1
|
Quevedo-Reina JC, Marrero-Robayna S, Gonzalez-Cabrera F, Valga F, Vega-Diaz N. Evolution of peritoneal function in sclerosating encapsulating peritonitis: a case report. Nefrologia 2023; 43:494-496. [PMID: 37659956 DOI: 10.1016/j.nefroe.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/25/2021] [Indexed: 09/04/2023] Open
Affiliation(s)
| | - Silvia Marrero-Robayna
- Hospital Universitario de Gran Canaria Doctor Negrín, Serviciode Nefrologia, Las Palmas, Spain.
| | - Fayna Gonzalez-Cabrera
- Hospital Universitario de Gran Canaria Doctor Negrín, Serviciode Nefrologia, Las Palmas, Spain.
| | - Francisco Valga
- Hospital Universitario de Gran Canaria Doctor Negrín, Serviciode Nefrologia, Las Palmas, Spain.
| | - Nicanor Vega-Diaz
- Hospital Universitario de Gran Canaria Doctor Negrín, Serviciode Nefrologia, Las Palmas, Spain.
| |
Collapse
|
2
|
Impact of Metabolomics Technologies on the Assessment of Peritoneal Membrane Profiles in Peritoneal Dialysis Patients: A Systematic Review. Metabolites 2022; 12:metabo12020145. [PMID: 35208219 PMCID: PMC8879920 DOI: 10.3390/metabo12020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective and frequent dialysis modality in adults, particularly preferred in infants and young children with end-stage renal disease (ESRD). Long-term exposure of the peritoneal membrane to dialysis solutions results in severe morphologic and functional alterations. Peritoneal dialysis effluent biomarkers are based on omics technologies, which could predict the onset or confirm the diagnosis of peritoneal membrane dysfunction, would allow the development of accurate early prognostic tools and, potentially, the identification of future therapeutic targets. The purpose of our study was to critically review the literature on the impact and the effectiveness of metabolomics technologies in peritoneal health. The main search was performed in electronic databases (PubMed/MEDLINE, Embase and Cochrane Central Register of Controlled Trials) from inception to December 2020, using various combinations of Medical Subject Headings (MeSH). The main search highlighted nine studies, of which seven were evaluated in detail. Metabolomics technologies may provide significant input in the recognition of peritoneal membrane dysfunction in PD patients and provide evidence of early intervention strategies that could protect peritoneum health and function.
Collapse
|
3
|
Quevedo-Reina JC, Marrero-Robayna S, Gonzalez-Cabrera F, Valga F, Vega-Diaz N. Evolution of peritoneal function in sclerosating encapsulating peritonitis: a case report. Nefrologia 2021; 43:S0211-6995(21)00156-9. [PMID: 34404567 DOI: 10.1016/j.nefro.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 10/20/2022] Open
Affiliation(s)
| | - Silvia Marrero-Robayna
- Hospital Universitario de Gran Canaria Doctor Negrín, Servicio de Nefrologia, Las Palmas, España
| | - Fayna Gonzalez-Cabrera
- Hospital Universitario de Gran Canaria Doctor Negrín, Servicio de Nefrologia, Las Palmas, España
| | - Francisco Valga
- Hospital Universitario de Gran Canaria Doctor Negrín, Servicio de Nefrologia, Las Palmas, España
| | - Nicanor Vega-Diaz
- Hospital Universitario de Gran Canaria Doctor Negrín, Servicio de Nefrologia, Las Palmas, España
| |
Collapse
|
4
|
Mathew KG, Akhtar S, Pius SI. Abdominal cocoon: precipitated by laparoscopic gas insufflation. BMJ Case Rep 2021; 14:e240024. [PMID: 33811094 PMCID: PMC8023630 DOI: 10.1136/bcr-2020-240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2021] [Indexed: 11/04/2022] Open
Abstract
A young male in his early 30s presented to us with increasing swelling at the umbilicus, and an umbilical hernia was diagnosed. At laparoscopic intraperitoneal onlay mesh (IPOM) repair, an unexpected finding of a thin innocuous-looking fibrous film over the small bowel was noted. This finding presented a dilemma as to the probable pathology of this material, and a decision had to be made on whether laparoscopic IPOM could be continued. It was prudently decided to abandon the plan of placing a mesh intraperitoneally and an open repair of the umbilical hernia was done. In retrospect this was a wise decision, as, after 7 months he had to have a laparotomy for intestinal obstruction, when the classic thick fibrous encapsulating abdominal cocoon was seen. Hence here we have followed the evolution of the abdominal cocoon from its original asymptomatic phase to the classic encapsulating sclerosing peritonitis with probably laparoscopic gas insufflation being the precipitating factor.
Collapse
|
5
|
Shentu Y, Li Y, Xie S, Jiang H, Sun S, Lin R, Chen C, Bai Y, Zhang Y, Zheng C, Zhou Y. Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling. Int Immunopharmacol 2021; 93:107374. [PMID: 33517222 DOI: 10.1016/j.intimp.2021.107374] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/26/2023]
Abstract
Sodium glucose cotransporter-2 (SGLT-2) inhibitor has been reported to exert a glucose-lowering effect in the peritoneum exposed to peritoneal dialysis solution. However, whether SGLT-2 inhibitors can regulate peritoneal fibrosis by suppressing TGF-β/Smad signaling is unclear. We aimed to (i) examine the effect of the SGLT-2 inhibitor empagliflozin in reducing inflammatory reaction and preventing peritoneal dialysis solution-induced peritoneal fibrosis and (ii) elucidate the underlying mechanisms. High-glucose peritoneal dialysis solution or transforming growth factor β1 (TGF-β1) was used to induce peritoneal fibrosis in vivo, in a mouse peritoneal dialysis model (C57BL/6 mice) and in human peritoneal mesothelial cells in vitro, to stimulate extracellular matrix accumulation. The effects of empagliflozin and adeno-associated virus-RNAi, which is used to suppress SGLT-2 activity, on peritoneal fibrosis and extracellular matrix were evaluated. The mice that received chronic peritoneal dialysis solution infusions showed typical features of peritoneal fibrosis, including markedly increased peritoneal thickness, excessive matrix deposition, increased peritoneal permeability, and upregulated α-smooth muscle actin and collagen I expression. Empagliflozin treatment or downregulation of SGLT-2 expression significantly ameliorated these pathological changes. Inflammatory cytokines (TNF-α, IL-1β, IL-6) and TGF-β/Smad signaling-associated proteins, such as TGF-β1 and phosphorylated Smad (p-Smad3), decreased in the empagliflozin-treated and SGLT-2 downregulated groups. In addition, empagliflozin treatment and downregulation of SGLT-2 expression reduced the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6), TGF-β1, α-smooth muscle actin, collagen I, and p-Smad3 accumulation in human peritoneal mesothelial cells. Collectively, these results indicated that empagliflozin exerted a clear protective effect on high-glucose peritoneal dialysis-induced peritoneal fibrosis via suppressing TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuyang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shicheng Xie
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Huanchang Jiang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shicheng Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Rixu Lin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Institute of Kidney Health, Center for Health Assessment, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
6
|
Shentu Y, Jiang H, Liu X, Chen H, Yang D, Zhang J, Cheng C, Zheng Y, Zhang Y, Chen C, Zheng C, Zhou Y. Nestin Promotes Peritoneal Fibrosis by Protecting HIF1-α From Proteasomal Degradation. Front Physiol 2020; 11:517912. [PMID: 33391003 PMCID: PMC7772359 DOI: 10.3389/fphys.2020.517912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
Background Peritoneal dialysis (PD) is a treatment for end stage renal disease patients, but it can also cause peritoneal fibrosis. Nestin is known as a neural stem cell marker and it has many functions. The hypoxia induced factor (HIF) signaling pathway can be activated under hypoxia conditions, leading to the overexpression of some angiogenesis related genes. The aim of our study is to demonstrate Nestin’s role in the development of peritoneal fibrosis (PF), and to provide a new target (Nestin) to treat PF. Methods PD mice models were constructed by an intraperitoneal administration of PDS at 10 ml/100g/d for 4 weeks. Nestin-positive cells were isolated from peritonea of Nestin-GFP mice by flow cytometry. The relationship of Nestin and HIF1-α-VEGFA pathway was detected by Nestin knockdown, Co-immunoprecipitation and immunofluorescence. Also, proteasomal activity was demonstrated by CHX and MG132 application, followed by Western blotting and Co-immunoprecipitation. Results In our experiments, we found that Nestin expression resulted in PF. Also, HIF1-α/VEGFA pathway was activated in PF. Nestin knockdown reduced the level of HIF1-α. Nestin directly bound to HIF1-α and protected HIF1-α from proteasomal degradation. Overexpression of HIF1-α reverts the fibrosis levels in Nestin-knockdown cells. In brief, Nestin inhibited the degradation of HIF1-α by mitigating its ubiquitination level, leading to the activation of HIF1-α signaling pathway, and eventually promoted PF. Conclusion We found a novel mechanism of PF that Nestin promotes by protecting HIF1-α from proteasomal degradation. Taken together, our key findings highlight a novel mechanism by which the silencing of Nestin hinders HIF1- α -induced PF.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huanchang Jiang
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyuan Liu
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Chen
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dicheng Yang
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinqi Zhang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chen Cheng
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yulin Zheng
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang Zhang
- Department of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Onur Cura D, Yildiz S, Ataman E, Ersan S, Tanrisev M, Ulgenalp A, Camsari T, Ercal D. Relationship between plasminogen activator inhibitor-1 gene alterations and fibrosis in peritoneal dialysis patients. Ther Apher Dial 2020; 25:97-102. [PMID: 32301223 DOI: 10.1111/1744-9987.13501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023]
Abstract
Peritoneal fibrosis (PF) is a pathological change that occurs mostly long-term peritoneal dialysis (PD) patients, as a result of triggering the inflammatory response. Plasminogen activator inhibitor-1 (PAI-1) is an important molecule featured in the development of fibrosis. It has been shown in literature that PAI-1 gene alterations are associated with fibrosis in many tissues and organs. However, PAI-1 gene alterations in long-term PD patients have not yet been investigated. In this study, PAI-1 4G/5G polymorphism was examined by reverse hybridization, and all coding exons of the PAI-1 gene were examined by sequence analysis to provide treatment modification in patients with predisposition before fibrosis develops. The patients were divided into two groups according to ultrafiltration failure test and duration of PD treatment: those with suspected PF or a high probability of developing PF (36%) and those with a low probability of developing PF (64%). There was no significant difference between the two groups in findings such as peritoneal equilibration test (PET), Kt/V, the content of the PD solution used, peritonitis, and PAI-1 4G/5G polymorphism (P > .05). A total of eight gene alterations (rs2227660, rs2227668, rs2854233, rs41281004, rs61553169, rs368413856, rs2227684) were detected by sequence analysis, one of which was exonic (rs6092). When the genotype distributions of these variants were examined, no significant difference was found between the two groups. PAI-1 gene changes were not detected in patients with the probability of developing PF. There is a need for further studies involving other molecules responsible for predisposing to PF with larger patient populations in patients undergoing long-term PD treatment.
Collapse
Affiliation(s)
- Duygu Onur Cura
- Faculty of Medicine, Department of Medical Genetics, Dokuz Eylul University, Izmir, Turkey
| | - Serkan Yildiz
- Faculty of Medicine, Department of Nephrology, Dokuz Eylul University, Izmir, Turkey
| | - Esra Ataman
- Faculty of Medicine, Department of Medical Genetics, Dokuz Eylul University, Izmir, Turkey
| | - Sibel Ersan
- Department of Nephrology, Tepecik Education and Research Hospital, University of Health Sciences, İzmir, Turkey
| | - Mehmet Tanrisev
- Department of Nephrology, Tepecik Education and Research Hospital, University of Health Sciences, İzmir, Turkey
| | - Ayfer Ulgenalp
- Faculty of Medicine, Department of Medical Genetics, Dokuz Eylul University, Izmir, Turkey
| | - Taner Camsari
- Faculty of Medicine, Department of Nephrology, Dokuz Eylul University, Izmir, Turkey
| | - Derya Ercal
- Faculty of Medicine, Department of Pediatric Genetics, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
8
|
Li X, Liu H, Sun L, Zhou X, Yuan X, Chen Y, Liu F, Liu Y, Xiao L. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor. J Cell Mol Med 2019; 23:2372-2383. [PMID: 30693641 PMCID: PMC6433681 DOI: 10.1111/jcmm.14029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Long‐term peritoneal dialysis (PD) can lead to the induction of mesothelial/epithelial‐mesenchymal transition (MMT/EMT) and fibrosis; these effects eventually result in ultrafiltration failure and the discontinuation of PD. MicroRNA‐302c (miR‐302c) is believed to be involved in regulating tumour cell growth and metastasis by suppressing MMT, but the effect of miR‐302c on MMT in the context of PD is unknown. MiR‐302c levels were measured in mesothelial cells isolated from the PD effluents of continuous ambulatory peritoneal dialysis patients. After miR‐302c overexpression using lentivirus, human peritoneal mesothelial cell line (HMrSV5) and PD mouse peritoneum were treated with TGF‐β1 or high glucose peritoneal dialysate respectively. MiR‐302c expression level and MMT‐related factors alteration were observed. In addition, fibrosis of PD mouse peritoneum was alleviated by miR‐302c overexpression. Furthermore, the expression of connective tissue growth factor (CTGF) was negatively related by miR‐302c, and LV‐miR‐302c reversed the up‐regulation of CTGF induced by TGF‐β1. These data suggest that there is a novel TGF‐β1/miR‐302c/CTGF pathway that plays a significant role in the process of MMT and fibrosis during PD. MiR‐302c might be a potential biomarker for peritoneal fibrosis and a novel therapeutic target for protection against peritoneal fibrosis in PD patients.
Collapse
Affiliation(s)
- Xiejia Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinke Yuan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Guo Y, Sun L, Xiao L, Gou R, Fang Y, Liang Y, Wang R, Li N, Liu F, Tang L. Aberrant Wnt/Beta-Catenin Pathway Activation in Dialysate-Induced Peritoneal Fibrosis. Front Pharmacol 2017; 8:774. [PMID: 29163160 PMCID: PMC5670149 DOI: 10.3389/fphar.2017.00774] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/13/2017] [Indexed: 01/15/2023] Open
Abstract
Peritoneal dialysis (PD)-associated peritoneal fibrosis is a chronic progress which induces ultrafiltration failure. It remains a challenge to prevent the progression of PD-associated fibrosis in clinic practice. Wnt/β-catenin pathway plays important role in many severe fibrotic diseases, here we investigated its contribution to the development of peritoneal damage. We isolated mesothelial cells (MC) from the effluent of PD patients and found that the expressions of Wnt1, Wnt5a, β-catenin, and LEF1 were increased in patients with more than 1-year PD compared with patients who just started with PD (<1 month). The elevated expressions of Wnts and β-catenin were accompanied with changes in the expressions of E-cadherin, α-SMA, COL-I, and FN mRNA and proteins, which are known related to mesothelial-mesenchymal transition (MMT). In addition, treatment with high glucose significantly increased the expression of Wnt1, Wnt5a, β-catenin, and LEF1 as well as the expression of α-SMA, COL-I, and FN in human peritoneal mesothelial cells (HPMC), whereas the expression of E-cadherin was reduced. Dickkopf-1 (DKK-1) is an endogenous inhibitor of Wnt/β-catenin signaling. Overexpression of DKK1 transgene significantly decreased the expression of β-catenin and attenuated the process of MMT as indicated by the decreased expression of α-SMA, COL-I, and FN and the increased expression of E-cadherin. Furthermore, TGF-β1 treatment significantly activated the Wnt/β-catenin pathway in HPMCs, while DKK1 blocked the TGF-β1-induced Wnt signaling activation and significantly inhibited the process of MMT. These data suggest that the canonical Wnt/β-catenin pathway plays an important role in the MMT and fibrosis induced by PD.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiao
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudong Fang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiqiang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Fuyou Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Tang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Wu J, Xing C, Zhang L, Mao H, Chen X, Liang M, Wang F, Ren H, Cui H, Jiang A, Wang Z, Zou M, Ji Y. Autophagy promotes fibrosis and apoptosis in the peritoneum during long-term peritoneal dialysis. J Cell Mol Med 2017; 22:1190-1201. [PMID: 29077259 PMCID: PMC5783841 DOI: 10.1111/jcmm.13393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
Long-term peritoneal dialysis is accompanied by functional and histopathological alterations in the peritoneal membrane. In the long process of peritoneal dialysis, high-glucose peritoneal dialysis solution (HGPDS) will aggravate the peritoneal fibrosis, leading to decreased effectiveness of peritoneal dialysis and ultrafiltration failure. In this study, we found that the coincidence of elevated TGF-β1 expression, autophagy, apoptosis and fibrosis in peritoneal membrane from patients with peritoneal dialysis. The peritoneal membranes from patients were performed with immunocytochemistry and transmission electron microscopy. Human peritoneal mesothelial cells were treated with 1.5%, 2.5% and 4.25% HGPDS for 24 hrs; Human peritoneal mesothelial cells pre-treated with TGF-β1 (10 ng/ml) or transfected with siRNA Beclin1 were treated with 4.25% HGPDS or vehicle for 24 hrs. We further detected the production of TGF-β1, activation of TGF-β1/Smad2/3 signalling, induction of autophagy, EMT, fibrosis and apoptosis. We also explored whether autophagy inhibition by siRNA targeting Beclin 1 reduces EMT, fibrosis and apoptosis in human peritoneal mesothelial cells. HGPDS increased TGF-β1 production, activated TGF-β1/Smad2/3 signalling and induced autophagy, fibrosis and apoptosis hallmarks in human peritoneal mesothelial cells; HGPDS-induced Beclin 1-dependent autophagy in human peritoneal mesothelial cells; Autophagy inhibition by siRNA Beclin 1 reduced EMT, fibrosis and apoptosis in human peritoneal mesothelial cells. Taken all together, these studies are expected to open a new avenue in the understanding of peritoneal fibrosis, which may guide us to explore the compounds targeting autophagy and achieve the therapeutic improvement of PD.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changying Xing
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Zhang
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huijuan Mao
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuguan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingxing Liang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fang Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haibin Ren
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqing Cui
- Department of Nephrology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aiqin Jiang
- Medical School of Nanjing University, Nanjing, China
| | - Zibin Wang
- Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meijuan Zou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Zhang Z, Jiang N, Ni Z. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis. Front Med 2017; 11:349-358. [PMID: 28791669 DOI: 10.1007/s11684-017-0571-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
Peritoneal dialysis (PD) is an established form of renal replacement therapy. Long-term PD leads to morphologic and functional changes to the peritoneal membrane (PM), which is defined as peritoneal fibrosis, a known cause of loss of peritoneal ultrafiltration capacity. Inflammation and angiogenesis are key events during the pathogenesis of peritoneal fibrosis. This review discusses the pathophysiology of peritoneal fibrosis and recent research progress on key fibrogenic molecular mechanisms in peritoneal inflammation and angiogenesis, including Toll-like receptor ligand-mediated, NOD-like receptor protein 3/interleukin-1β, vascular endothelial growth factor, and angiopoietin-2/Tie2 signaling pathways. Furthermore, novel strategies targeting peritoneal inflammation and angiogenesis to preserve the PM are discussed in depth.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Na Jiang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
12
|
Dauleh S, Santeramo I, Fielding C, Ward K, Herrmann A, Murray P, Wilm B. Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum. PLoS One 2016; 11:e0158997. [PMID: 27403660 PMCID: PMC4942062 DOI: 10.1371/journal.pone.0158997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/24/2016] [Indexed: 12/16/2022] Open
Abstract
The human omentum has been long regarded as a healing patch, used by surgeons for its ability to immunomodulate, repair and vascularise injured tissues. A major component of the omentum are mesothelial cells, which display some of the characteristics of mesenchymal stem/stromal cells. For instance, lineage tracing studies have shown that mesothelial cells give rise to adipocytes and vascular smooth muscle cells, and human and rat mesothelial cells have been shown to differentiate into osteoblast- and adipocyte-like cells in vitro, indicating that they have considerable plasticity. However, so far, long-term cultures of mesothelial cells have not been successfully established due to early senescence. Here, we demonstrate that mesothelial cells isolated from the mouse omentum could be cultured for more than 30 passages. While epithelial markers were downregulated over passages in the mesothelial cells, their mesenchymal profile remained unchanged. Early passage mesothelial cells displayed clonogenicitiy, expressed several stem cell markers, and up to passage 5 and 13, respectively, could differentiate along the adipogenic and osteogenic lineages, demonstrating stem/progenitor characteristics and differentiation potential.
Collapse
Affiliation(s)
- Sumaya Dauleh
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ilaria Santeramo
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Claire Fielding
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kelly Ward
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Anne Herrmann
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Dec P, Józefowicz M, Lesińska A, Kubisa B. Encapsulating Peritoneal Sclerosis - Rare Cause Of Bowel Obstruction. POLISH JOURNAL OF SURGERY 2015; 87:371-4. [PMID: 26351794 DOI: 10.1515/pjs-2015-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/15/2022]
|
14
|
Xiao L, Zhou X, Liu F, Hu C, Zhu X, Luo Y, Wang M, Xu X, Yang S, Kanwar YS, Sun L. MicroRNA-129-5p modulates epithelial-to-mesenchymal transition by targeting SIP1 and SOX4 during peritoneal dialysis. J Transl Med 2015; 95:817-832. [PMID: 25961171 PMCID: PMC4863710 DOI: 10.1038/labinvest.2015.57] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/09/2015] [Accepted: 03/18/2015] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is the most readily feasible home-dialysis method for renal replacement therapy. However, repeated use of PD can lead to induction of mesothelial/epithelial-mesenchymal transition (MMT/EMT) and fibrosis, eventually leading to ultrafiltration failure and discontinuation of PD. MicroRNA-129-5p (miR-129-5p) is believed to be a potent downstream inhibitor of TGF-β1 in renal fibrosis, but the effect of miR-129-5p on MMT/EMT relevant to PD is unknown. In this study, as determined by microRNA array analysis and confirmed by northern blot analysis and real-time PCR, we demonstrate that miRNA-129-5p is decreased in mesothelial cells isolated from effluent of patients having PD for more than 6 months extending to several years compared with those who have undergone PD for less than 6 months. The decreased expression of miR-129-5p was accompanied with alterations in EMT-related genes and the expression of respective proteins in vivo. In addition, in in vitro studies we noted that the expression of E-cadherin and claudin-1 were significantly reduced with increased cell migration in HMrSV5, a human peritoneal mesothelial cell line (HPMC), treated with TGF-β1, whereas expression of vimentin, fibronectin and transcription factors SIP1 and SOX4 increased significantly, as assessed by real-time PCR, western blot analysis and immunofluorescence microscopy. Furthermore, alteration in EMT-related genes and proteins were reversed by overexpression of miR-129-5p. No effect was observed in cells treated with miR-negative control. Meanwhile, inhibition of SIP1 and SOX4 with their respective siRNA also could decrease the expression of EMT-related genes and protein levels in HPMCs induced with TGF-β1. Finally, we demonstrate that SIP1 can inhibit the promoter activity of E-cadherin while enhancing the promoter activity of vimentin. We also observed that miR-129-5p could directly target the 3'UTR of SIP1 and SOX4 genes, and repressed their post-transcriptional activities. These data suggest that there is a novel TGF-β1/miR-129-5p/SIP-1 or SOX4 pathway that has a significant role in MMT and fibrosis in the setting of PD.
Collapse
Affiliation(s)
- Li Xiao
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhou
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun Hu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Luo
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Wang
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxuan Xu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, USA
| | - Lin Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage. BIOMED RESEARCH INTERNATIONAL 2015; 2015:416480. [PMID: 26064907 PMCID: PMC4433660 DOI: 10.1155/2015/416480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general complication in many diseases. It is the main complication during peritoneal dialysis (PD) treatment, a therapy for renal failure disease. Local inflammation and mesothelial to mesenchymal transition (MMT) are well known key phenomena in peritoneal damage during PD. New data suggest that, in the peritoneal cavity, inflammatory changes may be regulated at least in part by a delicate balance between T helper 17 and regulatory T cells. This paper briefly reviews the implication of the Th17/Treg-axis in fibrotic diseases. Moreover, it compares current evidences described in PD animal experimental models, indicating a loss of Th17/Treg balance (Th17 predominance) leading to peritoneal damage during PD. In addition, considering the new clinical and animal experimental data, new therapeutic strategies to reduce the Th17 response and increase the regulatory T response are proposed. Thus, future goals should be to develop new clinical biomarkers to reverse this immune misbalance and reduce peritoneal fibrosis in PD.
Collapse
|
16
|
Moinuddin Z, Summers A, Van Dellen D, Augustine T, Herrick SE. Encapsulating peritoneal sclerosis-a rare but devastating peritoneal disease. Front Physiol 2015; 5:470. [PMID: 25601836 PMCID: PMC4283512 DOI: 10.3389/fphys.2014.00470] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/16/2014] [Indexed: 01/08/2023] Open
Abstract
Encapsulating peritoneal sclerosis (EPS) is a devastating but, fortunately, rare complication of long-term peritoneal dialysis. The disease is associated with extensive thickening and fibrosis of the peritoneum resulting in the formation of a fibrous cocoon encapsulating the bowel leading to intestinal obstruction. The incidence of EPS ranges between 0.7 and 3.3% and increases with duration of peritoneal dialysis therapy. Dialysis fluid is hyperosmotic, hyperglycemic, and acidic causing chronic injury and inflammation in the peritoneum with loss of mesothelium and extensive tissue fibrosis. The pathogenesis of EPS, however, still remains uncertain, although a widely accepted hypothesis is the "two-hit theory," where, the first hit is chronic peritoneal membrane injury from long standing peritoneal dialysis followed by a second hit such as an episode of peritonitis, genetic predisposition and/or acute cessation of peritoneal dialysis, leading to EPS. Recently, EPS has been reported in patients shortly after transplantation suggesting that this procedure may also act as a possible second insult. The process of epithelial-mesenchymal transition of mesothelial cells is proposed to play a central role in the development of peritoneal sclerosis, a common characteristic of patients on dialysis, however, its importance in EPS is less clear. There is no established treatment for EPS although evidence from small case studies suggests that corticosteroids and tamoxifen may be beneficial. Nutritional support is essential and surgical intervention (peritonectomy and enterolysis) is recommended in later stages to relieve bowel obstruction.
Collapse
Affiliation(s)
- Zia Moinuddin
- Department of Transplantation, Manchester Royal Infirmary Manchester, UK ; Faculty of Medical and Human Sciences, Institute of Inflammation and Repair, University of Manchester, Manchester Academic Health Science Centre Manchester, UK
| | - Angela Summers
- Department of Transplantation, Manchester Royal Infirmary Manchester, UK
| | - David Van Dellen
- Department of Transplantation, Manchester Royal Infirmary Manchester, UK
| | - Titus Augustine
- Department of Transplantation, Manchester Royal Infirmary Manchester, UK
| | - Sarah E Herrick
- Faculty of Medical and Human Sciences, Institute of Inflammation and Repair, University of Manchester, Manchester Academic Health Science Centre Manchester, UK
| |
Collapse
|
17
|
Campbell R, Augustine T, Hurst H, Pararajasingam R, van Dellen D, Armstrong S, Bartley C, Birtles L, Summers A. Anthropometrics Identify Wasting in Patients Undergoing Surgery for Encapsulating Peritoneal Sclerosis. Perit Dial Int 2014; 35:471-80. [PMID: 24584612 DOI: 10.3747/pdi.2013.00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED ♦ INTRODUCTION Encapsulating peritoneal sclerosis (EPS) is a serious complication of peritoneal dialysis in which gastrointestinal (GI) symptoms reduce appetite and dietary intake. Adequate nutrition is important, especially if surgery is required. Although the incidence of EPS is low, the present report is able to detail preoperative nutrition status and treatment in a large cohort of patients from a national EPS referral center. ♦ METHODS Of 51 patients admitted to this EPS specialist center hospital for their first peritonectomy in the study period, 50 had a preoperative dietetic assessment, and 49 underwent upper-arm anthropometry. ♦ RESULTS Mean body mass index (BMI) was 20.6 kg/m(2). Mean weight loss was 14% of body weight in the preceding 6 months, with 35 of 50 patients losing more than 10%. On anthropometry, 25 of 49 patients were below the 5th percentile for mid-arm circumference (MAC), 17 of 49 were below for triceps skinfold thickness (TSF), and 21 of 49 were below for mid-arm muscle circumference (MAMC). Mean handgrip strength (HGS) was 60% of normal, with 43 of 49 patients being below 85% of normal. Appetite was poor in 21 of 50 patients, and 37 of 50 had upper and 40 of 50 had lower GI symptoms. By subjective global assessment, 27 of 51 patients were graded as severely malnourished, and 5 of 51, as well-nourished. Mean serum albumin was 28 g/L and did not correlate with BMI, MAC, TSF, MAMC, or HGS. In most patients, C-reactive protein was elevated (mean: 111 mg/L). Preoperative parenteral nutrition was given to 46 of 51 patients for a mean of 21 days. ♦ DISCUSSION Our findings demonstrate the poor nutrition status of patients admitted for EPS surgical intervention. Anthropometrics reveal depleted fat and lean body mass in EPS patients, which might be a result of anorexia and inflammation, and the reason that albumin was not an accurate marker of nutrition. Poor nutrition status is likely to negatively affect outcome in this patient group. ♦ CONCLUSIONS Early recognition of GI symptoms may herald a diagnosis of EPS. Optimization of preoperative nutrition status with intensive nutrition support is needed.
Collapse
Affiliation(s)
- Rosalind Campbell
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Titus Augustine
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Helen Hurst
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ravi Pararajasingam
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - David van Dellen
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Sheilagh Armstrong
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Carol Bartley
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Linda Birtles
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Angela Summers
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
18
|
De Sousa-Amorim E, Del Peso G, Bajo MA, Alvarez L, Ossorio M, Gil F, Bellon T, Selgas R. Can EPS development be avoided with early interventions? The potential role of tamoxifen--a single-center study. Perit Dial Int 2014; 34:582-93. [PMID: 24584614 DOI: 10.3747/pdi.2012.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). Identification of patients at high risk for EPS ("EPS-prone") and delivery of appropriate interventions might prevent its development. Our aim was to evaluate the clinical characteristics and outcomes of all EPS and EPS-prone patients diagnosed at our PD unit. METHODS For a 30-year period representing our entire PD experience, we retrospectively identified all patients with EPS (diagnosed according to International Society for Peritoneal Dialysis criteria) and all patients defined as EPS-prone because they met at least 2 established criteria (severe peritonitis, PD vintage greater than 3 years, severe hemoperitoneum, overexposure to glucose, and acquired ultrafiltration failure). RESULTS Of 679 PD patients, we identified 20 with EPS, for an overall prevalence of 2.9%. Mean age at diagnosis was 50.2 ± 16.4 years, with a median PD time of 77.96 months (range: 44.36 - 102.7 months) and a median follow-up of 30.91 months (range: 4.6 - 68.75 months). Of patients with EPS, 10 (50%) received tamoxifen, 10 (50%) received parenteral nutrition, and 2 (10%) underwent adhesiolysis, with 25% mortality related to EPS. Another 14 patients were identified as EPS-prone. Median follow-up was 54.05 months (range: 11.9 - 87.04 months). All received tamoxifen, and 5 (36%) received corticosteroids; none progressed to full EPS. We observed no differences in baseline data between the groups, but the group with EPS had been on PD longer (84 ± 53 months vs 39 ± 20 months, p = 0.002) and had a higher cumulative number of days of peritoneal inflammation from peritonitis (17.2 ± 11.1 days vs 9.8 ± 7.9 days, p = 0.015). Overall mortality was similar in the groups. The incidence of EPS declined during our three decades of experience (5.6%, 3.9%, and 0.3%). CONCLUSIONS Being a serious, life-threatening complication of PD, EPS requires high suspicion to allow for prompt diagnosis and treatment. Early detection of EPS-prone states and delivery of appropriate intervention might prevent EPS development. Tamoxifen seems to be a key strategy in prevention, but caution should be used in interpreting our results. Additional randomized controlled studies are needed.
Collapse
Affiliation(s)
- Erika De Sousa-Amorim
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Madrid; Servicio de Nefrología, Hospital San Pedro, Logroño; and Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Gloria Del Peso
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Madrid; Servicio de Nefrología, Hospital San Pedro, Logroño; and Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - M Auxiliadora Bajo
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Madrid; Servicio de Nefrología, Hospital San Pedro, Logroño; and Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Laura Alvarez
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Madrid; Servicio de Nefrología, Hospital San Pedro, Logroño; and Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Marta Ossorio
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Madrid; Servicio de Nefrología, Hospital San Pedro, Logroño; and Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Fernando Gil
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Madrid; Servicio de Nefrología, Hospital San Pedro, Logroño; and Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Teresa Bellon
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Madrid; Servicio de Nefrología, Hospital San Pedro, Logroño; and Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Madrid; Servicio de Nefrología, Hospital San Pedro, Logroño; and Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| |
Collapse
|
19
|
Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Adv Med 2014; 2014:473134. [PMID: 26556413 PMCID: PMC4590954 DOI: 10.1155/2014/473134] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/03/2022] Open
Abstract
Peritoneal dialysis (PD) is a therapeutic option for the treatment of end-stage renal disease and is based on the use of the peritoneum as a semipermeable membrane for the exchange of toxic solutes and water. Long-term exposure of the peritoneal membrane to hyperosmotic PD fluids causes inflammation, loss of the mesothelial cells monolayer, fibrosis, vasculopathy, and angiogenesis, which may lead to peritoneal functional decline. Peritonitis may further exacerbate the injury of the peritoneal membrane. In parallel with these peritoneal alterations, mesothelial cells undergo an epithelial to mesenchymal transition (EMT), which has been associated with peritoneal deterioration. Factors contributing to the bioincompatibility of classical PD fluids include the high content of glucose/glucose degradation products (GDPs) and their acidic pH. New generation low-GDPs-neutral pH fluids have improved biocompatibility resulting in better preservation of the peritoneum. However, standard glucose-based fluids are still needed, as biocompatible solutions are expensive for many potential users. An alternative approach to preserve the peritoneal membrane, complementary to the efforts to improve fluid biocompatibility, is the use of pharmacological agents protecting the mesothelium. This paper provides a comprehensive review of recent advances that point to the EMT of mesothelial cells as a potential therapeutic target to preserve membrane function.
Collapse
|