1
|
The Emerging Scenario of the Gut-Brain Axis: The Therapeutic Actions of the New Actor Kefir against Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10111845. [PMID: 34829716 PMCID: PMC8614795 DOI: 10.3390/antiox10111845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The fact that millions of people worldwide suffer from Alzheimer’s disease (AD) or Parkinson’s disease (PD), the two most prevalent neurodegenerative diseases (NDs), has been a permanent challenge to science. New tools were developed over the past two decades and were immediately incorporated into routines in many laboratories, but the most valuable scientific contribution was the “waking up” of the gut microbiota. Disturbances in the gut microbiota, such as an imbalance in the beneficial/pathogenic effects and a decrease in diversity, can result in the passage of undesired chemicals and cells to the systemic circulation. Recently, the potential effect of probiotics on restoring/preserving the microbiota was also evaluated regarding important metabolite and vitamin production, pathogen exclusion, immune system maturation, and intestinal mucosal barrier integrity. Therefore, the focus of the present review is to discuss the available data and conclude what has been accomplished over the past two decades. This perspective fosters program development of the next steps that are necessary to obtain confirmation through clinical trials on the magnitude of the effects of kefir in large samples.
Collapse
|
2
|
Hong MH, Jin XJ, Yoon JJ, Lee YJ, Oh HC, Lee HS, Kim HY, Kang DG. Antihypertensive Effects of Gynura divaricata (L.) DC in Rats with Renovascular Hypertension. Nutrients 2020; 12:E3321. [PMID: 33138042 PMCID: PMC7692656 DOI: 10.3390/nu12113321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Gynura divaricata (L.) DC (Compositae) (GD) could be found in various parts of Asia. It has been used as a traditional medicine to treat diabetes, high blood pressure, and other diseases, but its effects have not yet been scientifically confirmed. Therefore, we aimed at determining whether GD could affect renal function regulation, blood pressure, and the renin-angiotensin-aldosterone system (RAAS). Cardio-renal syndrome (CRS) is a disease caused by the interaction between the kidney and the cardiovascular system, where the acute or chronic dysfunction in one organ might induce acute or chronic dysfunction of the other. This study investigated whether GD could improve cardio-renal mutual in CRS type 4 model animals, two-kidney one-clip (2K1C) renal hypertensive rats. The experiments were performed on the following six experimental groups: control rats (CONT); 2K1C rats (negative control); OMT (Olmetec, 10 mg/kg/day)-treated 2K1C rats (positive control); and 2K1C rats treated with GD extracts in three different doses (50, 100, and 200 mg/kg/day) for three weeks by oral intake. Each group consisted of 10 rats. We measured the systolic blood pressure weekly using the tail-cuff method. Urine was also individually collected from the metabolic cage to investigate the effect of GD on the kidney function, monitoring urine volume, electrolyte, osmotic pressure, and creatinine levels from the collected urine. We observed that kidney weight and urine volume, which would both display typically increased values in non-treated 2K1C animals, significantly decreased following the GD treatment (###p < 0.001 vs. 2K1C). Osmolality and electrolytes were measured in the urine to determine how renal excretory function, which is reduced in 2K1C rats, could be affected. We found that the GD treatment improved renal excretory function. Moreover, using periodic acid-Schiff staining, we confirmed that the GD treatment significantly reduced fibrosis, which is typically increased in 2K1C rats. Thus, we confirmed that the GD treatment improved kidney function in 2K1C rats. Meanwhile, we conducted blood pressure and vascular relaxation studies to determine if the GD treatment could improve cardiovascular function in 2K1C rats. The heart weight percentages of the left atrium and ventricle were significantly lower in GD-treated 2K1C rats than in non-treated 2K1C rats. These results showed that GD treatment reduced cardiac hypertrophy in 2K1C rats. Furthermore, the acetylcholine-, sodium nitroprusside-, and atrial natriuretic peptide-mediated reduction of vasodilation in 2K1C rat aortic rings was also ameliorated by GD treatment (GD 200 mg/kg/day; p < 0.01, p < 0.05, and p < 0.05 vs. 2K1C for vasodilation percentage in case of each compound). The mRNA expression in the 2K1C rat heart tissue showed that the GD treatment reduced brain-type natriuretic peptide and troponin T levels (p < 0.001 and p < 0.001 vs. 2K1C). In conclusion, this study showed that GD improved the cardiovascular and renal dysfunction observed in an innovative hypertension model, highlighting the potential of GD as a therapeutic agent for hypertension. These findings indicate that GD shows beneficial effects against high blood pressure by modulating the RAAS in the cardio-renal syndrome. Thus, it should be considered an effective traditional medicine in hypertension treatment.
Collapse
Affiliation(s)
- Mi Hyeon Hong
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Xian Jun Jin
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
| | - Jung Joo Yoon
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Yun Jung Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Hyun Cheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea;
| | - Ho Sub Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Hye Yoom Kim
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Dae Gill Kang
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (M.H.H.); (X.J.J.); (J.J.Y.); (Y.J.L.); (H.S.L.)
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| |
Collapse
|
3
|
Gao J, Denys I, Shahien A, Sutphen J, Kapusta DR. Downregulation of Brain Gα12 Attenuates Angiotensin II-Dependent Hypertension. Am J Hypertens 2020; 33:198-204. [PMID: 31677381 DOI: 10.1093/ajh/hpz176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Angiotensin II (Ang II) activates central Angiotensin II type 1 receptors to increase blood pressure via multiple pathways. However, whether central Gα proteins contribute to Ang II-induced hypertension remains unknown. We hypothesized that Angiotensin II type 1 receptors couple with Gα12 and/or Gαq to produce sympatho-excitation and increase blood pressure and downregulation of these Gα-subunit proteins will attenuate Ang II-dependent hypertension. METHODS AND RESULTS After chronic infusion of Ang II (s.c. 350 ng/kg/min) or vehicle for 2 weeks, Ang II evoked an increase in Gα12 expression, but not Gαq in the rostral ventrolateral medulla of Sprague-Dawley rats. In other studies, rats that received Ang II or vehicle infusion s.c. were simultaneously infused i.c.v. with a scrambled (SCR) or Gα12 oligodeoxynucleotide (ODN; 50 µg/day). Central Gα12 ODN infusion lowered mean blood pressure in Ang II infused rats compared with SCR ODN infusion (14-day peak; 133 ± 12 vs. 176 ± 11 mm Hg). Compared to the SCR ODN group, Ang II infused rats that received i.c.v. Gα12 ODN showed a greater increase in heart rate to atropine, an attenuated reduction in blood pressure to chlorisondamine, and an improved baroreflex sensitivity. In addition, central Gα12 and Gαq ODN pretreatment blunted the pressor response to an acute i.c.v. injection of Ang II (i.c.v., 200 ng). CONCLUSIONS These findings suggest that central Gα12 protein signaling pathways play an important role in the development of chronic Ang II-dependent hypertension in rats.
Collapse
Affiliation(s)
- Juan Gao
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Ian Denys
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Amir Shahien
- Department of Orthopedics, Boston Medical Center, Boston, MA
| | - Jane Sutphen
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Daniel R Kapusta
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
4
|
Brouillard C, Carrive P, Camus F, Bénoliel JJ, Sévoz-Couche C. Vulnerability to stress consequences induced by repeated social defeat in rats: Contribution of the angiotensin II type 1 receptor in cardiovascular alterations associated to low brain derived neurotrophic factor. Eur J Pharmacol 2019; 861:172595. [DOI: 10.1016/j.ejphar.2019.172595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023]
|
5
|
Rostamzadeh F, Najafipour H, Yeganeh-Hajahmadi M, Joukar S. Opioid receptors mediate inotropic and depressor effects of apelin in rats with 2K1C-induced chronic renovascular hypertension. Clin Exp Pharmacol Physiol 2017; 45:187-197. [PMID: 28945940 DOI: 10.1111/1440-1681.12860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
Apelin receptors (APJ) cross-talk with other G-protein-coupled receptors. However, the role of APJ interaction with opioid receptors (OPR) on the cardiovascular effects of apelin in hypertension is not clear. Renovascular hypertension was induced by placing a Plexiglas clip on the left kidney of rats. After 16 weeks, F13A (an APJ antagonist), naloxone (a general OPR inhibitor), and nor-binaltorphimine dihydrochloride (nor-BNI; a selective inhibitor of KOR) were given prior to injections of apelin at doses of 40 and 60 μg/kg. The arterial systolic/diastolic blood pressure and left ventricular contractility responses were then evaluated. The arterial systolic/diastolic blood pressure in sham and 2K1C rats was 110/71 mm Hg and 171/124 mm Hg, respectively. The hypotensive effects of apelin at both doses were inhibited by F13A and naloxone. Nor-BNI completely inhibited the effects of apelin 40 on arterial pressure, and decreased the effects of 60 μg/kg. KOR inhibition also prevented the compensation for the decrease in the left ventricle +dp/dt max and -dp/dt max caused by apelin 60. The simultaneous inhibition of OPR and APJ reduced arterial pressure and increased cardiac contractility. Findings showed that the OPR, particularly KOR, mediate the inotropic, lusitropic, and depressor effects of apelin. The interaction of the OPR and APJ augments the inotropic and vasodepressor effects of apelin. This interaction may have potential clinical applications in cardiac failure since opioids are currently used in the treatment of myocardial infarction and stroke, and apelin has been introduced as a potential therapeutic agent in cardiovascular complications.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboobeh Yeganeh-Hajahmadi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology and pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Neto OB, de Sordi CC, da Mota GR, Marocolo M, Chriguer RS, da Silva VJD. Exercise training improves hypertension-induced autonomic dysfunction without influencing properties of peripheral cardiac vagus nerve. Auton Neurosci 2017; 208:66-72. [PMID: 28964689 DOI: 10.1016/j.autneu.2017.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/10/2023]
Abstract
We examined the vagal transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained Spontaneously Hypertensive Rats (SHR). To this end, male SHR and Wystar-Kyoto (WKY) rats with 48-50weeks of age-old were divided into 4 groups: sedentary (SHRS, n=12) and trained (SHRT, n=14) hypertensive rats, sedentary (WKYS, n=13) and trained (WKYT, n=13) normotensive rats. The trained groups were submitted to swimming protocol for 9weeks. Blood pressure (BP), HR, HR variability (HRV), BP variability (BPV), baroreflex sensitivity and cardiac tonus were recorded in baseline conditions. Following, electric stimulation of peripheral vagus nerve was performed in anesthetized conditions. Resting bradycardia was observed in SHRT and WKYT when compared to their respective sedentary groups (p<0.001). The BP was lower in SHRT than in SHRS (p<0.001). The SHRT and WKYT rats showed higher baroreflex-mediated tachycardia values when compared to their respective sedentary counterparts (p<0.001). Baroreflex bradycardic response in SHRT was higher than in SHRS (p<0.005). The SHRT and WKYT rats showed a decreased sympathetic activity in comparison to their respective sedentary groups (p<0.05). The cardiac vagal tonus was higher in SHRT than in SHRS (p<0.05). Regarding the dynamic transducer properties of peripheral vagus nerve to the heart no difference was observed among the groups. In conclusion, our results demonstrate that exercise training decreased BP in SHR and improved cardiovascular autonomic balance to the heart without changes in transduction properties of peripheral cardiac vagus nerve.
Collapse
Affiliation(s)
- Octávio Barbosa Neto
- Human Performance and Sport Research Group, Department of Sport Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil; Department of Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil.
| | - Carla Cristina de Sordi
- Department of Endocrinology and Metabolism, Postgraduate Course on Health Science, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Gustavo Ribeiro da Mota
- Human Performance and Sport Research Group, Department of Sport Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Moacir Marocolo
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Valdo José Dias da Silva
- Department of Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
7
|
Sartori M, Conti FF, Dias DDS, Dos Santos F, Machi JF, Palomino Z, Casarini DE, Rodrigues B, De Angelis K, Irigoyen MC. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice. Front Physiol 2017; 8:572. [PMID: 28878683 PMCID: PMC5572327 DOI: 10.3389/fphys.2017.00572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice. Methods: Metabolic parameters, cardiac function, arterial pressure (AP), autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group) and ob/ob mice (OB group). Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF) and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress. Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals.
Collapse
Affiliation(s)
- Michelle Sartori
- Hypertension Unit, Heart Institute (InCor), Faculdade de Medicina da Universidade de São PauloSão Paulo, Brazil
| | - Filipe F Conti
- Translational Physiology Laboratory, Universidade Nove de JulhoSão Paulo, Brazil
| | | | - Fernando Dos Santos
- Hypertension Unit, Heart Institute (InCor), Faculdade de Medicina da Universidade de São PauloSão Paulo, Brazil
| | - Jacqueline F Machi
- Department of Integrative Immunological Cardiovascular Research, Institute for Neuro-Immune Medicine, Nova Southeastern UniversityFort Lauderdale, FL, United States
| | - Zaira Palomino
- Nephrology Division, Department of Medicine, Universidade Federal de São PauloSão Paulo, Brazil
| | - Dulce E Casarini
- Nephrology Division, Department of Medicine, Universidade Federal de São PauloSão Paulo, Brazil
| | - Bruno Rodrigues
- Department of Adapted Physical Activity, Faculty of Physical Education, Universidade Estadual de CampinasCampinas, Brazil
| | - Kátia De Angelis
- Translational Physiology Laboratory, Universidade Nove de JulhoSão Paulo, Brazil
| | - Maria-Claudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), Faculdade de Medicina da Universidade de São PauloSão Paulo, Brazil
| |
Collapse
|
8
|
Dai X, Huang S, He Z, Wu F, Ding R, Chen Y, Liang C, Wu Z. Dysfunction of the thymus in mice with hypertension. Exp Ther Med 2017; 13:1386-1392. [PMID: 28413482 PMCID: PMC5377285 DOI: 10.3892/etm.2017.4125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to evaluate thymus function in mice with hypertension. A total of 60 C57BL/6J mice were randomized into control, sham surgery and two-kidney, one-clip groups (n=20 in each). At 4 or 8 weeks after surgery, mice were sacrificed, and blood, spleens, kidneys and thymuses were harvested. The results of reverse transcription-quantitative polymerase chain reaction analysis revealed that the mRNA levels of Forkhead box protein N1 (Foxn1) and autoimmune regulator (AIRE) in the thymus tissue of mice from the HTN group were significantly lower than those from the control group at 4 and 8 weeks (P<0.05). Foxn1 and AIRE expression was also reduced in the sham surgery group at 4 weeks after surgery, but had recovered 4 weeks later. Similar results were observed for the expression of signal-joint T cell receptor excision circles and the percentages of T cell subsets. The present study indicates that impaired thymus function is associated with hypertension in mice, which suggests that thymus function may be a novel target for the treatment of patients with hypertension.
Collapse
Affiliation(s)
- Xianliang Dai
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Shuaibo Huang
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Zhiqing He
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Feng Wu
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Ru Ding
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Yihong Chen
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
9
|
Klippel BF, Duemke LB, Leal MA, Friques AGF, Dantas EM, Dalvi RF, Gava AL, Pereira TMC, Andrade TU, Meyrelles SS, Campagnaro BP, Vasquez EC. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats. Front Physiol 2016; 7:211. [PMID: 27375490 PMCID: PMC4895057 DOI: 10.3389/fphys.2016.00211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/22/2016] [Indexed: 11/21/2022] Open
Abstract
Aims: It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. Methods: SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1−adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Results: Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1.6- and ~1.5-fold, respectively. Spectral analysis also showed an impairment of spontaneous BRS in SHR, but kefir-treatment caused only a tendency to reverse this result. Conclusions: The novelty of this study is that daily chronic consumption of a low dose of kefir reduced the impairment of the cardiac autonomic control of HR and of the impaired BRS in SHR.
Collapse
Affiliation(s)
- Brunella F Klippel
- Laboratory of Translational Physiology, Federal University of Espirito Santo Vitoria, Brazil
| | - Licia B Duemke
- Pharmaceutical Sciences Graduate Program, Vila Velha University Vila Velha, Brazil
| | - Marcos A Leal
- Laboratory of Translational Physiology, Federal University of Espirito Santo Vitoria, Brazil
| | - Andreia G F Friques
- Pharmaceutical Sciences Graduate Program, Vila Velha University Vila Velha, Brazil
| | - Eduardo M Dantas
- Department of Physiology, Federal University of Vale Sao Francisco Petrolina, Brazil
| | - Rodolfo F Dalvi
- Department of Biochemistry, Institute of Education, Science and Technology Vila Velha, Brazil
| | - Agata L Gava
- Laboratory of Translational Physiology, Federal University of Espirito Santo Vitoria, Brazil
| | - Thiago M C Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha UniversityVila Velha, Brazil; Department of Biochemistry, Institute of Education, Science and TechnologyVila Velha, Brazil
| | - Tadeu U Andrade
- Pharmaceutical Sciences Graduate Program, Vila Velha University Vila Velha, Brazil
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Federal University of Espirito Santo Vitoria, Brazil
| | - Bianca P Campagnaro
- Pharmaceutical Sciences Graduate Program, Vila Velha University Vila Velha, Brazil
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Federal University of Espirito SantoVitoria, Brazil; Pharmaceutical Sciences Graduate Program, Vila Velha UniversityVila Velha, Brazil
| |
Collapse
|
10
|
Cavalcanti CDO, Alves RR, de Oliveira AL, Cruz JDC, de França-Silva MDS, Braga VDA, Balarini CDM. Inhibition of PDE5 Restores Depressed Baroreflex Sensitivity in Renovascular Hypertensive Rats. Front Physiol 2016; 7:15. [PMID: 26858657 PMCID: PMC4729906 DOI: 10.3389/fphys.2016.00015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/11/2016] [Indexed: 01/05/2023] Open
Abstract
Renal artery stenosis is frequently associated with resistant hypertension, which is defined as failure to normalize blood pressure (BP) even when combined drugs are used. Inhibition of PDE5 by sildenafil has been shown to increase endothelial function and decrease blood pressure in experimental models. However, no available study evaluated the baroreflex sensitivity nor autonomic balance in renovascular hypertensive rats treated with sildenafil. In a translational medicine perspective, our hypothesis is that sildenafil could improve autonomic imbalance and baroreflex sensitivity, contributing to lower blood pressure. Renovascular hypertensive 2-kidney-1-clip (2K1C) and sham rats were treated with sildenafil (45 mg/Kg/day) during 7 days. At the end of treatment, BP and heart rate (HR) were recorded in conscious rats after a 24-h-recovery period. Spontaneous and drug-induced baroreflex sensitivity and autonomic tone were evaluated; in addition, lipid peroxidation was measured in plasma samples. Treatment was efficient in increasing both spontaneous and induced baroreflex sensitivity in treated hypertensive animals. Inhibition of PDE5 was also capable of ameliorating autonomic imbalance in 2K1C rats and decreasing systemic oxidative stress. Taken together, these beneficial effects resulted in significant reductions in BP without affecting HR. We suggest that sildenafil could be considered as a promising alternative to treat resistant hypertension.
Collapse
Affiliation(s)
| | - Rafael R Alves
- Centro de Ciências Médicas, Universidade Federal da ParaíbaJoao Pessoa, Brazil; Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoao Pessoa, Brazil
| | - Alessandro L de Oliveira
- Centro de Ciências Médicas, Universidade Federal da ParaíbaJoao Pessoa, Brazil; Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoao Pessoa, Brazil
| | | | | | | | - Camille de Moura Balarini
- Centro de Biotecnologia, Universidade Federal da ParaíbaJoao Pessoa, Brazil; Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoao Pessoa, Brazil
| |
Collapse
|
11
|
Dias AT, Cintra AS, Frossard JC, Palomino Z, Casarini DE, Gomes IBS, Balarini CM, Gava AL, Campagnaro BP, Pereira TMC, Meyrelles SS, Vasquez EC. Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension. J Transl Med 2014; 12:250. [PMID: 25223948 PMCID: PMC4172908 DOI: 10.1186/s12967-014-0250-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/30/2014] [Indexed: 01/25/2023] Open
Abstract
Background The clipping of an artery supplying one of the two kidneys (2K1C) activates the renin-angiotensin (Ang) system (RAS), resulting in hypertension and endothelial dysfunction. Recently, we demonstrated the intrarenal beneficial effects of sildenafil on the high levels of Ang II and reactive oxygen species (ROS) and on high blood pressure (BP) in 2K1C mice. Thus, in the present study, we tested the hypothesis that sildenafil improves endothelial function in hypertensive 2K1C mice by improving the NO/ROS balance. Methods 2K1C hypertension was induced in C57BL/6 mice. Two weeks later, they were treated with sildenafil (40 mg/kg/day, via oral) or vehicle for 2 weeks and compared with sham mice. At the end of the treatment, the levels of plasma and intrarenal Ang peptides were measured. Endothelial function and ROS production were assessed in mesenteric arterial bed (MAB). Results The 2K1C mice exhibited normal plasma levels of Ang I, II and 1–7, whereas the intrarenal Ang I and II were increased (~35% and ~140%) compared with the Sham mice. Sildenafil normalized the intrarenal Ang I and II and increased the plasma (~45%) and intrarenal (+15%) Ang 1–7. The 2K1C mice exhibited endothelial dysfunction, primarily due to increased ROS and decreased NO productions by endothelial cells, which were ameliorated by treatment with sildenafil. Conclusion These data suggest that the effects of sildenafil on endothelial dysfunction in 2K1C mice may be due to interaction with RAS and restoring NO/ROS balance in the endothelial cells from MAB. Thus, sildenafil is a promising candidate drug for the treatment of hypertension accompanied by endothelial dysfunction and kidney disease.
Collapse
|
12
|
Dias AT, Rodrigues BP, Porto ML, Gava AL, Balarini CM, Freitas FPS, Palomino Z, Casarini DE, Campagnaro BP, Pereira TMC, Meyrelles SS, Vasquez EC. Sildenafil ameliorates oxidative stress and DNA damage in the stenotic kidneys in mice with renovascular hypertension. J Transl Med 2014; 12:35. [PMID: 24502628 PMCID: PMC3922021 DOI: 10.1186/1479-5876-12-35] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/04/2014] [Indexed: 12/01/2022] Open
Abstract
Background Oxidative stress and DNA damage have been implicated in the pathogenesis of renovascular hypertension induced by renal artery stenosis in the two-kidney, one-clip (2K1C) Goldblatt model. Considering our previous report indicating that the chronic blockade of phosphodiesterase 5 with sildenafil (Viagra®) has marked beneficial effects on oxidative stress and DNA damage, we tested the hypothesis that sildenafil could also protect the stenotic kidneys of 2K1C hypertensive mice against oxidative stress and genotoxicity. Methods The experiments were performed with C57BL6 mice subjected to renovascular hypertension by left renal artery clipping. Two weeks after clipping, the mice were treated with sildenafil (40 mg/kg/day for 2 weeks, 2K1C-sildenafil group) or the vehicle (2K1C). These mice were compared with control mice not subjected to renal artery clipping (Sham). After hemodynamic measurements, the stenotic kidneys were assessed using flow cytometry to evaluate cell viability and the comet assay to evaluate DNA damage. Measurements of intracellular superoxide anions and hydrogen peroxide levels as well as nitric oxide bioavailability were also obtained. Results Sildenafil treatment significantly reduced mean arterial pressure (15%), heart rate (8%), intrarenal angiotensin II (50%) and renal atrophy (36%). In addition, it caused a remarkable decrease of reactive oxygen species production. On the other hand, sildenafil increased nitric oxide levels relative to those in the nontreated 2K1C mice. Sildenafil treatment also significantly reduced the high level of kidney DNA damage that is a characteristic of renovascular hypertensive mice. Conclusions Our data reveal that sildenafil has a protective effect on the stenotic kidneys of 2K1C mice, suggesting a new use of phosphodiesterase 5 inhibitors for protection against the DNA damage observed in the hypoperfused kidneys of individuals with renovascular hypertension. Further translational research is necessary to delineate the mechanisms involved in the prevention of renal stenosis in the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
13
|
Rodrigues BP, Campagnaro BP, Balarini CM, Pereira TMC, Meyrelles SS, Vasquez EC. Sildenafil ameliorates biomarkers of genotoxicity in an experimental model of spontaneous atherosclerosis. Lipids Health Dis 2013; 12:128. [PMID: 23981672 PMCID: PMC3766097 DOI: 10.1186/1476-511x-12-128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is well known that enhanced production of reactive oxygen species (ROS) leads to oxidative stress observed in atherosclerosis and that ROS can also cause damage in cellular macromolecules, including DNA. Considering previous report that sildenafil, an inhibitor of phosphodiesterase 5 (PDE5), has antioxidant effects, in the present study we evaluated the effect of this drug on genotoxicity of blood mononuclear cells (MNC) and liver cells from atherosclerotic apolipoprotein E knockout mice (apoE(-/-)). METHODS ROS production in MNC was evaluated by flow cytometry with the fluorescent dye dihydroethidium (DHE), a method that has been used to quantify the production of superoxide anion, and DNA damage was evaluated in both MNC and liver cells using the alkaline comet assay. Sildenafil-administered apoE(-/-) mice were compared with strain-matched mice administered with vehicle and with C57BL/6 wild-type (WT) mice. RESULTS MNC from apoE(-/-) vehicle exhibited a 2-fold increase in production of superoxide anion in comparison with WT. In contrast, sildenafil-administered apoE(-/-) mice showed superoxide anion levels similar to those observed in WT mice. Similarly, MNC and liver cells from apoE(-/-) vehicle mice showed a 4-fold and 2-fold augmented DNA fragmentation compared with WT, respectively, and sildenafil-administered apoE(-/-) mice exhibited minimal DNA damage in those cells similar to WT mice. CONCLUSIONS ApoE(-/-) mice chronically administered with sildenafil exhibited reduced levels of superoxide anion in MNC and less DNA fragmentation in MNC and liver cells, which are biomarkers of genotoxicity. Therefore, sildenafil may offer a new perspective to the use of PDE5 inhibitors to protect against DNA damage, in cells involved in the inflammatory and dyslipidemic processes that accompany atherosclerosis.
Collapse
Affiliation(s)
- Bianca P Rodrigues
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
- Pharmaceutical Sciences Graduate Program, University of Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Camille M Balarini
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Thiago M C Pereira
- Pharmaceutical Sciences Graduate Program, University of Vila Velha (UVV), Vila Velha, ES, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
- Pharmaceutical Sciences Graduate Program, University of Vila Velha (UVV), Vila Velha, ES, Brazil
- Emescam School of Health Sciences, Vitoria, Brazil
| |
Collapse
|
14
|
Campagnaro BP, Tonini CL, Doche LM, Nogueira BV, Vasquez EC, Meyrelles SS. Renovascular hypertension leads to DNA damage and apoptosis in bone marrow cells. DNA Cell Biol 2013; 32:458-66. [PMID: 23786322 DOI: 10.1089/dna.2013.2065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Angiotensin II (Ang II), which plays a pivotal role in the pathophysiology of the two-kidney, one-clip (2K1C) Goldblatt hypertension, has been associated with augmented generation of reactive oxygen species (ROS) in some cells and tissues. In the present study, we evaluated the influence of 2K1C hypertension on oxidative stress, DNA fragmentation, and apoptosis of bone marrow (BM) cells. Two weeks after the renal artery clipping or Sham operation, flow cytometry analysis showed a higher production of superoxide anions (approximately sixfold) and hydrogen peroxide (approximately twofold) in 2K1C hypertensive than in Sham normotensive mice. 2K1C mice also showed an augmented DNA fragmentation (54%) and apoptotic cells (21%). Our data show that the 2K1C renovascular hypertension is characterized by an increased production of ROS, DNA damage, and apoptosis of BM, which is a fundamental source of the cells involved in tissue repair.
Collapse
Affiliation(s)
- Bianca P Campagnaro
- Laboratory of Transgenes, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Mendes-Junior LDG, Monteiro MMDO, Carvalho ADS, de Queiroz TM, Braga VDA. Oral supplementation with the rutin improves cardiovagal baroreflex sensitivity and vascular reactivity in hypertensive rats. Appl Physiol Nutr Metab 2013; 38:1099-106. [PMID: 24053516 DOI: 10.1139/apnm-2013-0091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothesis that oral supplementation with the flavonoid rutin improves baroreflex sensitivity and vascular reactivity in hypertensive (2-kidney-1-clip (2K1C)) rats was tested. Sixty-four rats were divided in 4 groups: sham + saline; sham + rutin; 2K1C + saline, and 2K1C + rutin. Six weeks after 2K1C surgery, the animals were treated with saline or rutin (40 mg·kg(-1)·day(-1)) by gavage for 7 days. Baroreflex sensitivity test using phenylephrine (8 μg·kg(-1), iv) and sodium nitroprusside (25 μg·kg(-1), iv), vascular reactivity, and thiobarbituric acid reactive substances assay were performed. Baroreflex sensitivity in hypertensive rats was impaired and compared with sham (-2.77 ± 0.15 vs. -1.53 ± 0.27 beats·min(-1)·mm Hg(-1); n = 8; p < 0.05). Oral supplementation with rutin restored baroreflex sensitivity in 2K1C rats (-2.40 ± 0.24 vs. -2.77 ± 0.15 beats·min(-1)·mm Hg(-1); n = 8; p > 0.05). Besides, hypertensive rats have greater contraction to phenylephrine (129.49% ± 4.46% vs. 99.50% ± 11.36%; n = 8; p < 0.05), which was restored by rutin (99.10% ± 1.77% vs. 99.50% ± 11.36%; n = 8; p > 0.05). Furthermore, vasorelaxation to acetylcholine was diminished in hypertensive rats (96.42% ± 2.80% vs. 119.35% ± 5.60%; n = 8; p < 0.05), which was also restored by rutin (117.55% ± 6.94% vs. 119.35% ± 5.60%; n = 8; p > 0.05). Finally, oxidative stress was greater in hypertensive rats (1.54 ± 0.12 vs. 0.53 ± 0.12 nmol MDA·mL(-1); n = 8; p < 0.05) and rutin supplementation significantly decreased oxidative stress in those animals (0.70 ± 0.13 vs. 1.54 ± 0.12 nmol MDA·mL(-1); n = 8; p < 0.05). We concluded that oral supplementation with rutin restores impaired baroreflex sensitivity and vascular reactivity in hypertensive rats by decreasing oxidative stress.
Collapse
|
16
|
DNA damage and augmented oxidative stress in bone marrow mononuclear cells from Angiotensin-dependent hypertensive mice. Int J Hypertens 2013; 2013:305202. [PMID: 23476745 PMCID: PMC3586517 DOI: 10.1155/2013/305202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/16/2013] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that the nonhemodynamic effects of angiotensin II are important for the damage observed in the two-kidney, one-clip (2K1C) renovascular hypertension model. Much evidence confirms that angiotensin II is directly involved in NAD(P)H oxidase activation and consequent superoxide anion production, which can damage DNA. The current study was performed to examine the effects of angiotensin-II-dependent hypertension in bone marrow mononuclear cells (BM-MNC); dihydroethidium staining was used to assess reactive oxygen species (ROS) production, and the comet assay was used to assess DNA fragmentation in 2K1C hypertensive mice 14 days after renal artery clipping. In this study we demonstrated that 2K1C hypertensive mice have an elevated lymphocyte count, while undifferentiated BM-MNC counts were diminished. 2K1C mice also showed an augmented ROS production and marked BM-MNC DNA fragmentation. In conclusion, endogenous renin angiotensin system activation-induced arterial hypertension is characterized by excessive ROS production in BM-MNC, which might cause marked DNA damage.
Collapse
|
17
|
Effects of Aging and Hypercholesterolemia on Oxidative Stress and DNA Damage in Bone Marrow Mononuclear Cells in Apolipoprotein E-deficient Mice. Int J Mol Sci 2013; 14:3325-42. [PMID: 23385237 PMCID: PMC3588046 DOI: 10.3390/ijms14023325] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/10/2013] [Accepted: 01/29/2013] [Indexed: 01/01/2023] Open
Abstract
Recent evidence from apolipoprotein E-deficient (apoE−/−) mice shows that aging and atherosclerosis are closely associated with increased oxidative stress and DNA damage in some cells and tissues. However, bone marrow cells, which are physiologically involved in tissue repair have not yet been investigated. In the present study, we evaluated the influence of aging and hypercholesterolemia on oxidative stress, DNA damage and apoptosis in bone marrow cells from young and aged apoE−/− mice compared with age-matched wild-type C57BL/6 (C57) mice, using the comet assay and flow cytometry. The production of both superoxide and hydrogen peroxide in bone marrow cells was higher in young apoE−/− mice than in age-matched C57 mice, and reactive oxygen species were increased in aged C57 and apoE−/− mice. Similar results were observed when we analyzed the DNA damage and apoptosis. Our data showed that both aging and hypercholesterolemia induce the increased production of oxidative stress and consequently DNA damage and apoptosis in bone marrow cells. This study is the first to demonstrate a functionality decrease of the bone marrow, which is a fundamental extra-arterial source of the cells involved in vascular injury repair.
Collapse
|