1
|
Aykaç M, Balkan E, Gedi̇kli̇ S, Öztürk N. Resveratrol treatment ameliorates hepatic damage via the TGF-β/SMAD signaling pathway in a phenobarbital/CCl 4-induced hepatic fibrosis model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1124-1133. [PMID: 39055873 PMCID: PMC11266736 DOI: 10.22038/ijbms.2024.75737.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/06/2024] [Indexed: 07/28/2024]
Abstract
Objectives Liver fibrosis is a wound healing response characterized by excessive accumulation of extracellular matrix proteins. This study aimed to investigate the effects of resveratrol treatment on the TGF-β/SMAD signaling pathway and related biochemical parameters, apoptosis, and liver regeneration phenobarbital-CCl4 induced hepatic fibrosis rat model. Materials and Methods This model was created through phenobarbital and CCl4 (0.2-0.35 ml/kg). Resveratrol (1 mg/kg/day) was administered to the fibrosis and control groups. Immunohistochemical staining was performed to evaluate αSMA, TGF-β1, and PCNA in liver tissue. The TUNEL method and Masson's Trichome staining were used to determine apoptosis and collagen accumulation. AST, ALP, ALT, total protein, and total bilirubin levels were measured to determine biochemical status. SMAD2, SMAD3, SMAD4, and SMAD7 expression levels were measured to determine TGF-β1 related hepatic fibrosis. Results The SMAD2, SMAD3, and SMAD4 mRNA expression levels were increased and the SMAD7 mRNA expression level was decreased in the fibrosis control group. The SMAD7 mRNA expression level was higher in the phenobarbital-CCl4 induced resveratrol treated group. Increased biochemical parameters indicating hepatic damage, increased number of apoptotic cells, and collagen accumulation surrounding the central vein were observed in the fibrosis group compared with the other groups. It was concluded that administration of resveratrol ameliorates the adverse effects of hepatic fibrosis by regulating biochemical parameters, controlling TGF-β1/SMAD signaling, enhancing tissue regeneration, and reducing apoptosis in liver cells. Conclusion Resveratrol can be a beneficial option for the prevention of liver damage in a phenobarbital-CCl4 induced hepatic fibrosis.
Collapse
Affiliation(s)
- Merve Aykaç
- Department of Medical Biology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Eda Balkan
- Department of Medical Biology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Semin Gedi̇kli̇
- Department of Histology and Embrylogy, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Nurinnisa Öztürk
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum,Turkey
| |
Collapse
|
2
|
He C, Ye P, Zhang X, Esmaeili E, Li Y, Lü P, Cai C. The Role of TGF-β Signaling in Saphenous Vein Graft Failure after Peripheral Arterial Disease Bypass Surgery. Int J Mol Sci 2023; 24:10381. [PMID: 37373529 DOI: 10.3390/ijms241210381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Saphenous vein bypass grafting is an effective technique used to treat peripheral arterial disease (PAD). However, restenosis is the major clinical challenge for the graft vessel among people with PAD postoperation. We hypothesize that there is a common culprit behind arterial occlusion and graft restenosis. To investigate this hypothesis, we found TGF-β, a gene specifically upregulated in PAD arteries, by bioinformatics analysis. TGF-β has a wide range of biological activities and plays an important role in vascular remodeling. We discuss the molecular pathway of TGF-β and elucidate its mechanism in vascular remodeling and intimal hyperplasia, including EMT, extracellular matrix deposition, and fibrosis, which are the important pathways contributing to stenosis. Additionally, we present a case report of a patient with graft restenosis linked to the TGF-β pathway. Finally, we discuss the potential applications of targeting the TGF-β pathway in the clinic to improve the long-term patency of vein grafts.
Collapse
Affiliation(s)
- Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuecheng Zhang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Elham Esmaeili
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Lü
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Meng Q, Zhang M. Clinical Significance of Serum Collagen Type IV and Procollagen Type III N-Peptide Levels in Diagnosis and Differential Diagnosis of Lymphedema. Lymphat Res Biol 2023; 21:8-14. [PMID: 35687386 DOI: 10.1089/lrb.2021.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Lymphatic endothelial cells production or modification were closely related to the extracellular matrix (ECM) molecules. The serum hyaluronic acid (HA), laminin (LN), procollagen type III N-peptide (PIIINP), and collagen type IV (CGIV) levels were researched to explore the clinical significance of serum ECM proteins in the diagnosis and differentiation of lymphedema. Methods: Fifty-five patients were enrolled. They were divided into primary lymphedema (PLE), secondary lymphedema (SLE), and venous edema (VE) groups. Twenty-two healthy controls were also recruited as normal control (NC). Serum HA, LN, PIIINP, and CGIV levels of all subjects were assessed using chemiluminescence immunoassay. Statistical analysis and receiver operating characteristic (ROC) curves were used to data analysis. Results: The serum levels of CGIV were significantly decreased in both PLE and SLE groups compared with those in the NC group. Reduced serum CGIV levels were associated with the severity of lymphedema. The serum levels of CGIV and PIIINP were identified decreased in both PLE and SLE groups compared with those in the VE group. However, the levels of serum HA and LN were not observed significantly changed in both PLE and SLE groups than those in NC or VE group. Furthermore, ROC curve indicated that serum CGIV and PIIINP were capable of providing good diagnostic and differential diagnostic efficacy at the most appropriate cutoff point value. Conclusion: The serum levels of CGIV may have clinical significance in the diagnosis of lymphedema. CGIV and PIIINP may play a role in the differentiation of lymphedema from VE.
Collapse
Affiliation(s)
- Qian Meng
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
4
|
Stuelten CH, Melis N, Subramanian B, Tang Y, Kimicata M, Fisher JP, Weigert R, Zhang YE. Smurf2 Regulates Inflammation and Collagen Processing in Cutaneous Wound Healing through Transforming Growth Factor-β/Smad3 Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1699-1711. [PMID: 36063900 PMCID: PMC9765313 DOI: 10.1016/j.ajpath.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Wound healing is a highly conserved process that restores the integrity and functionality of injured tissues. Transforming growth factor (TGF)-β is a master regulator of wound healing, whose signaling is attenuated by the E3 ubiquitin ligase Smurf2. Herein, the roles of Smurf2 in cutaneous wound healing were examined using a murine incisional cutaneous model. Loss of Smurf2 increased early inflammation in the wounds and led to narrower wounds with greater breaking strength. Loss of Smurf2 also led to more linearized collagen bundles in normal and wounded skin. Gene expression analyses by real-time quantitative PCR indicated that Smurf2-deficient fibroblasts had increased levels of TGF-β/Smad3 signaling and changes in expression profile of genes related to matrix turnover. The effect of Smurf2 loss on wound healing and collagen bundling was attenuated by the heterozygous loss of Smad3. Together, these results show that Smurf2 affects inflammation and collagen processing in cutaneous wounds by down-regulating TGF-β/Smad3 signaling.
Collapse
Affiliation(s)
- Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Bhagawat Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yi Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
5
|
PEGylated Polyethylenimine Derivative-Mediated Local Delivery of the shSmad3 Inhibits Intimal Thickening after Vascular Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8483765. [PMID: 31467913 PMCID: PMC6699321 DOI: 10.1155/2019/8483765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
Intimal hyperplasia is a complex process which contributes to several clinical problems such as atherosclerosis and postangioplasty restenosis. Inhibition of Smad3 expression inhibits intimal thickening. Our previous study has modified biscarbamate cross-linked polyethylenimine derivative (PEI-Et) through PEGylation thus obtained polyethylene glycol-graft-polyethylenimine derivative (PEG-Et 1:1), which has lower cytotoxicity and higher gene transfection efficiency compared with PEI-Et. In this study, PEG-Et 1:1 was employed in Smad3 shRNA (shSmad3) delivery for preventing intimal hyperplasia after vascular injury. It was observed that PEG-Et 1:1 could condense shSmad3 gene into nanoparticles with particle size of 115–168 nm and zeta potential of 3–6 mV. PEG-Et 1:1 displayed remarkably lower cytotoxicity, higher transfection efficiency, and shRNA silencing efficiency than PEI-Et and PEI 25 kDa in vascular smooth muscle cells (VSMCs). Moreover, PEG-Et 1:1/shSmad3 polyplex treatment significantly inhibited collagen, matrix metalloproteinase 1 (MMP1), MMP2 and MMP9 expression, and upregulated tissue inhibitor of metalloproteinase 1 (TIMP1) expression both in vitro and in vivo. Furthermore, intravascular delivery of shSmad3 with PEG-Et 1:1 polyplex efficiently reduced Smad3 expression and inhibited intimal thickening 14 days after vascular injury. Ultimately, this study indicated that PEG-Et 1:1-mediated local delivery of shSmad3 is a promising strategy for preventing intimal thickening.
Collapse
|
6
|
Park MK, Kim HJ, Cho MK, Kang SA, Park SY, Jang SB, Yu HS. Identification of a host collagen inducing factor from the excretory secretory proteins of Trichinella spiralis. PLoS Negl Trop Dis 2018; 12:e0006516. [PMID: 30383752 PMCID: PMC6233931 DOI: 10.1371/journal.pntd.0006516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/13/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background In a previous study, we found that Trichinella spiralis muscle larva excretory and secretory proteins (ES-P) most likely activate collagen synthesis via TGF-β/Smad signaling, and this event could influence collagen capsule formation. Methodology/Principal findings In order to identify the specific collagen inducing factor, ES-P was fractionated by a Superdex 200 10/300 GL column. We obtained three large fractions, F1, F2, and F3, but only F3 had collagen gene inducing ability. After immunoscreening, 10 collagen inducing factor candidates were identified. Among them, TS 15–1 and TS 15–2 were identical to the putative trypsin of T. spiralis. The deduced TS 15–1 (M.W. = 72 kDa) had two conserved catalytic motifs, an N-terminal Tryp_SPc domain (TS 15-1n) and a C-terminal Tryp_SPc domain (TS 15-1c). To determine their collagen inducing ability, recombinant proteins (rTS 15-1n and rTS 15-1c) were produced using the pET-28a expression system. TS 15–1 is highly expressed during the muscle larval stage and has strong antigenicity. We determined that rTS 15-1c could elevate collagen I via activation of the TGF-β1 signaling pathway in vitro and in vivo. Conclusion/Significance In conclusion, we identified a host collagen inducing factor from T. spiralis ES-P using immunoscreening and demonstrated its molecular characteristics and functions. Trichinella spiralis can make collagen capsules in host muscle cells during its life cycle, which encapsulates muscle stage larvae. Many investigators have tried to reveal the complex mechanism behind this collagen capsule architecture, and it has been suggested that several serine proteases in excretory-secretory proteins of the parasite are potential collagen capsule inducing factors. In addition, collagen synthesis is activated through the TGF-β/Smad signaling pathway and these events are closely related with protease activated receptor 2 which was activated by various serine proteases. In this study, we isolated and characterized a collagen gene expression inducer from T. spiralis ES-P using immunoscreening and investigated the candidate protein for its usefulness as a wound healing therapeutic agent.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Parasitology School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hae-Jin Kim
- Department of Parasitology School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Kyoung Cho
- Department of Parasitology School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Shin Ae Kang
- Department of Parasitology School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - So Young Park
- Department of Parasitology School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology School of Medicine, Pusan National University, Yangsan, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Wang M, Monticone RE, McGraw KR. Proinflammatory Arterial Stiffness Syndrome: A Signature of Large Arterial Aging. J Vasc Res 2018; 55:210-223. [PMID: 30071538 PMCID: PMC6174095 DOI: 10.1159/000490244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Age-associated structural and functional remodeling of the arterial wall produces a productive environment for the initiation and progression of hypertension and atherosclerosis. Chronic aging stress induces low-grade proinflammatory signaling and causes cellular proinflammation in arterial walls, which triggers the structural phenotypic shifts characterized by endothelial dysfunction, diffuse intimal-medial thickening, and arterial stiffening. Microscopically, aged arteries exhibit an increase in arterial cell senescence, proliferation, invasion, matrix deposition, elastin fragmentation, calcification, and amyloidosis. These characteristic cellular and matrix alterations not only develop with aging but can also be induced in young animals under experimental proinflammatory stimulation. Interestingly, these changes can also be attenuated in old animals by reducing low-grade inflammatory signaling. Thus, mitigating age-associated proinflammation and arterial phenotype shifts is a potential approach to retard arterial aging and prevent the epidemic of hypertension and atherosclerosis in the elderly.
Collapse
|
8
|
Song T, Zhao J, Jiang T, Jin X, Li Y, Liu X. Formononetin protects against balloon injury‑induced neointima formation in rats by regulating proliferation and migration of vascular smooth muscle cells via the TGF‑β1/Smad3 signaling pathway. Int J Mol Med 2018; 42:2155-2162. [PMID: 30066831 DOI: 10.3892/ijmm.2018.3784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/25/2018] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the effects of formononetin (FMN) against balloon injury‑induced neointima formation in vivo and platelet‑derived growth factor (PDGF)‑BB‑induced proliferation and migration of vascular smooth muscle cells (VSMCs) in vitro, and explored the underlying mechanisms. A rat model of carotid artery injury was established, in order to examine the effects of FMN on balloon injury‑induced neointima formation. Histological observation of the carotid artery tissues was conducted by hematoxylin and eosin staining. VSMC proliferation during neointima formation was observed by proliferating cell nuclear antigen staining. Subsequently, rat aortic VSMCs were isolated, and the effects of FMN on PDGF‑BB‑induced VSMC proliferation and migration were determined using Cell Counting Kit‑8 and Transwell/wound healing assays, respectively. Immunohistochemical and immunocytochemical staining was applied to measure the expression of transforming growth factor (TGF)‑β in carotid artery tissues and VSMCs, respectively. SMAD family member 3 (Smad3)/phosphorylated (p)‑Smad3 expression was examined by western blotting. FMN treatment significantly inhibited the abnormal proliferation of smooth muscle cells in neointima, and alterations to the vascular structure were attenuated. In addition, pretreatment with FMN effectively inhibited the proliferation of PDGF‑BB‑stimulated VSMCs (P<0.05). FMN also reduced the number of cells that migrated to the lower surface of the Transwell chamber and decreased wound‑healing percentage (P<0.05). The expression levels of TGF‑β were decreased by FMN treatment in vivo and in vitro, and Smad3/p‑Smad3 expression was also markedly inhibited. In conclusion, FMN significantly protected against balloon injury‑induced neointima formation in the carotid artery of a rat model; this effect may be associated with the regulation of VSMC proliferation and migration through altered TGF‑β1/Smad3 signaling.
Collapse
Affiliation(s)
- Tao Song
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Jingdong Zhao
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Tongbai Jiang
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yubin Li
- Department of Vascular Surgery, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| | - Xinrong Liu
- Hemodialysis Center, Linyi Peoples' Hospital Affiliated to Shandong University, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
9
|
Serralheiro P, Soares A, Costa Almeida CM, Verde I. TGF-β1 in Vascular Wall Pathology: Unraveling Chronic Venous Insufficiency Pathophysiology. Int J Mol Sci 2017; 18:E2534. [PMID: 29186866 PMCID: PMC5751137 DOI: 10.3390/ijms18122534] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic venous insufficiency and varicose veins occur commonly in affluent countries and are a socioeconomic burden. However, there remains a relative lack of knowledge about venous pathophysiology. Various theories have been suggested, yet the molecular sequence of events is poorly understood. Transforming growth factor-beta one (TGF-β1) is a highly complex polypeptide with multifunctional properties that has an active role during embryonic development, in adult organ physiology and in the pathophysiology of major diseases, including cancer and various autoimmune, fibrotic and cardiovascular diseases. Therefore, an emphasis on understanding its signaling pathways (and possible disruptions) will be an essential requirement for a better comprehension and management of specific diseases. This review aims at shedding more light on venous pathophysiology by describing the TGF-β1 structure, function, activation and signaling, and providing an overview of how this growth factor and disturbances in its signaling pathway may contribute to specific pathological processes concerning the vessel wall which, in turn, may have a role in chronic venous insufficiency.
Collapse
Affiliation(s)
- Pedro Serralheiro
- Norfolk and Norwich University Hospital, Colney Ln, Norwich NR47UY, UK.
- Faculty of Health Sciences, CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Andreia Soares
- Norfolk and Norwich University Hospital, Colney Ln, Norwich NR47UY, UK.
| | - Carlos M Costa Almeida
- Department of General Surgery (C), Coimbra University Hospital Centre, Portugal; Faculty of Medicine, University of Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal.
| | - Ignacio Verde
- Faculty of Health Sciences, CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| |
Collapse
|
10
|
Luo S, Yang M, Jin H, Xu ZQ, Li YF, Xia P, Yang YR, Chen BC, Zhang Y. The role of sildenafil in the development of transplant arteriosclerosis in rat aortic grafts. Am J Transl Res 2017; 9:4914-4924. [PMID: 29218089 PMCID: PMC5714775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Chronic rejection (CR), which is characterized histologically by progressive graft arteriosclerosis, remains a significant barrier to the long-term survival of a graft. Sildenafil has been shown to protect vascular endothelial cells. In this study, we found that sildenafil significantly reduces the thickness of transplant vascular intima in a rat aortic transplant model. Moreover, sildenafil dramatically decreased the expression of transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and α-smooth muscle actin (α-SMA) in the grafted aortas and increased the concentrations of cyclic guanosine monophosphate (cGMP) and endothelial nitric oxide synthase (eNOS) in serum. Furthermore, the ratio of regulatory T (Treg) cells and the expression of FoxP3 were increased, and the ratio of Th17 cells was decreased in the sildenafil-treated group. These results demonstrate that sildenafil enhances nitric oxide (NO) signaling by increasing the availability of cGMP, leading to an increase in the ratio of Treg/Th17 cells to attenuate transplant arteriosclerosis in a rat aortic transplant model.
Collapse
Affiliation(s)
- Shuai Luo
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
- Department of Urology, Huangshi Central HospitalHuangshi 435000, Hubei Province, China
| | - Mei Yang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Hao Jin
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Zi-Qiang Xu
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Yi-Fu Li
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Peng Xia
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Yi-Rrong Yang
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Bi-Cheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| | - Yan Zhang
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, Zhejiang Province, China
| |
Collapse
|
11
|
Li YQ, Wang JY, Qian ZQ, Li YL, Li WN, Gao Y, Yang DL. Osthole inhibits intimal hyperplasia by regulating the NF-κB and TGF-β1/Smad2 signalling pathways in the rat carotid artery after balloon injury. Eur J Pharmacol 2017. [PMID: 28648404 DOI: 10.1016/j.ejphar.2017.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osthole (7-methoxy-8-isopentenoxy-coumarin), a compound extracted from Cnidiummonnieri (L.) Cusson seeds, has been found to exhibit potent therapeutic effects in cancer due to its ability to inhibit inflammation and cell proliferation. However, its effects on arterial wall hypertrophy-related diseases remain unclear. Therefore, in this study, we aimed to investigate the effects of Osthole on intimal hyperplasia in a rat model of carotid artery balloon injury. We established the balloon-induced carotid artery injury rat model in male Sprague-Dawley rats, after which we administered Osthole (20mg/kg/day or 40mg/kg/day) or volume-matched normal saline orally by gavage for 14 consecutive days. Intimal hyperplasia and the degree of vascular smooth muscle cell proliferation were then evaluated by histopathological examination of the changes in the carotid artery, as well as by examination of proliferating cell nuclear antigen (PCNA) expression. Tumour necrosis factor-ɑ (TNF-α), interleukin-1β (IL-1β), transforming growth factor-beta (TGF-β1) and PCNA mRNA expression levels were examined by real-time RT-PCR, while nuclear factor-κB (NF-κB (p65)), IκB-α, TGF-β1 and phospho-Smad2 (p-Smad2) protein expression levels were analysed by immunohistochemistry or western blot analysis. We found that Osthole significantly attenuated neointimal thickness and decreased the elevations in PCNA protein expression induced by balloon injury. Moreover, Osthole down-regulated the pro-inflammatory factors TNF-α and IL-1β and NF-κB (p65), whose expression had been upregulated after balloon injury. Moreover, IκB-α protein expression levels increased following Osthole treatment. In addition, the elevations in TGF-β1 and p-Smad2 protein expression induced by balloon injury were both significantly attenuated by Osthole administration. We concluded that Osthole significantly inhibited neointimal hyperplasia in balloon-induced rat carotid artery injury and that the mechanism by which this occurs may involve NF-κB, IL-1β and TNF-ɑ down-regulation, which alleviates the inflammatory response, and TGF-β1/Smad2 signalling pathway inhibition.
Collapse
Affiliation(s)
- Yi-Qi Li
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China; Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Jun-Yi Wang
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Zhi-Qiang Qian
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Ye-Li Li
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Wen-Na Li
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Yang Gao
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Dan-Li Yang
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China.
| |
Collapse
|
12
|
Guo F, Wang Q, Zhou Y, Wu L, Ma X, Liu F, Huang F, Qin G. Lentiviral Vector-Mediated FoxO1 Overexpression Inhibits Extracellular Matrix Protein Secretion Under High Glucose Conditions in Mesangial Cells. J Cell Biochem 2016; 117:74-83. [PMID: 26052839 DOI: 10.1002/jcb.25249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 05/29/2015] [Indexed: 01/03/2023]
Abstract
Diabetic nephropathy is characterized by inordinate secretion of extracellular matrix (ECM) proteins from mesangial cells (MCs), which is tightly associated with excessive activation of TGF-β signaling. The forkhead transcription factor O1 (FoxO1) protects mesangial cells from hyperglycemia-induced oxidative stress, which may be involved in ameliorating the redundant secretion of ECM proteins under high glucose conditions. Here, we reported that high glucose elevated the level of p-Akt to attenuate endogenous FoxO1 bioactivities in MCs, accompanied with decreases in the mRNA expressions of catalase (CAT) and superoxide dismutase 2 (SOD2). Meanwhile, the expressions of major ECM proteins-FN and Col I-increased under high glucose conditions, in consistent with the activation of TGF-β/Smad signaling. By contrast, overexpression of nucleus-localized FoxO1 (insensitive to Akt phosphorylation) directly up-regulated the expressions of anti-oxidative enzymes, accompanied with inactivation of TGF-β/Smad3 pathway, as well as decreases of extracellular matrix proteins. Moreover, similar to those MCs overexpressed of nucleus-localized FoxO1 in high glucose conditions, MCs with down-regulation of FoxO1 by small interference-RNA under normal glucose conditions showed increased FN level and activated TGF-β/Smad3 pathway. Our findings link the anti-oxidative activity of FoxO1 and the TGF-β-induced secretion of ECM proteins, indicating the novel role of FoxO1 in protecting MCs under high glucose conditions.
Collapse
Affiliation(s)
- Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingzhu Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingni Zhou
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Liu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengjuan Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Krishnan P, Purushothaman KR, Purushothaman M, Turnbull IC, Tarricone A, Vasquez M, Jain S, Baber U, Lascano RA, Kini AS, Sharma SK, Moreno PR. Enhanced neointimal fibroblast, myofibroblast content and altered extracellular matrix composition: Implications in the progression of human peripheral artery restenosis. Atherosclerosis 2016; 251:226-233. [PMID: 27399649 DOI: 10.1016/j.atherosclerosis.2016.06.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Neointimal cellular proliferation of fibroblasts and myofibroblasts is documented in coronary artery restenosis, however, their role in peripheral arterial disease (PAD) restenosis remains unclear. Our aim was to investigate the role of fibroblasts, myofibroblasts, and collagens in restenotic PAD. METHODS Nineteen PAD restenotic plaques were compared with 13 de novo plaques. Stellate cells (H&E), fibroblasts (FSP-1), myofibroblasts (α-actin/vimentin/FSP-1), cellular proliferation (Ki-67), and apoptosis (caspase-3 with poly ADP-ribose polymerase) were evaluated by immunofluorescence. Collagens were evaluated by picro-sirius red stain with polarization microscopy. Smooth muscle myosin heavy chain (SMMHC), IL-6 and TGF-β cytokines were analyzed by immunohistochemistry. RESULTS Restenotic plaques demonstrated increased stellate cells (2.7 ± 0.15 vs.1.3 ± 0.15) fibroblasts (2282.2 ± 85.9 vs. 906.4 ± 134.5) and myofibroblasts (18.5 ± 1.2 vs.10.6 ± 1.0) p = 0.0001 for all comparisons. In addition, fibroblast proliferation (18.4% ± 1.2 vs.10.4% ± 1.1; p = 0.04) and apoptosis (14.6% ± 1.3 vs.11.2% ± 0.6; p = 0.03) were increased in restenotic plaques. Finally, SMMHC (2.6 ± 0.12 vs.1.4 ± 0.15; p = 0.0001), type III collagen density (0.33 ± 0.06 vs. 0.17 ± 0.07; p = 0.0001), IL-6 (2.08 ± 1.7 vs.1.03 ± 2.0; p = 0.01), and TGF-β (1.80 ± 0.27 vs. 1.11 ± 0.18; p = 0.05) were increased in restenotic plaques. CONCLUSIONS Our study suggests proliferation and apoptosis of fibroblast and myofibroblast with associated increase in type III collagen may play a role in restenotic plaque progression. Understanding pathways involved in proliferation and apoptosis in neointimal cells, may contribute to future therapeutic interventions for the prevention of restenosis in PAD.
Collapse
Affiliation(s)
- Prakash Krishnan
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K-Raman Purushothaman
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Meerarani Purushothaman
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene C Turnbull
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Tarricone
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Vasquez
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sachin Jain
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Usman Baber
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rheoneil A Lascano
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annapoorna S Kini
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samin K Sharma
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pedro R Moreno
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Wang M, Shah AM. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries. J Mol Cell Cardiol 2015; 83:101-11. [PMID: 25665458 PMCID: PMC4459900 DOI: 10.1016/j.yjmcc.2015.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 01/12/2023]
Abstract
The aging population is increasing dramatically. Aging–associated stress simultaneously drives proinflammatory remodeling, involving angiotensin II and other factors, in both the heart and large arteries. The structural remodeling and functional changes that occur with aging include cardiac and vascular wall stiffening, systolic hypertension and suboptimal ventricular-arterial coupling, features that are often clinically silent and thus termed a silent syndrome. These age-related effects are the result of responses initiated by cardiovascular proinflammatory cells. Local proinflammatory signals are coupled between the heart and arteries due to common mechanical and humoral messengers within a closed circulating system. Thus, targeting proinflammatory signaling molecules would be a promising approach to improve age-associated suboptimal ventricular-arterial coupling, a major predisposing factor for the pathogenesis of clinical cardiovascular events such as heart failure.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Blvd, Baltimore, MD 21224, USA.
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
| |
Collapse
|
15
|
Guo LW, Wang B, Goel SA, Little C, Takayama T, Shi XD, Roenneburg D, DiRenzo D, Kent KC. Halofuginone stimulates adaptive remodeling and preserves re-endothelialization in balloon-injured rat carotid arteries. Circ Cardiovasc Interv 2014; 7:594-601. [PMID: 25074254 DOI: 10.1161/circinterventions.113.001181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Three major processes, constrictive vessel remodeling, intimal hyperplasia (IH), and retarded re-endothelialization, contribute to restenosis after vascular reconstructions. Clinically used drugs inhibit IH but delay re-endothelialization and also cause constrictive remodeling. Here we have examined halofuginone, an herbal derivative, for its beneficial effects on vessel remodeling and differential inhibition of IH versus re-endothelialization. METHODS AND RESULTS Two weeks after perivascular application to balloon-injured rat common carotid arteries, halofuginone versus vehicle (n=6 animals) enlarged luminal area 2.14-fold by increasing vessel size (adaptive remodeling; 123%), reducing IH (74.3%) without inhibiting re-endothelialization. Consistent with its positive effect on vessel expansion, halofuginone reduced collagen type 1 (but not type 3) production in injured arteries as well as that from adventitial fibroblasts in vitro. In support of its differential effects on IH versus re-endothelialization, halofuginone produced greater inhibition of vascular smooth muscle cell versus endothelial cell proliferation at concentrations ≈50 nmol/L. Furthermore, halofuginone at 50 nmol/L effectively blocked Smad3 phosphorylation in smooth muscle cells, which is known to promote smooth muscle cell proliferation, migration, and IH, but halofuginone had no effect on phospho-Smad3 in endothelial cells. CONCLUSIONS Periadventitial delivery of halofuginone dramatically increased lumen patency via adaptive remodeling and selective inhibition of IH without affecting endothelium recovery. Halofuginone is the first reported small molecule that has favorable effects on all 3 major processes involved in restenosis.
Collapse
Affiliation(s)
- Lian-Wang Guo
- From the Department of Surgery, University of Wisconsin, Madison.
| | - Bowen Wang
- From the Department of Surgery, University of Wisconsin, Madison
| | - Shakti A Goel
- From the Department of Surgery, University of Wisconsin, Madison
| | | | - Toshio Takayama
- From the Department of Surgery, University of Wisconsin, Madison
| | - Xu Dong Shi
- From the Department of Surgery, University of Wisconsin, Madison
| | - Drew Roenneburg
- From the Department of Surgery, University of Wisconsin, Madison
| | - Daniel DiRenzo
- From the Department of Surgery, University of Wisconsin, Madison
| | - K Craig Kent
- From the Department of Surgery, University of Wisconsin, Madison
| |
Collapse
|
16
|
Pang L, Wei C, Duan J, Zou H, Cao W, Qi Y, Jia W, Hu J, Zhao W, Jiang J, Liang W, Li F. TGF-β1/Smad signaling, MMP-14, and MSC markers in arterial injury: discovery of the molecular basis of restenosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2915-24. [PMID: 25031710 PMCID: PMC4097273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
Transforming growth factor (TGF)-β1 has been suggested to be involved in the recruitment of mesenchymal stem cells (MSCs) following arterial injury, but the role of downstream signaling and the contribution of the recruited MSCs are still unknown. The release of latent TGF-β1 from latent TGF-binding protein (LTBP) by matrix metallopeptidase-14 (MMP-14) proteolysis was demonstrated, which contributed to neointima formation, but the relationship between MMP-14 and activated TGF-β1 in the process of restenosis has yet to be explored. In this study, we observed the change in expression and distribution of TGF-β1/Smad signaling pathway proteins, MMP-14, and MSC markers in the process of neointima formation using a rat model for balloon-induced carotid artery injury. We found that the increase in downstream Smad signaling was consistent with the elevation of TGF-β1 levels and MSCs accumulated at the lumen side of neointima. Furthermore, the activation of MMP-14 in the injured artery was preceded by the increase in TGF-β1 levels. Herein, we conclude that MMP-14 induces an elevation in the levels of TGF-β1/Smad signaling proteins in injured arteries, and that MSCs are recruited by TGF-β1/Smad signaling and MMP-14, possibly differentiating into vascular smooth muscle cell (VSMC)-like cells and VSMC via modulation of TGF-β1/Smads signaling and MMP-14.
Collapse
Affiliation(s)
- Lijuan Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Cuilei Wei
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Juncang Duan
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Hong Zou
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Weiwei Cao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Yan Qi
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Wei Jia
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Wei Zhao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Jinfang Jiang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Weihua Liang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| | - Feng Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine Shihezi, Xinjiang 832002, China
| |
Collapse
|
17
|
Jia B, Yu ZJ, Duan ZF, Lü XQ, Li JJ, Liu XR, Sun R, Gao XJ, Wang YF, Yan JY, Kan QC. Hyperammonaemia induces hepatic injury with alteration of gene expression profiles. Liver Int 2014; 34:748-58. [PMID: 24134218 DOI: 10.1111/liv.12365] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 10/13/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hyperammonaemia is a serious metabolic disorder commonly observed in patients with hepatic failure. However, it is unknown whether hyperammonaemia has a direct adverse effect on the hepatocytes and thereby serves as both a cause and effect of hepatic failure. AIMS The purposes were to determine whether hepatic injury can be caused by hyperammonaemia, and if so, screen the key genes involved in hyperammonaemia. METHODS Hyperammonaemic rats were established via intragastric administration of the ammonium chloride solution. The liver tissues were assessed via biochemistry, histology, immunohistochemistry and microarray analysis. Selected genes were confirmed by quantitative RT-PCR. RESULTS Administration of the ammonium chloride caused the hyperammonaemia, accompanied with the changes of plasma markers indicating hepatic injury. A pathological assessment demonstrated increased apoptosis and higher level of cyclin D1 and cyclin A in hyperammonaemic rat liver. Microarray was performed on the liver samples and 198 differentially expressed genes were identified in hyperammonaemic rats and validated by quantitative RT-PCR. These genes were associated with many vital functional classes and belonged to different signal transduction pathways. CONCLUSIONS This study demonstrates that hyperammonaemia can directly induce hepatic injury via the hepatocyte apoptosis. Gene expression profile may provide the possible explanations and mechanisms for the hepatic injury induced by hyperammonaemia.
Collapse
Affiliation(s)
- Bin Jia
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lin S, Ma S, Lu P, Cai W, Chen Y, Sheng J. Effect of CTRP3 on activation of adventitial fibroblasts induced by TGF-β1 from rat aorta in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2199-2208. [PMID: 24966928 PMCID: PMC4069903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
CTRP3, discovered as novel adipokines, is a member of the C1q tumor necrosis factor (TNF) related protein (CTRP) super-family. CTRP3 is found to function as adipokines that display diverse biological activities in metabolic and cardiovascular diseases. Recent study demonstrated that CTRP3 was protective against pathological cardiac remodeling in mice. Nevertheless, the effect of CTRP3 on vascular remodeling remains undefined. Our present study aimed to explore the effects of adipokine CTRP3 on the activation of adventitial fibroblasts (AFs) induced by TGF-β1. Immunofluorescent staining, real-time PCR and Western blot were conducted to evaluate the expression of α-smooth muscle-actin (α-SMA) and collagen I. The expression of CTGF was evaluated by enzymelinked immunosorbent assay (ELISA), while the proliferation and migration of adventitial fibroblasts were detected by using cell counting kit-8 (CCK-8) assay and Transwell technique, respectively. Functional analysis showed that CTRP3 inhibited TGF-β1 inducing AFs phenotypic conversion, collagen synthesis, proliferation and migration. The secretion of CTGF was also inhibited by CTRP3. Our findings suggest that CTRP3 may be beneficial to the prevention of cardiovascular diseases and provide a promising therapeutic strategy to attenuate vascular remodeling.
Collapse
Affiliation(s)
- Shaohui Lin
- Department of Geriatrics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Shaojun Ma
- Department of Geriatrics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Ping Lu
- Department of Geriatrics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Wenwei Cai
- Department of Geriatrics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yi Chen
- Department of Geriatrics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Jing Sheng
- Department of Geriatrics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
19
|
Abdulkareem N, Skroblin P, Jahangiri M, Mayr M. Proteomics in aortic aneurysm - What have we learnt so far? Proteomics Clin Appl 2013; 7:504-15. [DOI: 10.1002/prca.201300016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/07/2013] [Accepted: 02/25/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Nada Abdulkareem
- Department of Cardiothoracic Surgery; St. George's Hospital University of London; London UK
| | - Philipp Skroblin
- King's British Heart Foundation Centre; King's College London; London UK
| | - Marjan Jahangiri
- Department of Cardiothoracic Surgery; St. George's Hospital University of London; London UK
| | - Manuel Mayr
- King's British Heart Foundation Centre; King's College London; London UK
| |
Collapse
|