1
|
Velikova T, Vasilev GV, Linkwinstar D, Siliogka E, Kokudeva M, Miteva D, Vasilev GH, Gulinac M, Atliev K, Shumnalieva R. Regulatory T cell-based therapies for type 1 diabetes: a narrative review. METABOLISM AND TARGET ORGAN DAMAGE 2025; 5. [DOI: 10.20517/mtod.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic insulin-secreting beta cells, resulting in hyperglycemia and a lifelong need for exogenous insulin therapy. Regulatory T cells (Tregs) are essential for maintaining immune tolerance and preventing autoimmune reactions. It has been shown that dysfunctional Tregs participate in the pathophysiology of T1D. Therapeutic approaches designed to enhance Treg stability, survival, and function have progressively emerged as a promising treatment strategy for T1D. This narrative review explores the potential of Treg cell-based therapy as a therapeutic tool to alter the natural history of T1D. It discusses different pharmacological strategies to enhance Treg stability and function, as well as the latest advances in Treg cell-based therapies, including adoptive Treg cell therapy and genetic engineering of Tregs. It also outlines current challenges and future research directions for integrating Treg cell-based therapy into clinical practice, aiming to provide a comprehensive overview of its potential benefits and limitations as an innovative therapeutic intervention for T1D.
Collapse
|
2
|
Fenske RJ, Wienkes HN, Peter DC, Schaid MD, Hurley LD, Pennati A, Galipeau J, Kimple ME. Gα z-independent and -dependent Improvements With EPA Supplementation on the Early Type 1 Diabetes Phenotype of NOD Mice. J Endocr Soc 2024; 8:bvae100. [PMID: 38831864 PMCID: PMC11146416 DOI: 10.1210/jendso/bvae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 06/05/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a key mediator of inflammation and is derived from the omega-6 polyunsaturated fatty acid, arachidonic acid (AA). In the β-cell, the PGE2 receptor, Prostaglandin EP3 receptor (EP3), is coupled to the unique heterotrimeric G protein alpha subunit, Gɑz to reduce the production of cyclic adenosine monophosphate (cAMP), a key signaling molecule that activates β-cell function, proliferation, and survival pathways. Nonobese diabetic (NOD) mice are a strong model of type 1 diabetes (T1D), and NOD mice lacking Gɑz are protected from hyperglycemia. Therefore, limiting systemic PGE2 production could potentially improve both the inflammatory and β-cell dysfunction phenotype of T1D. Here, we sought to evaluate the effect of eicosapentaenoic acid (EPA) feeding, which limits PGE2 production, on the early T1D phenotype of NOD mice in the presence and absence of Gαz. Wild-type and Gαz knockout NOD mice were fed a control or EPA-enriched diet for 12 weeks, beginning at age 4 to 5 weeks. Oral glucose tolerance, splenic T-cell populations, islet cytokine/chemokine gene expression, islet insulitis, measurements of β-cell mass, and measurements of β-cell function were quantified. EPA diet feeding and Gɑz loss independently improved different aspects of the early NOD T1D phenotype and coordinated to alter the expression of certain cytokine/chemokine genes and enhance incretin-potentiated insulin secretion. Our results shed critical light on the Gαz-dependent and -independent effects of dietary EPA enrichment and provide a rationale for future research into novel pharmacological and dietary adjuvant therapies for T1D.
Collapse
Affiliation(s)
- Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Clinical Research Unit, University of Wisconsin Hospitals and Clinics, Madison, WI 53792, USA
| | - Haley N Wienkes
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Liam D Hurley
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Garcia-Loza I, Perna-Barrull D, Aguilera E, Almenara-Fuentes L, Gomez-Muñoz L, Greco D, Vila M, Salvado M, Mancera-Arteu M, Olszowy MW, Petriz J, Dalmases M, Rodriguez-Vidal S, Barneda-Zahonero B, Vives-Pi M. Targeting macrophages with phosphatidylserine-rich liposomes as a potential antigen-specific immunotherapy for type 1 diabetes. J Autoimmun 2024; 145:103196. [PMID: 38458075 DOI: 10.1016/j.jaut.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Type 1 diabetes (T1D) results from a breakdown in immunological tolerance, with pivotal involvement of antigen-presenting cells. In this context, antigen-specific immunotherapies have been developed to arrest autoimmunity, such as phosphatidylserine (PS)-liposomes. However, the role of certain antigen-presenting cells in immunotherapy, particularly human macrophages (Mφ) in T1D remains elusive. The aim of this study was to determine the role of Mφ in antigen-specific immune tolerance and T1D. To that end, we evaluated Mφ ability to capture apoptotic-body mimicking PS-liposomes in mice and conducted a phenotypic and functional characterisation of four human monocyte-derived Mφ (MoMφ) subpopulations (M0, M1, M2a and M2c) after PS-liposomes uptake. Our findings in mice identified Mφ as the most phagocytic cell subset in the spleen and liver. In humans, while phagocytosis rates were comparable between T1D and control individuals, PS-liposome capture dynamics differed among Mφ subtypes, favouring inflammatory (M1) and deactivated (M2c) Mφ. Notably, high nanoparticle concentrations did not affect macrophage viability. PS-liposome uptake by Mφ induced alterations in membrane molecule expression related to immunoregulation, reduced secretion of IL-6 and IL-12, and diminished autologous T-cell proliferation in the context of autoantigen stimulation. These results underscore the tolerogenic effects of PS-liposomes and emphasize their potential to target human Mφ, providing valuable insights into the mechanism of action of this preclinical immunotherapy.
Collapse
Affiliation(s)
- Ivan Garcia-Loza
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain; Neuromuscular Diseases Group, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - David Perna-Barrull
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Aguilera
- Endocrinology Dept, Germans Trias I Pujol University Hospital, Badalona, Spain
| | | | - Laia Gomez-Muñoz
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | | | | | - Jordi Petriz
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | - Marta Vives-Pi
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain; Endocrinology Dept, Germans Trias I Pujol University Hospital, Badalona, Spain; Ahead Therapeutics SL, Barcelona, Spain.
| |
Collapse
|
4
|
Panchawagh S, Ravichandran N, Barman B, Nune A, Javaid M, Gracia-Ramos AE, Day J, Joshi M, Kuwana M, Saha S, Pande AR, Caballero-Uribe CV, Velikova T, Parodis I, Knitza J, Kadam E, Tan AL, Shinjo SK, Boro H, Aggarwal R, Agarwal V, Chatterjee T, Gupta L. COVID-19 breakthrough infections in type 1 diabetes mellitus: a cross-sectional study by the COVID-19 Vaccination in Autoimmune Diseases (COVAD) Group. Rheumatol Int 2024; 44:73-80. [PMID: 38060005 PMCID: PMC10766674 DOI: 10.1007/s00296-023-05496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
To investigate the frequency, profile, and severity of COVID-19 breakthrough infections (BI) in patients with type I diabetes mellitus (T1DM) compared to healthy controls (HC) after vaccination. The second COVID-19 Vaccination in Autoimmune Diseases (COVAD-2) survey is a multinational cross-sectional electronic survey which has collected data on patients suffering from various autoimmune diseases including T1DM. We performed a subgroup analysis on this cohort to investigate COVID-19 BI characteristics in patients with T1DM. Logistic regression with propensity score matching analysis was performed. A total of 9595 individuals were included in the analysis, with 100 patients having T1DM. Among the fully vaccinated cohort, 16 (16%) T1DM patients had one BI and 2 (2%) had two BIs. No morbidities or deaths were reported, except for one patient who required hospitalization with oxygen without admission to intensive care. The frequency, clinical features, and severity of BIs were not significantly different between T1DM patients and HCs after adjustment for confounding factors. Our study did not show any statistically significant differences in the frequency, symptoms, duration, or critical care requirements between T1DM and HCs after COVID-19 vaccination. Further research is needed to identify factors associated with inadequate vaccine response in patients with BIs, especially in patients with autoimmune diseases.
Collapse
Affiliation(s)
| | - Naveen Ravichandran
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Bhupen Barman
- Department of Medicine, All India Institute of Medical Science (AIIMS), Guwahati, India
| | - Arvind Nune
- Department of Rheumatology, Southport and Ormskirk Hospital NHS Trust, Southport, PR8 6PN, UK
| | - Mahnoor Javaid
- Medical College, The Aga Khan University, Karachi, Pakistan
| | - Abraham Edgar Gracia-Ramos
- Department of Internal Medicine, General Hospital, National Medical Center "La Raza", Instituto Mexicano del Seguro Social, Av. Jacaranda S/N, Col. La Raza, C.P. 02990, Del. AzcapotzalcoMexico City, Mexico
| | - Jessica Day
- Department of Rheumatology, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mrudula Joshi
- Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Sreoshy Saha
- Mymensingh Medical College, Mymensingh, Bangladesh
| | | | | | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407, Sofia, Bulgaria
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Johannes Knitza
- Medizinische Klinik 3-Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Deutschland
| | - Esha Kadam
- Seth Gordhandhas Sunderdas Medical College and King Edwards Memorial Hospital, Mumbai, Maharashtra, India
| | - Ai Lyn Tan
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Hiya Boro
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Tulika Chatterjee
- Center for Outcomes Research, Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL, USA
| | - Latika Gupta
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, WV10 0QP, UK.
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
- Department of Rheumatology, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK.
| |
Collapse
|
5
|
Kabakchieva P, Assyov Y, Gerasoudis S, Vasilev G, Peshevska-Sekulovska M, Sekulovski M, Lazova S, Miteva DG, Gulinac M, Tomov L, Velikova T. Islet transplantation-immunological challenges and current perspectives. World J Transplant 2023; 13:107-121. [PMID: 37388389 PMCID: PMC10303418 DOI: 10.5500/wjt.v13.i4.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Pancreatic islet transplantation is a minimally invasive procedure aiming to reverse the effects of insulin deficiency in patients with type 1 diabetes (T1D) by transplanting pancreatic beta cells. Overall, pancreatic islet transplantation has improved to a great extent, and cellular replacement will likely become the mainstay treatment. We review pancreatic islet transplantation as a treatment for T1D and the immunological challenges faced. Published data demonstrated that the time for islet cell transfusion varied between 2 and 10 h. Approximately 54% of the patients gained insulin independence at the end of the first year, while only 20% remained insulin-free at the end of the second year. Eventually, most transplanted patients return to using some form of exogenous insulin within a few years after the transplantation, which imposed the need to improve immunological factors before transplantation. We also discuss the immunosuppressive regimens, apoptotic donor lymphocytes, anti-TIM-1 antibodies, mixed chimerism-based tolerance induction, induction of antigen-specific tolerance utilizing ethylene carbodiimide-fixed splenocytes, pretransplant infusions of donor apoptotic cells, B cell depletion, preconditioning of isolated islets, inducing local immunotolerance, cell encapsulation and immunoisolation, using of biomaterials, immunomodulatory cells, etc.
Collapse
Affiliation(s)
- Plamena Kabakchieva
- Clinic of Internal Diseases, Naval Hospital-Varna, Military Medical Academy, Varna 9010, Bulgaria
| | - Yavor Assyov
- Clinic of Endocrinology, Department of Internal Diseases, University Hospital "Alexandrovska", Medical University-Sofia, Sofia 1434, Bulgaria
| | | | - Georgi Vasilev
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Anesthesiology and Intensive Care, University hospital Lozenetz, Sofia 1407, Bulgaria
| | - Snezhina Lazova
- Department of Pediatric, University Hospital "N. I. Pirogov", Sofia 1606, Bulgaria
- Department of Healthcare, Faculty of Public Health "Prof. Tsekomir Vodenicharov, MD, DSc", Medical University of Sofia, Sofia 1527, Bulgaria
| | | | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Latchezar Tomov
- Department of Informatics, New Bulgarian University, Sofia 1618, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
6
|
Dendritic Cells and Their Immunotherapeutic Potential for Treating Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23094885. [PMID: 35563276 PMCID: PMC9099521 DOI: 10.3390/ijms23094885] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-presenting cells with the ability to integrate signals arising from tissue infection or injury that present processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our knowledge of the various subsets of DCs and their cellular structures and methods of orchestration over time have resulted in a better understanding of how the T cell response is shaped. DCs employ various arsenal to maintain their tolerance, including the induction of effector T cell deletion or unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and proinflammatory cytokine production are currently being sought. Moreover, new strategies are being developed that can regulate DC differentiation and development and harness the tolerogenic capacity of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and evaluate the prospects of DC-based therapeutic strategies to treat T1D.
Collapse
|
7
|
Gudi RR, Perez N, Karumuthil-Melethil S, Li G, Vasu C. Activation of T cell checkpoint pathways during β-cell antigen presentation by engineered dendritic cells promotes protection from type 1 diabetes. Immunology 2022; 166:341-356. [PMID: 35404483 DOI: 10.1111/imm.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/27/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Defective immune regulation has been recognized in type 1 diabetes (T1D). Immune regulatory T cell check-point receptors, which are generally upregulated on activated T cells, have been the molecules of attention as therapeutic targets for enhancing immune response in tumor therapy. Here, we show that pancreatic β-cell antigen (BcAg) presentation by engineered tolerogenic dendritic cells (tDCs) that express CTLA4 selective ligand (B7.1wa) or a combination of CTLA4, PD1 and BTLA selective ligands (B7.1wa, PD-L1, and HVEM-CRD1 respectively; multiligand-DCs) causes an increase in regulatory cytokine and T cell (Treg) responses and suppression of the effector T cell function as compared to engineered control-DCs. Non-obese diabetic (NOD) mice treated with BcAg-pulsed CTLA4-ligand-DCs and multiligand-DCs at pre-diabetic and early-hyperglycemic stages showed significantly lower degree of insulitis, higher frequencies of insulin-positive islets, profound delay in, and reversal of, hyperglycemia for a significant duration. Immune cells from the tDC treated mice not only produced lower amounts of IFNγ and higher amounts of IL10 and TGFβ1 upon BcAg challenge, but also failed to induce hyperglycemia upon adoptive transfer. While both CTLA4-ligand-DCs and multiligand-DCs were effective in inducing tolerance, multiligand-DC treatment produced an overall higher suppressive effect on effector T cell function and disease outcome. These studies show that enhanced engagement of T cell checkpoint receptors during BcAg presentation can modulate T cell function and suppress autoimmunity and progression of the disease in T1D.
Collapse
Affiliation(s)
- Radhika R Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston
| | - Nicolas Perez
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL
| | | | - Gongbo Li
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston.,Department of Surgery, College of Medicine, University of Illinois, Chicago, IL
| |
Collapse
|
8
|
Li SS, Tian JM, Wei TH, Wang HR. Identification of key genes for type 1 diabetes mellitus by network-based guilt by association. ACTA ACUST UNITED AC 2020; 66:778-783. [PMID: 32696859 DOI: 10.1590/1806-9282.66.6.778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study aimed to propose a co-expression-network (CEN) based gene functional inference by extending the "Guilt by Association" (GBA) principle to predict candidate gene functions for type 1 diabetes mellitus (T1DM). METHODS Firstly, transcriptome data of T1DM were retrieved from the genomics data repository for differentially expressed gene (DEGs) analysis, and a weighted differential CEN was generated. The area under the receiver operating characteristics curve (AUC) was chosen to determine the performance metric for each Gene Ontology (GO) term. Differential expression analysis identified 325 DEGs in T1DM, and co-expression analysis generated a differential CEN of edge weight > 0.8. RESULTS A total of 282 GO annotations with DEGs > 20 remained for functional inference. By calculating the multifunctionality score of genes, gene function inference was performed to identify the optimal gene functions for T1DM based on the optimal ranking gene list. Considering an AUC > 0.7, six optimal gene functions for T1DM were identified, such as regulation of immune system process and receptor activity. CONCLUSIONS CEN-based gene functional inference by extending the GBA principle predicted 6 optimal gene functions for T1DM. The results may be potential paths for therapeutic or preventive treatments of T1DM.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Endocrinology, Linyi People's Hospital, Linyi, China
| | - Jia-Mei Tian
- Department of Pediatric Internal Medicine, Linyi People's Hospital, Linyi, China
| | - Tong-Huan Wei
- Department of Internal Medicine, The People's Hospital of Linyi Hi-Tech Industrial Development Zone, Linyi, China
| | - Hao-Ren Wang
- Department of Internal Medicine, Linyi Luozhuang Central Hospital, Linyi, China
| |
Collapse
|
9
|
Agustini N, Nurhaeni N, Pujasari H, Abidin E, Lestari AW, Kurniawati A. Family Support towards Resilience in Adolescents with Type I Diabetes: A Preliminary Study in Indonesia. Asian Pac Isl Nurs J 2019; 4:66-71. [PMID: 31259231 PMCID: PMC6571917 DOI: 10.31372/20190402.1028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The prevalence of diabetes has increased in adolescents. Diabetic adolescents need ongoing support from their families, and the family plays an important role in the management of the disorder. This study aimed to identify the relationship between family support and resilience in adolescents with Type 1 Diabetes Mellitus (T1DM). Quantitative data analysis was conducted using simple logistic regression. Meanwhile, qualitative data were analyzed using content analysis. The results show that the median duration of a T1DM diagnosis was 4 years, which was dominated by early adolescents in the study group (41.9%); the mean resilience score was 67.95 (range 0-100) with 53.5% of the participants had low resilience, and 55.8% of the respondents received a high level of family support. Logistic regression test results indicate that significant family support is associated with resilience.
Collapse
|
10
|
Gürsoy S, Koçkar T, Atik SU, Önal Z, Önal H, Adal E. Autoimmunity and intestinal colonization by Candida albicans in patients with type 1 diabetes at the time of the diagnosis. KOREAN JOURNAL OF PEDIATRICS 2018; 61:217-220. [PMID: 30032588 PMCID: PMC6106689 DOI: 10.3345/kjp.2018.61.7.217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 03/05/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE Type 1 diabetes mellitus (T1DM) is a chronic and immune-mediated disease, which is characterized by the progressive destruction of pancreatic beta cells. T1DM precipitates in genetically susceptible individuals through environmental factors. In this study, we aimed to evaluate the impact of autoimmunity and intestinal colonization of Candida albicans on the development of T1DM. METHODS Forty-two patients newly diagnosed with T1DM and 42 healthy subjects were included in this monocentric study. The basic and clinical characteristics of the patients were recorded. T1DM-, thyroid-, and celiac-associated antibodies were evaluated. Stool cultures for C. albicans were performed to assess whether or not gut integrity was impaired in patients with T1DM. RESULTS The evaluation of T1DM- and thyroid-associated antibodies showed that the prevalences of islet cell antibodies and antithyroperoxidase positivity were higher in the study patients than in the patients in the control group. Furthermore, the direct examination and culture of fresh stool samples revealed that 50% of the patients with T1DM and 23.8% of the control subjects had fungi (C. albicans). CONCLUSION Through this study, we suggest that the presence of intestinal C. albicans colonization at the time of the diagnosis of T1DM may indicate impairment of normal intestinal microbiota. We also suggest that there may be a tendency of T1DM in patients with a high prevalence of intestinal C. albicans.
Collapse
Affiliation(s)
- Semra Gürsoy
- Department of Pediatrics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Tuba Koçkar
- Department of Pediatrics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Sezen Ugan Atik
- Department of Pediatrics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Zerrin Önal
- Department of Pediatric Gastroenterology, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Hasan Önal
- Department of Pediatric Metabolic Disease, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Erdal Adal
- Department of Pediatric Endocrinology and Metabolism, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
11
|
Granados HM, Draghi A, Tsurutani N, Wright K, Fernandez ML, Sylvester FA, Vella AT. Programmed cell death-1, PD-1, is dysregulated in T cells from children with new onset type 1 diabetes. PLoS One 2017; 12:e0183887. [PMID: 28877189 PMCID: PMC5587274 DOI: 10.1371/journal.pone.0183887] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Programmed death cell 1 (PD-1) is an inhibitor of T cell activation and is also functionally linked to glycolysis. We hypothesized that PD-1 expression is defective in activated T cells from children with type 1 diabetes (T1D), resulting in abnormal T cell glucose metabolism. METHODS In this pilot study, we enrolled children with new onset T1D within 2 weeks of diagnosis (T1D), unaffected siblings of T1D (SIBS), unaffected, unrelated children (CTRL), children with new onset, and untreated Crohn disease (CD). We repeated the assays 4-6 months post-diagnosis in T1D (T1D follow up). We analyzed anti-CD3/-CD28-stimulated peripheral blood mononuclear cells (PBMC) subsets for PD-1 expression by flow cytometry at baseline and after 24 h in culture. We measured cytokines in the culture medium by multiplex ELISA and glycolytic capacity with a flux analyzer. RESULTS We enrolled 37 children. T cells derived from subjects with T1D had decreased PD-1 expression compared to the other study groups. However, in T1D follow-up T cells expressed PD-1 similarly to controls, but had no differences in PBMC cytokine production. Nonetheless, T1D follow up PBMCs had enhanced glycolytic capacity compared to T1D. CONCLUSIONS Activated T cells from T1D fail to upregulate PD-1 upon T-cell receptor stimulation, which may contribute to the pathogenesis of T1D. T1D follow up PBMC expression of PD-1 normalizes, together with a significant increase in glycolysis compared to T1D. Thus, insulin therapy in T1D children is associated with normal PD1 expression and heightened glycolytic capacity in PBMC.
Collapse
Affiliation(s)
- Hector M. Granados
- Department of Pediatrics, Texas Tech Health Science Center, El Paso, Texas, United States of America
| | - Andrew Draghi
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Naomi Tsurutani
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kyle Wright
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Marina L. Fernandez
- Department of Pediatrics, Connecticut Children’s Medical Center, Hartford, Connecticut, United States of America
| | - Francisco A. Sylvester
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
12
|
Olive AJ, Sassetti CM. Metabolic crosstalk between host and pathogen: sensing, adapting and competing. Nat Rev Microbiol 2016; 14:221-34. [PMID: 26949049 DOI: 10.1038/nrmicro.2016.12] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our understanding of bacterial pathogenesis is dominated by the cell biology of the host-pathogen interaction. However, the majority of metabolites that are used in prokaryotic and eukaryotic physiology and signalling are chemically similar or identical. Therefore, the metabolic crosstalk between pathogens and host cells may be as important as the interactions between bacterial effector proteins and their host targets. In this Review we focus on host-pathogen interactions at the metabolic level: chemical signalling events that enable pathogens to sense anatomical location and the local physiology of the host; microbial metabolic pathways that are dedicated to circumvent host immune mechanisms; and a few metabolites as central points of competition between the host and bacterial pathogens.
Collapse
Affiliation(s)
- Andrew J Olive
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
13
|
Abstract
Diabetes, a group of metabolic and age-related diseases, is a major global health problem, the incidence of which has increased dramatically in recent decades. Type 1 diabetes mellitus (T1DM) is a complex, T cell-mediated autoimmune disease characterized by immune cell infiltration and chronic inflammation in the islets of Langerhans. Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by hyperglycemia (high blood sugar) resulting from insulin resistance and β-cell dysfunction. The involvement of inflammatory processes, such as immune cell infiltration, and chronic inflammation in the pathogenesis of diabetes is less well understood in T2DM than in T1DM. However, studies conducted in the past decade have shown a strong link between inflammation and metabolic dysfunction. They have also shown that chronic inflammation plays a key role in the pathogenesis of both T1DM and T2DM. Two immunological factors commonly contribute to the pathogenesis of diabetes: the activation of inflammasomes and the release of proinflammatory cytokines in response to damage-associated molecular patterns (DAMPs). Inflammasomes are intracellular multiprotein molecular platforms. DAMPs act as endogenous danger signals. Here, we review current research on the function(s) of inflammasomes and DAMPs and discuss their pathological relevance and therapeutic implications in diabetes.
Collapse
|
14
|
Wang J, Cao H, Wang H, Yin G, Du J, Xia F, Lu J, Xiang M. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice. Toxicol Appl Pharmacol 2015; 285:149-58. [PMID: 25896969 DOI: 10.1016/j.taap.2015.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the "hygiene hypothesis", bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hui Cao
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjie Wang
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, USA
| | - Guoxiao Yin
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Du
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xia
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingli Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Leal-Lopes C, Velloso FJ, Campopiano JC, Sogayar MC, Correa RG. Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies. J Diabetes Res 2015; 2015:284680. [PMID: 26347203 PMCID: PMC4544440 DOI: 10.1155/2015/284680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The pancreas plays a central role in metabolism, allowing ingested food to be converted and used as fuel by the cells throughout the body. On the other hand, the pancreas may be affected by devastating diseases, such as pancreatitis, pancreatic adenocarcinoma (PAC), and diabetes mellitus (DM), which generally results in a wide metabolic imbalance. The causes for the development and progression of these diseases are still controversial; therefore it is essential to better understand the underlying mechanisms which compromise the pancreatic homeostasis. The interest in the study of the commensal microbiome increased extensively in recent years, when many discoveries have illustrated its central role in both human physiology and maintenance of homeostasis. Further understanding of the involvement of the microbiome during the development of pathological conditions is critical for the improvement of new diagnostic and therapeutic approaches. In the present review, we discuss recent findings on the behavior and functions played by the microbiota in major pancreatic diseases and provide further insights into its potential roles in the maintenance of pancreatic steady-state activities.
Collapse
Affiliation(s)
- Camila Leal-Lopes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Fernando J. Velloso
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Julia C. Campopiano
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Ricardo G. Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- *Ricardo G. Correa:
| |
Collapse
|
16
|
Zóka A, Barna G, Somogyi A, Műzes G, Oláh Á, Al-Aissa Z, Hadarits O, Kiss K, Firneisz G. Extension of the CD4⁺Foxp3⁺CD25(-/low) regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity 2014; 48:289-297. [PMID: 25523632 DOI: 10.3109/08916934.2014.992518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 11/04/2014] [Accepted: 11/23/2014] [Indexed: 02/05/2023]
Abstract
Regulatory T-cells (Treg) have a crucial role in limiting physiologic autoreactivity. Foxp3 is a master regulator transcription factor of Treg differentiation and active Treg cells express high levels of IL-2 receptor α-chain (CD25). The aim of our study was to assess the key markers of Treg cell function in type 1 diabetic (T1DM) and control subjects by flow cytometry. The proportion of CD25(-/low) cells among CD4(+)Foxp3(+) Treg cells was higher in T1DM patients that might suggest a shifted proportion of the incomplete/reserve and the fully active (CD4(+)Foxp3(+)CD25(+)) Treg cell subpopulations in T1DM, similarly to other Th1-mediated autoimmune diseases. In addition to the decreased expression of CD25 and CTLA-4 in T1DM patients, a positive correlation was observed between the CD25 expression on CD4(+) and the CTLA-4 expression in CD8(-) T-lymphocytes both in the T1DM and in the healthy control group. Our results suggest an impaired balance of CD25(+) and CD25(-/low) Treg cells in T1DM which might reflect a decreased late phase peripheral Treg activation even in patients with a mean disease duration of more than a decade.
Collapse
Affiliation(s)
- András Zóka
- 2nd Department of Medicine, Semmelweis University , Budapest , Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ma Y, Liu J, Hou J, Dong Y, Lu Y, Jin L, Cao R, Li T, Wu J. Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PLoS One 2014; 9:e105701. [PMID: 25157497 PMCID: PMC4144892 DOI: 10.1371/journal.pone.0105701] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/22/2014] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus type 1 (DM1) is an autoimmune disease that gradually destroys insulin-producing beta-cells. We have previously reported that mucosal administration of fusion protein of HSP65 with tandem repeats of P277 (HSP65-6P277) can reduce the onset of DM1 in non-obese diabetic (NOD) mice. To deliver large amounts of the fusion protein and to enhance long-term immune tolerance effects, in the present study, we investigated the efficacy of using orally administrated L. lactis expressing HSP65-6P277 to reduce the incidence of DM1 in NOD mice. L. lactis strain NZ9000 was engineered to express HSP65-6P277 either constitutively or by nisin induction. After immunization via gavage with the recombinant L. lactis strains to groups of 4-week old female NOD mice for 36 weeks, we observed that oral administration of recombinant L. Lactis resulted in the prevention of hyperglycemia, improved glucose tolerance and reduced insulitis. Immunologic analysis showed that treatment with recombinant L. lactis induced HSP65- and P277- specific T cell immuno-tolerance, as well as antigen-specific proliferation of splenocytes. The results revealed that the DM1-preventing function was in part caused by a reduction in the pro-inflammatory cytokine IFN-γ and an increase in the anti-inflammatory cytokine IL-10. Orally administered recombinant L. lactis delivering HSP65-6P277 may be an effective therapeutic approach in preventing DM1.
Collapse
Affiliation(s)
- Yanjun Ma
- Forensic Center, Nanjing Forest Police College, Nanjing, People's Republic of China
- Minigene Pharmacy Laboratory, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jingjing Liu
- Minigene Pharmacy Laboratory, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing Hou
- Minigene Pharmacy Laboratory, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuankai Dong
- Minigene Pharmacy Laboratory, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yong Lu
- Minigene Pharmacy Laboratory, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Liang Jin
- Minigene Pharmacy Laboratory, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Rongyue Cao
- Minigene Pharmacy Laboratory, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Taiming Li
- Minigene Pharmacy Laboratory, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jie Wu
- Minigene Pharmacy Laboratory, School of life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
18
|
Coleman B, Calzone KA, Jenkins J, Paniagua C, Rivera R, Hong OS, Spruill I, Bonham V. Multi-ethnic minority nurses' knowledge and practice of genetics and genomics. J Nurs Scholarsh 2014; 46:235-44. [PMID: 24758549 PMCID: PMC4883058 DOI: 10.1111/jnu.12083] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 12/26/2022]
Abstract
PURPOSE Exploratory studies establishing how well nurses have integrated genomics into practice have demonstrated there remains opportunity for education. However, little is known about educational gaps in multi-ethnic minority nurse populations. The purpose of this study was to determine minority nurses' beliefs, practices, and competency in integrating genetics-genomics information into practice using an online survey tool. DESIGN A cross-sectional survey with registered nurses (RNs) from the participating National Coalition of Ethnic Minority Organizations (NCEMNA). Two phases were used: Phase one had a sample of 27 nurses who determined the feasibility of an online approach to survey completion and need for tool revision. Phase two was a main survey with 389 participants who completed the revised survey. The survey ascertained the genomic knowledge, beliefs, and practice of a sample of multi-ethnic minority nurses who were members of associations comprising the NCEMNA. METHODS The survey was administered online. Descriptive survey responses were analyzed using frequencies and percentages. Categorical responses in which comparisons were analyzed used chi square tests. FINDINGS About 40% of the respondents held a master's degree (39%) and 42% worked in direct patient care. The majority of respondents (79%) reported that education in genomics was important. Ninety-five percent agreed or strongly agreed that family health history could identify at-risk families, 85% reported knowing how to complete a second- and third-generation family history, and 63% felt family history was important to nursing. Conversely, 50% of the respondents felt that their understanding of the genetics of common disease was fair or poor, supported by 54% incorrectly reporting they thought heart disease and diabetes are caused by a single gene variant. Only 30% reported taking a genetics course since licensure, and 94% reported interest in learning more about genomics. Eighty-four percent believed that their ethnic minority nurses' organizations should have a visible role in genetics and genomics in their communities. CONCLUSIONS Most respondents felt genomics is important to integrate into practice but demonstrated knowledge deficits. There was strong interest in the need for continuing education and the role of the ethnic minority organizations in facilitating the continuing education efforts. This study provides evidence of the need for targeted genomic education to prepare ethnic minority nurses to better translate genetics and genomics into practice. CLINICAL RELEVANCE Genomics is critical to the practice of all nurses, most especially family health history assessment and the genomics of common complex diseases. There is a great opportunity and interest to address the genetic-genomic knowledge deficits in the nursing workforce as a strategy to impact patient outcomes.
Collapse
Affiliation(s)
- Bernice Coleman
- Research Scientist II, Nursing Research and Development, Nurse Practitioner, Heart Transplant and Mechanical Assist Device Programs, Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Kathleen A. Calzone
- Senior Nurse Specialist, Research, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Genetics Branch, Bethesda, MD, USA
| | - Jean Jenkins
- Clinical Advisor, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Carmen Paniagua
- Adult Acute Care Nurse Practitioner & Adult Gerontology Acute Care Nurse Practitioner, Advanced Practice Nurse Geneticist, Department of Emergency Medicine, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR, USA
| | - Reynaldo Rivera
- Director of Nursing Innovation, New York-Presbyterian Hospital, New York, NY, USA
| | - Oi Saeng Hong
- Professor, University of California at San Francisco, School of Nursing, Community Health Systems, San Francisco, CA, USA
| | - Ida Spruill
- Assistant Professor, Medical University of South Carolina, College of Nursing, Carleston, SC, USA
| | - Vence Bonham
- Associate Investigator, Social and Behavioral Research Branch, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| |
Collapse
|