1
|
Soenjaya Y, Foster BL, Nociti FH, Ao M, Holdsworth DW, Hunter GK, Somerman MJ, Goldberg HA. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice. J Dent Res 2015; 94:1276-85. [PMID: 26130257 DOI: 10.1177/0022034515592581] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp(-/-)) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp(-/-) mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp(-/-) mice. This hypothesis was tested by comparing Bsp(-/-) and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro-computed tomography. By 8 wk of age, Bsp(-/-) mice exhibited molar and incisor malocclusion regardless of diet. Bsp(-/-) mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp(-/-) mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp(-/-) mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp(-/-) mice. Bsp(-/-) incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP in maintaining proper periodontal function and alveolar bone remodeling and point to dental dysfunction as causative factor of skeletal defects observed in Bsp(-/-) mice.
Collapse
Affiliation(s)
- Y Soenjaya
- Biomedical Engineering Program, University of Western Ontario, London, Canada School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - B L Foster
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - F H Nociti
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry, Campinas State University, Piracicaba, Brazil
| | - M Ao
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D W Holdsworth
- Biomedical Engineering Program, University of Western Ontario, London, Canada School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Canada
| | - G K Hunter
- Biomedical Engineering Program, University of Western Ontario, London, Canada School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada Deparment of Biochemistry, University of Western Ontario, London, Canada
| | - M J Somerman
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H A Goldberg
- Biomedical Engineering Program, University of Western Ontario, London, Canada School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada Deparment of Biochemistry, University of Western Ontario, London, Canada
| |
Collapse
|
2
|
Hu JCC, Hu Y, Lu Y, Smith CE, Lertlam R, Wright JT, Suggs C, McKee MD, Beniash E, Kabir ME, Simmer JP. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PLoS One 2014; 9:e89303. [PMID: 24603688 PMCID: PMC3945975 DOI: 10.1371/journal.pone.0089303] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/17/2014] [Indexed: 12/29/2022] Open
Abstract
Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam−/− mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam−/− mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam−/− background did not fully recover enamel formation while a medium expresser in the Enam+/− background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation.
Collapse
Affiliation(s)
- Jan C.-C. Hu
- Dental Research Laboratory, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Yuanyuan Hu
- Dental Research Laboratory, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Yuhe Lu
- Dental Research Laboratory, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Charles E. Smith
- Dental Research Laboratory, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- Facility for Electron Microscopy Research, Department of Anatomy and Cell Biology, and Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Rangsiyakorn Lertlam
- Dental Research Laboratory, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - John Timothy Wright
- Dental Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cynthia Suggs
- Dental Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marc D. McKee
- McGill University, Faculty of Dentistry, and Department of Anatomy and Cell Biology, Montreal, QC, Canada
| | - Elia Beniash
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Enamul Kabir
- Dental Research Laboratory, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - James P. Simmer
- Dental Research Laboratory, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| |
Collapse
|