1
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Tang R, Jia L, Li Y, Zheng J, Qi P. Narciclasine attenuates sepsis-induced myocardial injury by modulating autophagy. Aging (Albany NY) 2021; 13:15151-15163. [PMID: 34035183 PMCID: PMC8221305 DOI: 10.18632/aging.203078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022]
Abstract
Acute myocardial injury (AMI) is often secondary to sepsis, which is a life-threatening disease associated with severe cardiac inflammation. Narciclasine, a plant alkaloid isolated from different members of the Amaryllidaceae family, has been extensively characterized as an antitumor and anti-inflammatory compound. In addition, autophagy is critical for sepsis-induced myocardial injury. However, the role and mechanism of autophagy by which narciclasine confers cardioprotection are still unclear. The present study aimed to investigate the underlying mechanism by which narciclasine affects the pathogenesis of sepsis-induced myocardial injury. Narciclasine effectively attenuated LPS-induced myocardial inflammation in vitro and in vivo. In addition, narciclasine protected cardiac function and suppressed the expression of inflammatory cytokines in LPS-induced heart tissue. Furthermore, narciclasine upregulated LPS-induced autophagic activity, and the autophagy inhibitor 3-MA abrogated narciclasine-mediated protection against LPS-induced AMI. Importantly, narciclasine exerted an inhibitory effect on the JNK signaling pathway, and JNK activity was tightly associated with narciclasine-induced autophagy and the consequent protective effects during AMI. Taken together, our findings indicate that narciclasine protects against LPS-induced AMI by inducing JNK-dependent autophagic flux; hence, narciclasine may be an effective and novel agent for the clinical treatment of sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Rong Tang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Liu Jia
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yunlong Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Junbo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Pingping Qi
- Departments of Blood Transfusion, The First Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
3
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
De Stefano A, Caporali S, Di Daniele N, Rovella V, Cardillo C, Schinzari F, Minieri M, Pieri M, Candi E, Bernardini S, Tesauro M, Terrinoni A. Anti-Inflammatory and Proliferative Properties of Luteolin-7-O-Glucoside. Int J Mol Sci 2021; 22:1321. [PMID: 33525692 PMCID: PMC7865871 DOI: 10.3390/ijms22031321] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids display a broad range of structures and are responsible for the major organoleptic characteristics of plant-derived foods and beverages. Recent data showed their activity, and in particular of luteolin-7-O-glucoside (LUT-7G), in reduction of oxidative stress and inflammatory mechanisms in different physiological systems. In this paper, we tried to elucidate how LUT-7G could exert both antioxidant and anti-inflammatory effects in endothelial cells cultured in vitro. Here, we showed that LUT-7G is able to inhibit the STAT3 pathway, to have an antiproliferative action, and an important antioxidant property in HUVEC cells. These properties are exerted by the flavone in endothelial through the transcriptional repression of a number of inflammatory cytokines and their receptors, and by the inhibition of ROS generation. ROS and STAT3 activation has been correlated with the production of oxysterols and other hydroxylated fatty acids, and they have been recognized important as players of atherogenesis and cardiocirculatory system diseases. The analysis of the general production pathway of these hydroxylated species, showed a strong decrease of cholesterol hydroxylated species such as 7-alpha-hydroxicholesterol, 7-beta-hydroxicholesterol by the treatment with LUT-7G. This confirms the anti-inflammatory properties of LUT-7G also in the endothelial district, showing for the first time the molecular pathway that verify previous postulated cardiovascular benefits of this flavone.
Collapse
Affiliation(s)
- Alessandro De Stefano
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Sabrina Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicola Di Daniele
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Valentina Rovella
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Carmine Cardillo
- Department of Clinical Sciences and Translational Medicine, Cattolica University of Rome, Via Montpellier, 1, 00133 Rome, Italy;
- Internal Medicine, Policlinico A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, 00133 Rome, Italy;
| | - Francesca Schinzari
- Internal Medicine, Policlinico A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, 00133 Rome, Italy;
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
- Laboratory of Biochemistry, IDI-IRCCS Fondazione Luigi Maria Monti, Via Monti di Creta 104, 00167 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| | - Manfredi Tesauro
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| |
Collapse
|
5
|
Abstract
There is abundant evidence that infectious sepsis both in humans and mice with polymicrobial sepsis results in robust activation of complement. Major complement activation products involved in sepsis include C5a anaphylatoxin and its receptors (C5aR1 and C5aR2) and, perhaps, the terminal complement activation product, C5b-9. These products (and others) also cause dysfunction of the innate immune system, with exaggerated early proinflammatory responses, followed by decline of the innate immune system, leading to immunosuppression and multiorgan dysfunction. Generation of C5a during sepsis also leads to activation of neutrophils and macrophages and ultimate appearance of extracellular histones, which have powerful proinflammatory and prothrombotic activities. The distal complement activation product, C5b-9, triggers intracellular Ca fluxes in epithelial and endothelial cells. Histones activate the NLRP3 inflammasome, products of which can damage cells. C5a also activates MAPKs and Akt signaling pathways in cardiomyocytes, causing buildup of [Ca]i, defective action potentials and substantial cell dysfunction, resulting in cardiac and other organ dysfunction. Cardiac dysfunction can be quantitated by ECHO-Doppler parameters. In vivo interventions that block these complement-dependent products responsible for organ dysfunction in sepsis reduce the intensity of sepsis. The obvious targets in sepsis are C5a and its receptors, histones, and perhaps the MAPK pathways. Blockade of C5 has been considered in sepsis, but the FDA-approved antibody (eculizumab) is known to compromise defenses against neisseria and pneumonococcal bacteria, and requires immunization before the mAb to C5 can be used clinically. Small molecular blocking agents for C5aRs are currently in development and may be therapeutically effective for treatment of sepsis.
Collapse
|
6
|
Heimfarth L, Carvalho AMS, Quintans JDSS, Pereira EWM, Lima NT, Bezerra Carvalho MT, Barreto RDSS, Moreira JCF, da Silva-Júnior EF, Schmitt M, Bourguignon JJ, de Aquino TM, Araújo-Júnior JXD, Quintans-Júnior LJ. Indole-3-guanylhydrazone hydrochloride mitigates long-term cognitive impairment in a neonatal sepsis model with involvement of MAPK and NFκB pathways. Neurochem Int 2020; 134:104647. [DOI: 10.1016/j.neuint.2019.104647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023]
|
7
|
Cirulis MM, Beesley SJ, Wilson EL, Stubben C, Olsen TD, Hirshberg EL, Smith LM, Lanspa MJ, Abraham TP, Grissom CK, Rondina MT, Brown SM. The peripheral blood transcriptome in septic cardiomyopathy: an observational, pilot study. Intensive Care Med Exp 2019; 7:57. [PMID: 31650252 PMCID: PMC6813402 DOI: 10.1186/s40635-019-0271-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/24/2019] [Indexed: 01/25/2023] Open
Abstract
Background Septic cardiomyopathy (SCM) is common in sepsis and associated with increased morbidity and mortality. Left ventricular global longitudinal strain (LV GLS), measured by speckle tracking echocardiography, allows improved identification of impaired cardiac contractility. The peripheral blood transcriptome may be an important window into SCM pathophysiology. We therefore studied the peripheral blood transcriptome and LV GLS in a prospective cohort of patients with sepsis. Results In this single-center observational pilot study, we enrolled adult patients (age > 18) with sepsis within 48 h of admission to the ICU. SCM was defined as LV GLS > − 17% based on echocardiograms performed within 72 h of admission. We enrolled 27 patients, 24 of whom had high-quality RNA results; 18 (75%) of 24 had SCM. The group was 50% female and had a median (IQR) age of 59.5 (48.5–67.0) years and admission APACHE II score of 21.0 (16.0–32.3). Forty-six percent had septic shock. After filtering for low-expression and non-coding genes, 15,418 protein coding genes were expressed and 73 had significantly different expression between patients with vs. without SCM. In patients with SCM, 43 genes were upregulated and 30 were downregulated. Pathway analysis identified enrichment in type 1 interferon signaling (adjusted p < 10−5). Conclusions In this hypothesis-generating study, SCM was associated with upregulation of genes in the type 1 interferon signaling pathway. Interferons are cytokines that stimulate the innate and adaptive immune response and are implicated in the early proinflammatory and delayed immunosuppression phases of sepsis. While type 1 interferons have not been implicated previously in SCM, interferon therapy (for viral hepatitis and Kaposi sarcoma) has been associated with reversible cardiomyopathy, perhaps suggesting a role for interferon signaling in SCM.
Collapse
Affiliation(s)
- Meghan M Cirulis
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA. .,Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Shock Trauma Intensive Care Unit, 5121 South Cottonwood Street, Murray, UT, 84107 42, USA.
| | - Sarah J Beesley
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Shock Trauma Intensive Care Unit, 5121 South Cottonwood Street, Murray, UT, 84107 42, USA.,Critical Care Echocardiography Service, Intermountain Medical Center, Murray, UT, USA
| | - Emily L Wilson
- Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Shock Trauma Intensive Care Unit, 5121 South Cottonwood Street, Murray, UT, 84107 42, USA.,Critical Care Echocardiography Service, Intermountain Medical Center, Murray, UT, USA
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Troy D Olsen
- Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Shock Trauma Intensive Care Unit, 5121 South Cottonwood Street, Murray, UT, 84107 42, USA
| | - Eliotte L Hirshberg
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Shock Trauma Intensive Care Unit, 5121 South Cottonwood Street, Murray, UT, 84107 42, USA.,Critical Care Echocardiography Service, Intermountain Medical Center, Murray, UT, USA
| | - Lane M Smith
- Department of Emergency Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Michael J Lanspa
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Shock Trauma Intensive Care Unit, 5121 South Cottonwood Street, Murray, UT, 84107 42, USA.,Critical Care Echocardiography Service, Intermountain Medical Center, Murray, UT, USA
| | - Theodore P Abraham
- Division of Cardiology, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Colin K Grissom
- Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Shock Trauma Intensive Care Unit, 5121 South Cottonwood Street, Murray, UT, 84107 42, USA.,Critical Care Echocardiography Service, Intermountain Medical Center, Murray, UT, USA
| | - Matthew T Rondina
- Department of Emergency Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Samuel M Brown
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Shock Trauma Intensive Care Unit, 5121 South Cottonwood Street, Murray, UT, 84107 42, USA.,Critical Care Echocardiography Service, Intermountain Medical Center, Murray, UT, USA
| |
Collapse
|
8
|
Antioxidant and Cardioprotective Effects of EPA on Early Low-Severity Sepsis through UCP3 and SIRT3 Upholding of the Mitochondrial Redox Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9710352. [PMID: 31534623 PMCID: PMC6732625 DOI: 10.1155/2019/9710352] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022]
Abstract
Sepsis still causes death, often through cardiac failure and mitochondrial dysfunction. Dietary ω3 polyunsaturated fatty acids are known to protect against cardiac dysfunction and sepsis lethality. This study set out to determine whether early low-severity sepsis alters the cardiac mitochondrial function in animals fed a Western-type diet and whether dietary eicosapentaenoic acid (EPA) administration protects the myocardium against the deleterious effects of sepsis and if so to seek possible mechanisms for its effects. Rats were divided into two groups fed either an ω3 PUFA-deficient diet (“Western diet,” DEF group) or an EPA-enriched diet (EPA group) for 5 weeks. Each group was subdivided into two subgroups: sham-operated rats and rats subjected to cecal ligation and puncture (CLP). In vivo cardiac mechanical function was examined, and mitochondria were harvested to determine their functional activity. Oxidative stress was evaluated together with several factors involved in the regulation of reactive oxygen species metabolism. Sepsis had little effect on cardiac mechanical function but strongly depressed mitochondrial function in the DEF group. Conversely, dietary EPA greatly protected the mitochondria through a decreased oxidative stress of the mitochondrial matrix. The latter was probably due to an increased uncoupling protein-3 expression, already seen in the sham-operated animals. CLP rats in the EPA group also displayed increased mitochondrial sirtuin-3 protein expression that could reinforce the upholding of oxidative phosphorylation. Dietary EPA preconditioned the heart against septic damage through several modifications that protect mitochondrial integrity. This preconditioning can explain the cardioprotective effect of dietary EPA during sepsis.
Collapse
|
9
|
Toll-Like Receptor 4 and NLRP3 Caspase 1- Interleukin-1β-Axis are Not Involved in Colon Ascendens Stent Peritonitis-Associated Heart Disease. Shock 2018; 50:483-492. [DOI: 10.1097/shk.0000000000001059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Harmful Roles of TLR3 and TLR9 in Cardiac Dysfunction Developing during Polymicrobial Sepsis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4302726. [PMID: 30364002 PMCID: PMC6186377 DOI: 10.1155/2018/4302726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 01/04/2023]
Abstract
We determined the roles of TLR3 and TLR9 in adverse events of polymicrobial sepsis, with a focus on development of septic cardiomyopathy, progression of which we have recently shown to be complement- and histones-dependent. So Wt, TLR3-knocked out (K.O.), and TLR9-K.O. mice were subjected to polymicrobial sepsis following cecal ligation and puncture (CLP). In the absence of either TLR3 or TLR9, the intensity of echocardiogram (Echo)-Doppler dysfunction during development of cardiomyopathy was substantially reduced in the K.O. mice. Based on our prior studies emphasizing the adverse effects of plasma C5a and histones in the cardiomyopathy of sepsis, in TLR3- and TLR9-K.O. mice, there were striking reductions in plasma levels of C5a and histones as well as reduced levels of cytokines in plasma and heart tissue after CLP. Since we know that histones cause cardiac dysfunction, rat cardiomyocytes (CMs) were exposed in vitro to the histones (purified from calf thymus), which caused bleb formation on the surfaces of CMs, suggesting histones may perturb the cell membrane of CMs. In vitro, exposure of CMs to the histones for 3 hours caused lactate dehydrogenase release from CMs. These data indicate that sepsis-induced cardiac dysfunction requires presence of TLR3 and TLR9 and may be linked to histone-induced damage of CMs.
Collapse
|
11
|
Pollock JA, Sharma N, Ippagunta SK, Redecke V, Häcker H, Katzenellenbogen JA. Triaryl Pyrazole Toll-Like Receptor Signaling Inhibitors: Structure-Activity Relationships Governing Pan- and Selective Signaling Inhibitors. ChemMedChem 2018; 13:2208-2216. [PMID: 30117269 DOI: 10.1002/cmdc.201800417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/06/2018] [Indexed: 11/11/2022]
Abstract
The immune system uses members of the toll-like receptor (TLR) family to recognize a variety of pathogen- and host-derived molecules in order to initiate immune responses. Although TLR-mediated, pro-inflammatory immune responses are essential for host defense, prolonged and exaggerated activation can result in inflammation pathology that manifests in a variety of diseases. Therefore, small-molecule inhibitors of the TLR signaling pathway might have promise as anti-inflammatory drugs. We previously identified a class of triaryl pyrazole compounds that inhibit TLR signaling by modulation of the protein-protein interactions essential to the pathway. We have now systematically examined the structural features essential for inhibition of this pathway, revealing characteristics of compounds that inhibited all TLRs tested (pan-TLR signaling inhibitors) as well as compounds that selectively inhibited certain TLRs. These findings reveal interesting classes of compounds that could be optimized for particular inflammatory diseases governed by different TLRs.
Collapse
Affiliation(s)
- Julie A Pollock
- Department of Chemistry, University of Illinois, 505 South Mathews Avenue, Urbana, IL, 61801, USA.,Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA, 23173, USA
| | - Naina Sharma
- Department of Chemistry, University of Illinois, 505 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Sirish K Ippagunta
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Present address: Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, Delhi, 110029, India
| | - Vanessa Redecke
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois, 505 South Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
12
|
Martin L, Derwall M, Al Zoubi S, Zechendorf E, Reuter DA, Thiemermann C, Schuerholz T. The Septic Heart: Current Understanding of Molecular Mechanisms and Clinical Implications. Chest 2018; 155:427-437. [PMID: 30171861 DOI: 10.1016/j.chest.2018.08.1037] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/25/2023] Open
Abstract
Septic cardiomyopathy is a key feature of sepsis-associated cardiovascular failure. Despite the lack of consistent diagnostic criteria, patients typically exhibit ventricular dilatation, reduced ventricular contractility, and/or both right and left ventricular dysfunction with a reduced response to volume infusion. Although there is solid evidence that the presence of septic cardiomyopathy is a relevant contributor to organ dysfunction and an important factor in the already complicated therapeutic management of patients with sepsis, there are still several questions to be asked: Which factors/mechanisms cause a cardiac dysfunction associated with sepsis? How do we diagnose septic cardiomyopathy? How do we treat septic cardiomyopathy? How does septic cardiomyopathy influence the long-term outcome of the patient? Each of these questions is interrelated, and the answers require a profound understanding of the underlying pathophysiology that involves a complex mix of systemic factors and molecular, metabolic, and structural changes of the cardiomyocyte. The afterload-related cardiac performance, together with speckle-tracking echocardiography, could provide methods to improve the diagnostic accuracy and guide therapeutic strategies in patients with septic cardiomyopathy. Because there are no specific/causal therapeutics for the treatment of septic cardiomyopathy, the current guidelines for the treatment of septic shock represent the cornerstone of septic cardiomyopathy therapy. This review provides an up-to-date overview of the current understanding of the pathophysiology, summarizes the evidence of currently available diagnostic tools and treatment options, and highlights the importance of further urgently needed studies aimed at improving diagnosis and investigating novel therapeutic targets for septic cardiomyopathy.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany; William Harvey Research Institute, Queen Mary University London, London, United Kingdom.
| | - Matthias Derwall
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Sura Al Zoubi
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniel A Reuter
- Department of Anesthesia and Intensive Care, University Hospital Rostock, Rostock, Germany
| | - Chris Thiemermann
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Tobias Schuerholz
- Department of Anesthesia and Intensive Care, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
13
|
Abstract
An impairment of cardiac function is a key feature of cardiovascular failure associated with sepsis; however, its clinical relevance is still underestimated. Recent advancements in echocardiography in patients with septic shock enable a better characterization of septic cardiomyopathy by unmasking a severe, cardiac dysfunction even in the presence of preserved left ventricular ejection fraction. The pathophysiology of septic cardiomyopathy involves a complex mixture of systemic factors and molecular, metabolic, and structural changes of the cardiomyocytes. A better understanding of these factors will enable the discovery of new therapeutic targets for urgently needed disease-modifying therapeutic interventions. To date, the cornerstone of therapeutic management lies in control of the underlying infectious process and hemodynamic stabilization. This review summarizes the pathogenesis, diagnosis, and treatment of septic cardiomyopathy, and highlights the importance of further urgently needed studies aimed at improving diagnosis and treatment for septic cardiomyopathy.
Collapse
|
14
|
Léger T, Charrier A, Moreau C, Hininger-Favier I, Mourmoura E, Rigaudière JP, Pitois E, Bouvier D, Sapin V, Pereira B, Azarnoush K, Demaison L. Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status. Physiol Rep 2018; 5:5/13/e13231. [PMID: 28684640 PMCID: PMC5506518 DOI: 10.14814/phy2.13231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF-α and IL-1β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF-α and gene expression of IL-1β and TNF-α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF-α and IL-1β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited.
Collapse
Affiliation(s)
- Thibault Léger
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| | - Alice Charrier
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| | - Clarisse Moreau
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| | - Isabelle Hininger-Favier
- Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Université Joseph Fourier, Grenoble, France
| | - Evangelia Mourmoura
- Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Université Joseph Fourier, Grenoble, France
| | | | - Elodie Pitois
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| | - Damien Bouvier
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Department of Clinical Research and Innovation, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Kasra Azarnoush
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France.,Heart Surgery Department, G. Montpied Hospital, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Luc Demaison
- INRA, UMR 1019 Nutrition Humaine, Clermont-Ferrand Cedex 1, France
| |
Collapse
|
15
|
Yu L, Feng Z. The Role of Toll-Like Receptor Signaling in the Progression of Heart Failure. Mediators Inflamm 2018; 2018:9874109. [PMID: 29576748 PMCID: PMC5822798 DOI: 10.1155/2018/9874109] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/28/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Medical systems worldwide are being faced with a growing need to understand mechanisms behind the pathogenesis of heart failure (HF) that is considered as a leading cause of morbidity and mortality around the world. Elevated levels of inflammatory mediators have been identified in patients with HF, which are primarily manifestations of innate immune responses mediated by pattern recognition receptors (PRRs). Toll-like receptors (TLRs), which belong to PRRs, are subjected to the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) to generate innate immune responses. More and more emerging data indicate that TLR signaling pathway molecules are involved in the progression of HF. Herein, we present new data with regard to the activation of TLRs in the failing heart, focusing on TLR2, TLR3, TLR4, and TLR9, and suggest the potential use of TLRs in target therapy.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
- Henan Key Laboratory of immunology and Targeted Drugs, Xinxiang, Henan 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan 453003, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
16
|
Samson N, Paulin R. Epigenetics, inflammation and metabolism in right heart failure associated with pulmonary hypertension. Pulm Circ 2017; 7:572-587. [PMID: 28628000 PMCID: PMC5841893 DOI: 10.1177/2045893217714463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for both morbidity and mortality in pulmonary arterial hypertension (PAH), but also occurs in numerous other common diseases and conditions, including left ventricle dysfunction. RVF remains understudied compared with left ventricular failure (LVF). However, right and left ventricles have many differences at the morphological level or the embryologic origin, and respond differently to pressure overload. Therefore, knowledge from the left ventricle cannot be extrapolated to the right ventricle. Few studies have focused on the right ventricle and have permitted to increase our knowledge on the right ventricular-specific mechanisms driving decompensation. Here we review basic principles such as mechanisms accounting for right ventricle hypertrophy, dysfunction, and transition toward failure, with a focus on epigenetics, inflammatory, and metabolic processes.
Collapse
Affiliation(s)
- Nolwenn Samson
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Roxane Paulin
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
17
|
Li W, Hsiao HM, Higashikubo R, Saunders BT, Bharat A, Goldstein DR, Krupnick AS, Gelman AE, Lavine KJ, Kreisel D. Heart-resident CCR2 + macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI Insight 2016; 1:87315. [PMID: 27536731 DOI: 10.1172/jci.insight.87315] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is well established that maladaptive innate immune responses to sterile tissue injury represent a fundamental mechanism of disease pathogenesis. In the context of cardiac ischemia reperfusion injury, neutrophils enter inflamed heart tissue, where they play an important role in potentiating tissue damage and contributing to contractile dysfunction. The precise mechanisms that govern how neutrophils are recruited to and enter the injured heart are incompletely understood. Using a model of cardiac transplant-mediated ischemia reperfusion injury and intravital 2-photon imaging of beating mouse hearts, we determined that tissue-resident CCR2+ monocyte-derived macrophages are essential mediators of neutrophil recruitment into ischemic myocardial tissue. Our studies revealed that neutrophil extravasation is mediated by a TLR9/MyD88/CXCL5 pathway. Intravital 2-photon imaging demonstrated that CXCL2 and CXCL5 play critical and nonredundant roles in guiding neutrophil adhesion and crawling, respectively. Together, these findings uncover a specific role for a tissue-resident monocyte-derived macrophage subset in sterile tissue inflammation and support the evolving concept that macrophage ontogeny is an important determinant of function. Furthermore, our results provide the framework for targeting of cell-specific signaling pathways in myocardial ischemia reperfusion injury.
Collapse
Affiliation(s)
| | | | | | - Brian T Saunders
- Department of Pathology and Immunology, Washington University of Medicine, St. Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Daniel R Goldstein
- Department of Internal Medicine and Institute for Gerontology, The University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander S Krupnick
- Department of Surgery and.,Department of Pathology and Immunology, Washington University of Medicine, St. Louis, Missouri, USA
| | - Andrew E Gelman
- Department of Surgery and.,Department of Pathology and Immunology, Washington University of Medicine, St. Louis, Missouri, USA
| | - Kory J Lavine
- Department of Medicine, Washington University of Medicine, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery and.,Department of Pathology and Immunology, Washington University of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Chukkapalli SS, Velsko IM, Rivera-Kweh MF, Larjava H, Lucas AR, Kesavalu L. Global TLR2 and 4 deficiency in mice impacts bone resorption, inflammatory markers and atherosclerosis to polymicrobial infection. Mol Oral Microbiol 2016; 32:211-225. [PMID: 27224005 DOI: 10.1111/omi.12165] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
Toll-like-receptors (TLRs) play a significant role in the generation of a specific innate immune response against invading pathogens. TLR2 and TLR4 signaling contributes to infection-induced inflammation in periodontal disease (PD) and atherosclerosis. Observational studies point towards a relationship between PD and atherosclerosis, but the role of TLR2 and TLR4 in the recognition of multiple oral pathogens and their modulation of host response leading to atherosclerosis are not clear. We evaluated the role of TLR2 and TLR4 signaling in the induction of both PD and atherosclerosis in TLR2-/- and TLR4-/- mice to polymicrobial infection with periodontal pathogens Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum. Polybacterial infections have established gingival colonization in TLR2-/- and TLR4-/- mice and induction of a pathogen-specific immunoglobulin G immune response. But TLR deficiency dampened accelerated alveolar bone resorption and intrabony defects, indicating a central role in infection-induced PD. Periodontal bacteria disseminated from gingival tissue to the heart and aorta through intravascular dissemination; however, there was no increase in atherosclerosis progression in the aortic arch. Polybacterial infection does not alter levels of serum risk factors such as oxidized low-density lipoprotein, nitric oxide, and lipid fractions in both mice. Polymicrobial-infected TLR2-/- mice demonstrated significant levels (P < 0.05 to P < 0.01) of T helper type 2 [transforming growth factor-β1 , macrophage inflammatory protein-3α, interleukin-13 (IL-13)] and T helper type 17 (IL-17, IL-21, IL-22, IL-23) splenic T-cell cytokine responses. Increased heat-shock protein expression, hspa1a for Hsp 70, was observed for both TLR2-/- and TLR4-/- mice. This study supports a role for TLR2 and TLR4 in PD and atherosclerosis, corroborating an intricate association between two inflammatory diseases.
Collapse
Affiliation(s)
- S S Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - I M Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - M F Rivera-Kweh
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - H Larjava
- Division of Periodontics and Dental Hygiene, University of British Columbia, Vancouver, BC, Canada
| | - A R Lucas
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA.,Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - L Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol 2016; 111:42. [PMID: 27164906 DOI: 10.1007/s00395-016-0553-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Acute myocardial infarction (AMI) causes sterile inflammation, which exacerbates tissue injury. Elevated levels of circulating mitochondrial DNA (mtDNA) have been associated with AMI. We hypothesized that mtDNA triggers an innate immune response via TLR9 and NF-κB activation, causing cardiomyocyte injury. Murine cardiomyocytes express TLR9 mRNA and protein and were able to internalize fluorescently labeled mouse mtDNA. Incubation of human embryonic kidney cells with serum from AMI patients containing naturally elevated levels of mtDNA induced TLR9-dependent NF-κB activity. This effect was mimicked by isolated mtDNA. mtDNA activated NF-κB in reporter mice both in vivo and in isolated cardiomyocytes. Moreover, incubation of isolated cardiomyocytes with mtDNA induced cell death after 4 and 24 h. Laser confocal microscopy showed that incubation of cardiomyocytes with mtDNA accelerated mitochondrial depolarization induced by reactive oxygen species. In contrast to mtDNA, isolated total DNA did not activate NF-κB nor induce cell death. In conclusion, mtDNA can induce TLR9-dependent NF-κB activation in reporter cells and activate NF-κB in cardiomyocytes. In cardiomyocytes, mtDNA causes mitochondrial dysfunction and death. Endogenous mtDNA in the extracellular space is a danger signal with direct detrimental effects on cardiomyocytes.
Collapse
|
20
|
Mitochondrial ROS Induces Cardiac Inflammation via a Pathway through mtDNA Damage in a Pneumonia-Related Sepsis Model. PLoS One 2015; 10:e0139416. [PMID: 26448624 PMCID: PMC4598156 DOI: 10.1371/journal.pone.0139416] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
We have previously shown that mitochondria-targeted vitamin E (Mito-Vit-E), a mtROS specific antioxidant, improves cardiac performance and attenuates inflammation in a pneumonia-related sepsis model. In this study, we applied the same approaches to decipher the signaling pathway(s) of mtROS-dependent cardiac inflammation after sepsis. Sepsis was induced in Sprague Dawley rats by intratracheal injection of S. pneumoniae. Mito-Vit-E, vitamin E or vehicle was administered 30 minutes later. In myocardium 24 hours post-inoculation, Mito-Vit-E, but not vitamin E, significantly protected mtDNA integrity and decreased mtDNA damage. Mito-Vit-E alleviated sepsis-induced reduction in mitochondria-localized DNA repair enzymes including DNA polymerase γ, AP endonuclease, 8-oxoguanine glycosylase, and uracil-DNA glycosylase. Mito-Vit-E dramatically improved metabolism and membrane integrity in mitochondria, suppressed leakage of mtDNA into the cytoplasm, inhibited up-regulation of Toll-like receptor 9 (TLR9) pathway factors MYD88 and RAGE, and limited RAGE interaction with its ligand TFAM in septic hearts. Mito-Vit-E also deactivated NF-κB and caspase 1, reduced expression of the essential inflammasome component ASC, and decreased inflammatory cytokine IL–1β. In vitro, both Mito-Vit-E and TLR9 inhibitor OND-I suppressed LPS-induced up-regulation in MYD88, RAGE, ASC, active caspase 1, and IL–1β in cardiomyocytes. Since free mtDNA escaped from damaged mitochondria function as a type of DAMPs to stimulate inflammation through TLR9, these data together suggest that sepsis-induced cardiac inflammation is mediated, at least partially, through mtDNA-TLR9-RAGE. At last, Mito-Vit-E reduced the circulation of myocardial injury marker troponin-I, diminished apoptosis and amended morphology in septic hearts, suggesting that mitochondria-targeted antioxidants are a potential cardioprotective approach for sepsis.
Collapse
|
21
|
Abstract
One challenge in studying chronic infectious and inflammatory disorders is understanding how host pattern recognition receptors (PRRs), specifically toll-like receptors (TLRs), sense and respond to pathogen- or damage-associated molecular patterns, their communication with each other and different components of the immune system, and their role in propagating inflammatory stages of disease. The discovery of innate immune activation through nucleic acid recognition by intracellular PRRs such as endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) and cytoplasmic proteins (absent in melanoma 2 and DNA-dependent activator of interferon regulatory factor) opened a new paradigm: Nucleic acid sensing is now implicated in multiple immune and inflammatory conditions (e.g., atherosclerosis, cancer), viral (e.g., human papillomavirus, herpes virus) and bacterial (e.g., Helicobacter pylori, pneumonia) diseases, and autoimmune disorders (e.g., systemic lupus erythematosus, rheumatoid arthritis). Clinical investigations reveal the overexpression of specific nucleic acid sensors in diseased tissues. In vivo animal models show enhanced disease progression associated with receptor activation. The involvement of nucleic acid sensors in various systemic conditions is further supported by studies reporting receptor knockout mice being either protected from or prone to disease. TLR9-mediated inflammation is also implicated in periodontal diseases. Considering that persistent inflammation in the oral cavity is associated with systemic diseases and that oral microbial DNA is isolated at distal sites, nucleic acid sensing may potentially be a link between oral and systemic diseases. In this review, we discuss recent advances in how intracellular PRRs respond to microbial nucleic acids and emerging views on the role of nucleic acid sensors in various systemic diseases. We also highlight new information on the role of intracellular PRRs in the pathogenesis of oral diseases including periodontitis and oral cavity cancer, which might offer future possibilities for disease prevention and therapy.
Collapse
Affiliation(s)
- K E Crump
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - S E Sahingur
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
22
|
Alvarado-Vásquez N. Circulating cell-free mitochondrial DNA as the probable inducer of early endothelial dysfunction in the prediabetic patient. Exp Gerontol 2015; 69:70-8. [PMID: 26026597 DOI: 10.1016/j.exger.2015.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/09/2015] [Accepted: 05/25/2015] [Indexed: 12/16/2022]
Abstract
Recent evidence has shown that 346million people in the world have diabetes mellitus (DM); this number will increase to 439million by 2030. In addition, current data indicate an increase in DM cases in the population between 40 and 59years of age. Diabetes is associated with the development of micro- and macro-vascular complications, derived from chronic hyperglycemia on the endothelium. Some reports demonstrate that people in a prediabetic state have a major risk of developing early endothelial dysfunction (ED). Today, it is accepted that individuals considered as prediabetic patients are in a pro-inflammatory state associated with endothelial and mitochondrial dysfunction. It is important to mention that impaired mitochondrial functionality has been linked to endothelial apoptosis and release of mitochondrial DNA (mtDNA) in patients with sepsis, cardiac disease, or atherosclerosis. This free mtDNA could promote ED, as well as other side effects on the vascular system through the activation of the toll-like receptor 9 (TLR9). TLR9 is expressed in different cell types (e.g., T or B lymphocytes, mastocytes, and epithelial and endothelial cells). It is localized intracellularly and recognizes non-methylated dinucleotides of viral, bacterial, and mitochondrial DNA. Recently, it has been reported that TLR9 is associated with the pathogenesis of lupus erythematosus, rheumatoid arthritis, and autoimmune diabetes. In this work, it is hypothesized that the increase in the levels of circulating mtDNA is the trigger of early ED in the prediabetic patient, and later on in the older patient with diabetes, through activation of the TLR9 present in the endothelium.
Collapse
Affiliation(s)
- Noé Alvarado-Vásquez
- Department of Biochemistry, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calz. de Tlalpan 4502, Col. Sección XVI, 14080 Mexico, D.F., Mexico, Mexico.
| |
Collapse
|
23
|
Hu D, Yang X, Xiang Y, Li H, Yan H, Zhou J, Caudle Y, Zhang X, Yin D. Inhibition of Toll-like receptor 9 attenuates sepsis-induced mortality through suppressing excessive inflammatory response. Cell Immunol 2015; 295:92-8. [PMID: 25880099 DOI: 10.1016/j.cellimm.2015.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/12/2015] [Accepted: 03/26/2015] [Indexed: 01/12/2023]
Abstract
Sepsis, a major clinical problem with high morbidity and mortality, is caused by overwhelming systemic host-inflammatory response. Toll-like receptors (TLRs) play a fundamental role in induction of hyperinflammation and tissue damage in sepsis. In this study, we demonstrate a protective role of TLR9 inhibition against the dysregulated inflammatory response and tissue injury in sepsis. TLR9 deficiency decreased the mortality of mice following cecal ligation and puncture (CLP)-induced sepsis. TLR9 knockout mice showed dampened p38 activation and augmented Akt phosphorylation in the spleen, lung and liver. In addition, TLR9 deficiency decreased the levels of inflammatory cytokines and attenuated splenic apoptosis after CLP. These results indicate that TLR9 inhibition might offer a novel therapeutic strategy for the management of sepsis.
Collapse
Affiliation(s)
- Dan Hu
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohua Yang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Yanxiao Xiang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA; Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Hui Li
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Hui Yan
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jun Zhou
- Department of Radiology,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Xiumei Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
24
|
Rodrigues FL, Silva LEV, Hott SC, Bomfim GF, da Silva CAA, Fazan R, Resstel LBM, Tostes RC, Carneiro FS. Toll-like receptor 9 plays a key role in the autonomic cardiac and baroreflex control of arterial pressure. Am J Physiol Regul Integr Comp Physiol 2015; 308:R714-23. [PMID: 25673780 DOI: 10.1152/ajpregu.00150.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/27/2015] [Indexed: 02/07/2023]
Abstract
The crosstalk between the immune and the autonomic nervous system may impact the cardiovascular function. Toll-like receptors are components of the innate immune system and play developmental and physiological roles. Toll-like receptor 9 (TLR9) is involved in the pathogenesis of cardiovascular diseases, such as hypertension and heart failure. Since such diseases are commonly accompanied by autonomic imbalance and lower baroreflex sensitivity, we hypothesized that TLR9 modulates cardiac autonomic and baroreflex control of arterial pressure (AP). Toll-like receptor 9 knockout (TLR9 KO) and wild-type (WT) mice were implanted with catheters into carotid artery and jugular vein and allowed to recover for 3 days. After basal recording of AP, mice received methyl-atropine or propranolol. AP and pulse interval (PI) variability were evaluated in the time and frequency domain (spectral analysis), as well as by multiscale entropy. Spontaneous baroreflex was studied by sequence technique. Behavioral and cardiovascular responses to fear-conditioning stress were also evaluated. AP was similar between groups, but TLR9 KO mice exhibited lower basal heart rate (HR). AP variability was not different, but PI variability was increased in TLR9 KO mice. The total entropy was higher in TLR9 KO mice. Moreover, baroreflex function was found higher in TLR9 KO mice. Atropine-induced tachycardia was increased in TLR9 KO mice, whereas the propranolol-induced bradycardia was similar to WT mice. TLR9 KO mice exhibit increased behavioral and decreased tachycardia responses to fear-conditioning stress. In conclusion, our findings suggest that TLR9 may negatively modulate cardiac vagal tone and baroreflex in mice.
Collapse
Affiliation(s)
- Fernanda Luciano Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Luiz Eduardo V Silva
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; and
| | - Sara Cristina Hott
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso, Brazil
| | - Carlos Alberto Aguiar da Silva
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; and
| | - Rubens Fazan
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; and
| | - Leonardo B M Resstel
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil;
| |
Collapse
|
25
|
Ding Y, Lin Y, Zhu T, Huang M, Xu Q. Interleukin 6 increases dysfunction of organs in sepsis rats through sirtuin 1. Int J Clin Exp Med 2014; 7:2593-2598. [PMID: 25356114 PMCID: PMC4211764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
Sepsis-induced organ failure is the major cause of death, and is characterized by a massive dysregulated inflammatory response. The present study was to determine whether interleukin 6 (IL-6) expression was increased in sepsis rats and the roles of IL-6 in the damage of cardiac, liver and renal function in the sepsis rats. Sepsis rat models were elicited by intravenous injection of LPS. The mRNA and protein of IL-6 levels were increased in the sepsis rats. The Left ventricular developed pressure (LVDP) and average ±dP/dt were significantly reduced in sepsis rats compare with sham group. ALT and AST activities and creatinine level were increased in the sepsis rats. IL-6 significantly reduced LVDP and average ±dP/dt, increased the activities of ALT and AST, and increased the concentration of creatinine in the sepsis rats. EX527, a sirtuin 1 (SIRT 1) inhibitor, blocked the effects of IL-6 in the sepsis rats. These results indicate that IL-6 plays important roles in the damage of cardiac, liver and renal function in the sepsis rats through SIRT 1.
Collapse
Affiliation(s)
- Ying Ding
- Department of Intensive Care Unit, Hangzhou Xiasha HospitalHangzhou 310018, China
| | - Yongjun Lin
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, China
| | - Tao Zhu
- Department of Intensive Care Unit, Hangzhou Xiasha HospitalHangzhou 310018, China
| | - Man Huang
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, China
| | - Qiuping Xu
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, China
| |
Collapse
|