care Medicine Department, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia ,grid.412191.e0000 0001 2205 5940Faculty of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Jorge Armando Carrizosa Gonzalez
- grid.418089.c0000 0004 0620 2607Critical and Intensive Care Medicine Department, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - David Rene Rodriguez Lima
- Critical and Intensive Care Medicine, Hospital Universitario Mayor-Mederi, Bogotá, Colombia ,grid.412191.e0000 0001 2205 5940Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
33
|
Baser B, Bolukbasi M, Uzlu D, Ozbay AD. Does MARPE therapy have effects on intracranial pressure? a clinical study. BMC Oral Health 2022; 22:450. [PMID: 36261817 PMCID: PMC9583475 DOI: 10.1186/s12903-022-02482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background We aimed to evaluate possible intracranial pressure (ICP) changes caused by screw activations during active microimplant-assisted rapid palatal expansion (MARPE) therapy of post-pubertal individuals by measuring the optic nerve sheath diameter (ONSD) under ultrasonography (US) guidance. Methods This study’s participants comprised 15 patients (7 males, 8 females) with posterior crossbite and a mean age of 16.7 years (14.25–20.08 years). The Maxillary Skeletal Expander (MSE) appliance was used to perform MARPE in all patients. Their vital signs (heart rate, mean arterial pressure (MAP), and peripheral oxygen saturation (SpO2)) were recorded. The ONSD was measured by US immediately before the first screw activation (T0), and the measurements were repeated 1 min (T1) and 10 min (T2) after the first activation. In the last session of active MARPE therapy, the same measurement protocol was performed as in the first activation session (T3, T4, and T5). The patients’ perceptions of pain during the screw activation were also noted at T1 and T4 using a four-category verbal rating scale (VRS-4). The significant differences among different time intervals performed with the Friedman test (for all tested variables; SpO2, MAP, Heart Rate, VRS-4 and ONSD). Spearman correlation test was used for VRS-4 and ONSD comparisons. The statistical significance level was accepted as p < 0.05. Results The ONSD values (T1 and T4) relatively increased within 1 min after screw activation but did not reach a statistically significant level (p > 0.05). There was also no significant difference between the initial (T0) and the final (T5) ONSD values during the active MARPE therapy (p > 0.05). Conclusion There is no changes or alterations in intracranial pressure in late adolescents during active MARPE therapy. Supplementary information The online version contains supplementary material available at 10.1186/s12903-022-02482-x.
Collapse
Affiliation(s)
- Baris Baser
- Department of Orthodontics, Faculty of Dentistry, Karadeniz Technical University, Trabzon, Turkey.
| | - Merve Bolukbasi
- Department of Orthodontics, Faculty of Dentistry, Karadeniz Technical University, Trabzon, Turkey
| | - Dilek Uzlu
- Department of Ophtalmology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Duhan Ozbay
- Department of Ophtalmology, Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| |
Collapse
|
34
|
Momtaz OM, Said OM, Mohamed AM, Abdel Mawla TS. Value of Optic Nerve Sheath Diameter in Diagnosis and Follow Up of Patients with Disturbed Conscious Level. Eye Brain 2022; 14:115-126. [PMID: 36193222 PMCID: PMC9526430 DOI: 10.2147/eb.s369813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Ultrasonographic measurement of optic nerve sheath diameter is a simple, non-invasive, and reliable method of detecting elevated intracranial pressure (ICP) in critical patients. Optic nerve sheath communicates with the dura mater covering the brain and contains cerebrospinal fluid, allowing pressure transmission from the cranium. Therefore, changes in cerebrospinal fluid (CSF) pressure have been shown to produce changes in ONSD. Objective This study aimed to assess the accuracy of optic nerve sheath diameter (ONSD) in diagnosis and follow-up patients with disturbed conscious levels compared with CT brain and fundus examination. Patients and Methods One hundred forty-one participants were included in the study, classified into 76 cases admitted with disturbed conscious levels due to elevated ICP and 65 controls. All patients were subjected to CT brain and optic nerve US and fundus examination at the time of admission and follow-up after 48 h after proper management. Results The current study showed that ONSD is significant in predicting elevated ICP at the cut-off point of average ONSD of 5.19 mm with 97% sensitivity and 98% specificity, and the area under the curve (AUC) was 0.996. The present study revealed a significant inverse correlation between ONSD and GCS in patients with increased ICP. Conclusion Ultrasonic measurement of ONSD is a promising technique in diagnosing and following patients with disturbed conscious levels.
Collapse
Affiliation(s)
| | - Omar M Said
- Ophthalmology Department, Fayoum University, Fayoum, Egypt
| | | | | |
Collapse
|
35
|
Singh M, Kumar B, Agrawal D. Good view frames from ultrasonography (USG) video containing ONS diameter using state-of-the-art deep learning architectures. Med Biol Eng Comput 2022; 60:3397-3417. [DOI: 10.1007/s11517-022-02680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
36
|
Benhur A, Sharma J, Karna ST, Shrivastava A, Saigal S, Waindeskar VV. Analysis of dynamic changes in optic nerve sheath diameter (ONSD) with ultrasound in post-craniotomy patients: Trends and correlation with computed tomography ONSD and Glasgow coma scale in post-operative period. J Neurosci Rural Pract 2022; 13:676-683. [PMID: 36743767 PMCID: PMC9893949 DOI: 10.25259/jnrp-2022-3-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives Intracranial pressure (ICP) monitoring in patients with intracranial tumors undergoing craniotomy is usually done in perioperative period in intensive care unit. Invasive measurement of ICP, though considered as the gold standard, has its own limitations such as availability of expertise, equipment, and associated complications. Period of raised ICP in post-operative period may impact patient outcomes. Post-craniotomy computed tomography (CT) assessment is done routinely and may need to be repeated if indicated during post-operative stay. Utility of sonographic serial optic nerve sheath diameter (ONSD) assessment in post-operative monitoring of patients who have undergone elective craniotomy was explored in this study. The primary objective of the study was to measure the dynamic change in ONSD as compared to baseline pre-operative measurement in the first 3 postoperative days after elective craniotomy. The secondary objective of the study was to evaluate correlation between ONSD value with Glasgow Coma Scale (GCS) and post-operative CT findings. Materials and Methods In this prospective, observational, and cohort study, we studied adult patients undergoing craniotomy for intracranial tumors. GCS assessment and sonographic measurement of ONSD were done preoperatively, immediate post-operative period, and 12, 24, and 48 h after surgery. CT scan to detect raised ICP was done at 24 h post-operative. Correlation of ONSD with GCS at respective period and correlation of CT scan finding with respective ONSD assessment were evaluated. Results A total of 57 patients underwent elective craniotomy for intracranial tumors. Significant difference was observed in ONSD value depending on time of measurement perioperatively (χ2 = 78.9, P = 0.00). There was initial increase in the first 12 h followed by decrease in ONSD in the next 48 h. Negative correlation was observed between baseline ONSD and 12 h GCS (ρ = -0.345, P = 0.013). There was significant change in GCS scores based on the status of ONSD (raised or normal) at 12 h after surgery (P = 0.014). Significant correlation between USG ONSD and CT ONSD was observed (ρ = 0.928, P = 0.000). Optimal cutoff value of ONSD to detect raised ICP with reference to CT signs was 4.8 mm with 80% sensitivity and 95% specificity. Conclusion ONSD undergoes dynamic changes, correlates with CT scan, and has good diagnostic accuracy to detect raised ICP post-craniotomy for intracranial tumors. It may serve as a useful tool in monitoring in resource-limited setup.
Collapse
Affiliation(s)
- Allan Benhur
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Jaiprakash Sharma
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sunaina Tejpal Karna
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Adesh Shrivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Saurabh Saigal
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Vaishali Vasant Waindeskar
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
37
|
Hawryluk GWJ, Citerio G, Hutchinson P, Kolias A, Meyfroidt G, Robba C, Stocchetti N, Chesnut R. Intracranial pressure: current perspectives on physiology and monitoring. Intensive Care Med 2022; 48:1471-1481. [PMID: 35816237 DOI: 10.1007/s00134-022-06786-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Intracranial pressure (ICP) monitoring is now viewed as integral to the clinical care of many life-threatening brain insults, such as severe traumatic brain injury, subarachnoid hemorrhage, and malignant stroke. It serves to warn of expanding intracranial mass lesions, to prevent or treat herniation events as well as pressure elevation which impedes nutrient delivery to the brain. It facilitates the calculation of cerebral perfusion pressure (CPP) and the estimation of cerebrovascular autoregulatory status. Despite advancements in our knowledge emanating from a half century of experience with this technology, important controversies remain related even to fundamental aspects of ICP measurements, including indications for monitoring, ICP treatment thresholds, and management of intracranial hypertension. Here, we review the history of ICP monitoring, the underlying pathophysiology as well as current perspectives on why, when and how ICP monitoring is best used. ICP is typically assessed invasively but a number of emerging, non-invasive technologies with inherently lower risk are showing promise. In selected cases, additional neuromonitoring can be used to assist in the interpretation of ICP monitoring information and adapt directed treatment accordingly. Additional efforts to expand the evidence base relevant to ICP monitoring, related technologies and management remain a high priority in neurosurgery and neurocritical care.
Collapse
Affiliation(s)
- Gregory W J Hawryluk
- Section of Neurosurgery, University of Manitoba, GB1, 820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada.
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.,Neuro-Intensive Care, Department of Neurosciences, San Gerardo Hospital, ASST-MONZA, Monza, Italy
| | - Peter Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB20QQ, UK
| | - Angelos Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB20QQ, UK
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Herestraat 49, Box 7003, 63 3000, Leuven, Belgium
| | - Chiara Robba
- Anaesthesia and Intensive Care, San Martino Research Hospital, Genoa, Italy
| | - Nino Stocchetti
- Anesthesia and Intensive Care, Department of Physiopathology and Transplantation, Milan University, Milan, Italy.,Department of Anaesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Randall Chesnut
- Neurosurgery, Neurotrauma, Department of Neurological Surgery, Department of Orthopaedic Surgery, School of Global Health, Harborview Medical Center, University of Washington, 325 Ninth Ave, Mailstop 359766, Seattle, WA, 98104-2499, USA
| |
Collapse
|
38
|
Relander FAJ, Ruesch A, Yang J, Acharya D, Scammon B, Schmitt S, Crane EC, Smith MA, Kainerstorfer JM. Using near-infrared spectroscopy and a random forest regressor to estimate intracranial pressure. NEUROPHOTONICS 2022; 9:045001. [PMID: 36247716 PMCID: PMC9552940 DOI: 10.1117/1.nph.9.4.045001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Intracranial pressure (ICP) measurements are important for patient treatment but are invasive and prone to complications. Noninvasive ICP monitoring methods exist, but they suffer from poor accuracy, lack of generalizability, or high cost. AIM We previously showed that cerebral blood flow (CBF) cardiac waveforms measured with diffuse correlation spectroscopy can be used for noninvasive ICP monitoring. Here we extend the approach to cardiac waveforms measured with near-infrared spectroscopy (NIRS). APPROACH Changes in hemoglobin concentrations were measured in eight nonhuman primates, in addition to invasive ICP, arterial blood pressure, and CBF changes. Features of average cardiac waveforms in hemoglobin and CBF signals were used to train a random forest (RF) regressor. RESULTS The RF regressor achieves a cross-validated ICP estimation of 0.937 r 2 , 2.703 - mm Hg 2 mean squared error (MSE), and 95% confidence interval (CI) of [ - 3.064 3.160 ] mmHg on oxyhemoglobin concentration changes; 0.946 r 2 , 2.301 - mmHg 2 MSE, and 95% CI of [ - 2.841 2.866 ] mmHg on total hemoglobin concentration changes; and 0.963 r 2 , 1.688 mmHg 2 MSE, and 95% CI of [ - 2.450 2.397 ] mmHg on CBF changes. CONCLUSIONS This study provides a proof of concept for the use of NIRS in noninvasive ICP estimation.
Collapse
Affiliation(s)
- Filip A. J. Relander
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Alexander Ruesch
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Deepshikha Acharya
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Bradley Scammon
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Samantha Schmitt
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Emily C. Crane
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Matthew A. Smith
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
39
|
Diamond-like Carbon Coatings in the Biomedical Field: Properties, Applications and Future Development. COATINGS 2022. [DOI: 10.3390/coatings12081088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Repairment and replacement of organs and tissues are part of the history of struggle against human diseases, in addition to the research and development (R&D) of drugs. Acquisition and processing of specific substances and physiological signals are very important to understand the effects of pathology and treatment. These depend on the available biomedical materials. The family of diamond-like carbon coatings (DLCs) has been extensively applied in many industrial fields. DLCs have also been demonstrated to be biocompatible, both in vivo and in vitro. In many cases, the performance of biomedical devices can be effectively enhanced by coating them with DLCs, such as vascular stents, prosthetic heart valves and surgical instruments. However, the feasibility of the application of DLC in biomedicine remains under discussion. This review introduces the current state of research and application of DLCs in biomedical devices, their potential application in biosensors and urgent problems to be solved. It will be useful to build a bridge between DLC R&D workers and biomedical workers in order to develop high-performance DLC films/coatings, promote their practical use and develop their potential applications in the biomedical field.
Collapse
|
40
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Chopra A, Das PK, Parashar S, Misra S, Tripathi M, Malviya D, Singh D. Clinical Relevance of Transorbital Ultrasonographic Measurement of Optic Nerve Sheath Diameter (ONSD) for Estimation of Intracranial Pressure Following Cerebrospinal Fluid Diversion Surgery. Cureus 2022; 14:e25200. [PMID: 35747017 PMCID: PMC9213298 DOI: 10.7759/cureus.25200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background and aim Raised intracranial pressure (ICP) can be estimated by various invasive as well as non-invasive techniques. Optic nerve sheath diameter (ONSD ) is a bedside non-invasive technique for assessment of ICP as a regular follow-up tool and has added advantage over CT scan/MRI, which require patient transfer to the suite. Cerebrospinal fluid (CSF) diversion procedures such as a ventriculoperitoneal shunt or external ventricular drainage are commonly done to relieve symptoms of patients with raised ICP. Change in ICP measured through ONSD after CSF diversion procedures may guide the proper functioning of the shunt and immediate post-operative management. The present study was conducted to compare ONSD before and after CSF diversion procedures and correlate the ONSD with ICP. Our secondary objective was to determine the ONSD cutoff for the prediction of ICP >20mm Hg. Setting, design, and methods This prospective, comparative, and observational study was carried out at Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India. The present study was conducted on 40 adult patients undergoing CSF diversion surgery under general anaesthesia. Ultrasonographic measurement of the ONSD was performed before induction, after induction, after endotracheal intubation, after completion of shunt surgery, and then every two hours for 12 hours. The direct ICP was measured by the neurosurgeon at the time of the initial ventricular puncture. Statistical analysis The Wilcoxon signed-rank test was used to compare pre and post variables. Qualitative variables were compared using the Chi-Square test/Fisher’s exact test as appropriate. Spearman's rho statistical measure of linear association was applied to measure the strength of linear association between parameters to show how close the points lie to a straight line. A p-value of <0.05 was considered statistically significant. Results The mean value of ONSD before induction and after induction was 6.36 ± 0.61 mm and 6.29 ±0.64 mm, respectively. After endotracheal intubation, ONSD slightly increased to 6.34 ±0.62mm, followed by a consistent decrease in ONSD values. The mean direct ICP recorded was 30.93±6.22 mmHg. Comparison of mean ONSD before induction, after induction, and after intubation with ONSD after surgery was statistically significant (p <0.001). We found a strong positive correlation between direct ICP and ONSD after intubation with a correlation coefficient of 0.969 (P <0.001). Receiver operating characteristic (ROC) curve analysis showed an ONSD cutoff of >5.85, predicted ICP>20 mmHg with a sensitivity of 92.3%, and specificity of 85.7%. Conclusion Measurement of ONSD by ultrasonography is an important and reliable tool in the assessment of normalization of ICP post CSF diversion procedure.
Collapse
|
42
|
Yang M, Ye Z, Alsaab N, Farhat M, Chen PY. In-Vitro Demonstration of Ultra-Reliable, Wireless and Batteryless Implanted Intracranial Sensors Operated on Loci of Exceptional Points. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:287-295. [PMID: 35380967 DOI: 10.1109/tbcas.2022.3164697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vital signal monitoring, such as pulse, respiration rate, intra-organ and intra-vascular pressure, can provide important information for determination of clinic diagnosis, treatments, and surgical protocols. Nowadays, micromachined bioimplants, equipped with antennas for converting bio-signals to modulated radio transmissions, may allow remote continuous monitoring of patients' vital signs. Yet, current passive biotelemetry techniques usually suffer from poor signal reproducibility and robustness in light of inevitable misalignment between transmitting and receiving antennas. Here, we seek to address this long-existing challenge and to robustly acquire information from a passive wireless intracranial pressure (or brain pressure) sensor by introducing a novel, high-performance biotelemetry system. In spite of variable inductive links, this biotelemetry system may have absolute accuracy by leveraging the uniqueness of loci of exceptional points (EPs) in non-Hermitian radio-frequency (RF) electronic systems with parity-time (PT) symmetry. Our in-vitro experimental demonstration shows that the proposed intracranial (ICP) monitoring system can provide a sub-mmHg resolution in the ICP range of 0-20 mmHg and ultra-robust wireless data acquisition against the misalignment-induced weakening of inductive link. Our results could provide a practical pathway toward reliable, real-time wireless monitoring of ICP, and other vital signals generated by bio-implants and wearables.
Collapse
|
43
|
Nerve optic segmentation in CT images using a deep learning model and a texture descriptor. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00694-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is used for region-based image quality enhancement. Then, the Local Directional Number method (LDN) is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients.
Collapse
|
44
|
Lasselin P, Grousson S, Souza Netto EP, Balanca B, Terrier A, Dailler F, Haesbaert J, Boublay N, Gory B, Berhouma M, Lukaszewicz AC. Accuracy of bedside bidimensional transcranial ultrasound versus tomodensitometric measurement of the third ventricle. J Neuroimaging 2022; 32:629-637. [PMID: 35083801 PMCID: PMC9540242 DOI: 10.1111/jon.12970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE To evaluate the accuracy of transcranial duplex sonography (TCS) for measuring the diameter of the third ventricle (DTV) and the brain midline shift (MLS), as compared to cerebral CT. METHODS Single-center retrospective study including 177 patients admitted to the neurological intensive care unit (NICU). We studied the correlation between TCS and CT measurements of DTV and MLS using a Bland-Altman analysis. The best threshold of DTV to diagnose acute hydrocephalus was evaluated with a receiver operating characteristic (ROC) analysis. RESULTS We analyzed 177 pairs of CT-TCS measurements for DTV and 165 for MLS. The mean time interval between CT and TCS was 87 ± 73 minutes. Median DTV measurement on CT was 4 ± 3 mm, and 5 ± 3 mm by TCS. Median MLS on CT was 2 ± 3 mm, and 2 ± 4 mm by TCS. The Pearson correlation coefficient (r2 ) was .96 between TCS and CT measurements (p < .001). The Bland-Altman analysis found a proportional bias of 0.69 mm for the DTV with a limit of agreement ranging between -3.04 and 2.53 mm. For the MLS, the proportional bias was 0.23 mm with limits of agreements between -3.5 and 3.95. The area under the ROC curve was .97 for the detection of hydrocephalus by DTV on TCS, with a best threshold of 5.72 mm (Sensitivity [Se] = 92% Specificity [Sp] = 92.1%). CONCLUSIONS TCS seems to be a reliable and accurate bedside technique for measuring both DTV and MLS, which might allow detection of acute hydrocephalus among NICU patients.
Collapse
Affiliation(s)
- Philippe Lasselin
- Hospices Civils de Lyon, Department of Anesthesiology and Intensive Care Medicine, Hôpital Pierre Wertheimer, Lyon University Hospital, Bron, France
| | - Sebastien Grousson
- Hospices Civils de Lyon, Department of Anesthesiology and Intensive Care Medicine, Hôpital Pierre Wertheimer, Lyon University Hospital, Bron, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Anesthesia and Intensive Care, Paris Sud University, Le Kremlin-Bicêtre, France
| | | | - Baptiste Balanca
- Hospices Civils de Lyon, Department of Anesthesiology and Intensive Care Medicine, Hôpital Pierre Wertheimer, Lyon University Hospital, Bron, France
| | - Anne Terrier
- Hospices Civils de Lyon, Department of Anesthesiology and Intensive Care Medicine, Hôpital Pierre Wertheimer, Lyon University Hospital, Bron, France
| | - Frederic Dailler
- Hospices Civils de Lyon, Department of Anesthesiology and Intensive Care Medicine, Hôpital Pierre Wertheimer, Lyon University Hospital, Bron, France
| | - Julie Haesbaert
- Hospices Civils de Lyon, Pôle Information Médicale Évaluation Recherche, Lyon, France
| | - Nawele Boublay
- Hospices Civils de Lyon, Pôle Information Médicale Évaluation Recherche, Lyon, France
| | - Benjamin Gory
- Department of Interventional Neuroradiology, Lyon University Hospital, Bron, France
| | - Moncef Berhouma
- Hospices Civils de Lyon, Department of Neurosurgery, Lyon University Hospital, Bron, France
| | - Anne-Claire Lukaszewicz
- Hospices Civils de Lyon, Department of Anesthesiology and Intensive Care Medicine, Hôpital Pierre Wertheimer, Lyon University Hospital, Bron, France.,Université de Lyon EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Lyon, France
| |
Collapse
|
45
|
Gopalan PD, de Castro A. Central Nervous System Neurophysiology. MANAGEMENT OF SUBARACHNOID HEMORRHAGE 2022:19-40. [DOI: 10.1007/978-3-030-81333-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Anania P, Battaglini D, Pelosi P, Robba C. Type of ICP monitor. ESSENTIALS OF EVIDENCE-BASED PRACTICE OF NEUROANESTHESIA AND NEUROCRITICAL CARE 2022:193-202. [DOI: 10.1016/b978-0-12-821776-4.00014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Correlations between optic nerve sheath diameters measured using computed tomography and elevated intracranial pressure levels. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Historical aspects of the problem of surgical treatment of hemorrhagic stroke. The role of intracranial pressure in the choice of treatment tactics (review of literature). ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.5.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article provides a literature review of the past 60 years, conducted using keywords through the PubMed Internet resource, dedicated to the methods of surgical treatment of hemorrhagic stroke. The existing published results of clinical studies do not allow us to draw unambiguous conclusions about the superiority of conservative or neurosurgical treatment in relation to the functional recovery of patients. There is a statistical significance of the advantages of surgery based on the prevention of dislocation syndrome, control of intracranial hypertension, and prevention or at least reduction of the effect of blood and its degradation products on the surrounding healthy tissue. However, large randomized controlled trials have failed to demonstrate this benefit in terms of mortality or functional outcome.There are two main areas of hemorrhagic stroke surgery – open surgery and minimally invasive methods. The practice of open surgery is associated with high trauma rates, as well as with certain risks and complications. However, craniotomy is a lifesaving measure in critical situations with signs of persistent increased intracranial pressure leading to neurological impairment. The ability to control intracranial pressure provides a chance for the choice of more optimal tactics of surgical treatment.Today, the gold standard for intracranial pressure monitoring is the installation of invasive intraventricular or intraparenchymal transducers. The method is appreciated for its accuracy, however, there are a number of disadvantages in the form of the possibility of hemorrhagic and infectious complications, as well as the high cost of the sensor itself, which limits its routine use. The inability to measure intracranial pressure before surgery causes an unreasonable expansion of indications for choosing an open method of surgery, which reduces the possibility of a better functional outcome.All of these points make it urgent to search for a non-invasive method for measuring intracranial pressure, which would contribute to the timely choice of a surgical method without the danger of worsening the clinical outcome.
Collapse
|
49
|
Lo L, Zhao D, Ayton L, Grayden D, Bui B, Morokoff A, John S. Non-Invasive Measurement of Intracranial Pressure Through Application of Venous Ophthalmodynamometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6771-6774. [PMID: 34892662 DOI: 10.1109/embc46164.2021.9629651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-invasive intracranial pressure (ICP) monitoring is possible using venous ophthalmodynamometry to observe a pulsation in retinal blood vessels when intraocular pressure (IOP) exceeds ICP. Here, we identify features in the eye - optic disc and retinal blood vessel locations - and identify pulsation in large retinal blood vessels. The relationship between force and the magnitude of pulsation is used to estimate ICP when force is applied to the eye to gradually increase IOP over time. This approach yields 77% accuracy in automatically observing vessel pulsation.Clinical Relevance - Non-invasive ICP monitoring is desirable to improve patient outcome by reducing potential trauma and complications associated with invasive assessment with intracranial sensors or lumbar puncture.
Collapse
|
50
|
Omileke D, Pepperall D, Bothwell SW, Mackovski N, Azarpeykan S, Beard DJ, Coupland K, Patabendige A, Spratt NJ. Ultra-Short Duration Hypothermia Prevents Intracranial Pressure Elevation Following Ischaemic Stroke in Rats. Front Neurol 2021; 12:684353. [PMID: 34616350 PMCID: PMC8488292 DOI: 10.3389/fneur.2021.684353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
There is a transient increase in intracranial pressure (ICP) 18–24 h after ischaemic stroke in rats, which is prevented by short-duration hypothermia using rapid cooling methods. Clinical trials of long-duration hypothermia have been limited by feasibility and associated complications, which may be avoided by short-duration cooling. Animal studies have cooled faster than is achievable in patients. We aimed to determine whether gradual cooling at a rate of 2°C/h to 33°C or 1°C/h to 34.5°C, with a 30 min duration at target temperatures, prevented ICP elevation and reduced infarct volume in rats. Transient middle cerebral artery occlusion was performed, followed by gradual cooling to target temperature. Hypothermia to 33°C prevented significant ICP elevation (hypothermia ΔICP = 1.56 ± 2.26 mmHg vs normothermia ΔICP = 8.93 ± 4.82 mmHg; p = 0.02) and reduced infarct volume (hypothermia = 46.4 ± 12.3 mm3 vs normothermia = 85.0 ± 17.5 mm3; p = 0.01). Hypothermia to 34.5°C did not significantly prevent ICP elevation or reduce infarct volume. We showed that gradual cooling to 33°C, at cooling rates achievable in patients, had the same ICP preventative effect as traditional rapid cooling methods. This suggests that this paradigm could be translated to prevent delayed ICP rise in stroke patients.
Collapse
Affiliation(s)
- Daniel Omileke
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Debbie Pepperall
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Steven W Bothwell
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Nikolce Mackovski
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Sara Azarpeykan
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Daniel J Beard
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Kirsten Coupland
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Adjanie Patabendige
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Neil J Spratt
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia.,Department of Neurology, John Hunter Hospital, Hunter New England Local Health District, New Lambton, NSW, Australia
| |
Collapse
|