1
|
Arimitsu NN, Witkowska A, Ohashi A, Miyabe C, Miyabe Y. Chemokines as therapeutic targets for multiple sclerosis: a spatial and chronological perspective. Front Immunol 2025; 16:1547256. [PMID: 40191184 PMCID: PMC11968728 DOI: 10.3389/fimmu.2025.1547256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic autoinflammatory disease of unknown origin, involving characterized by immune cell infiltration into the target tissue, central nervous system (CNS), resulting in local and/or systemic inflammation. The symptoms vary from gait disturbance, visual impairment and learning and memory impairment and are being managed with corticosteroid and/or immunosuppressive agents. However, several patients do not respond to these treatments, which can also elevate the risk of severe infections. Therefore, there remains an ongoing need to identify new therapeutic targets. MS exhibits distinctive pathology, clinical course, and treatment responses, suggesting the importance of targeting disease site-specific immune cells to mitigate immune system-induced inflammation, rather than employing broad immunosuppression. Chemokines and chemokine receptors play a crucial role in the pathogenesis of MS by recruiting immune cells to the CNS, leading to inflammation and demyelination. Therapies targeting chemokines have shown promising results in preclinical studies and clinical trials, but more research is needed to fully understand their mechanisms and optimize their efficacy.
Collapse
Affiliation(s)
- Nagisa Nakata Arimitsu
- Department of Immunology and Parasitology, St. Marianna University of School of Medicine, Kawasaki, Japan
| | - Alicja Witkowska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Ayaka Ohashi
- Department of Immunology and Parasitology, St. Marianna University of School of Medicine, Kawasaki, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University of School of Medicine, Kawasaki, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Parasitology, St. Marianna University of School of Medicine, Kawasaki, Japan
| |
Collapse
|
2
|
Marciante AB, Tadjalli A, Nikodemova M, Burrowes KA, Oberto J, Luca EK, Seven YB, Watters JJ, Baker TL, Mitchell GS. Microglia regulate motor neuron plasticity via reciprocal fractalkine and adenosine signaling. Nat Commun 2024; 15:10349. [PMID: 39609435 PMCID: PMC11605081 DOI: 10.1038/s41467-024-54619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
We report an important role for microglia in regulating neuroplasticity within phrenic motor neurons. Brief episodes of low oxygen (acute intermittent hypoxia; AIH) elicit a form of respiratory motor plasticity known as phrenic long-term facilitation (pLTF) that is regulated by the balance of competing serotonin vs adenosine-initiated cellular mechanisms. Serotonin arises from brainstem raphe neurons, but the source of adenosine is unknown. We tested if hypoxic episodes initiate phrenic motor neuron to microglia fractalkine signaling that evokes extracellular adenosine formation using a well-defined neurophysiology preparation in male rats. With moderate AIH, phrenic motor neuron adenosine 2A receptor activation undermines serotonin-dominant pLTF whereas severe AIH induces pLTF by the adenosine-dependent mechanism. Consequently, phrenic motor neuron fractalkine knockdown, microglial fractalkine receptor inhibition, and microglial ablation enhance moderate AIH, but suppress severe AIH-induced pLTF. We conclude, microglia play important roles in healthy spinal cords, regulating plasticity in motor neurons responsible for breathing.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Arash Tadjalli
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Nova Southeastern University, College of Allopathic Medicine (NSU MD) Department of Medical Education, 3200 South University Drive, Fort Lauderdale, FL, USA
| | - Maria Nikodemova
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kayla A Burrowes
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jose Oberto
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Edward K Luca
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jyoti J Watters
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, USA
| | - Tracy L Baker
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Marciante AB, Tadjalli A, Burrowes KA, Oberto JR, Luca EK, Seven YB, Nikodemova M, Watters JJ, Baker TL, Mitchell GS. Microglia regulate motor neuron plasticity via reciprocal fractalkine/adenosine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592939. [PMID: 38765982 PMCID: PMC11100694 DOI: 10.1101/2024.05.07.592939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Microglia are innate CNS immune cells that play key roles in supporting key CNS functions including brain plasticity. We now report a previously unknown role for microglia in regulating neuroplasticity within spinal phrenic motor neurons, the neurons driving diaphragm contractions and breathing. We demonstrate that microglia regulate phrenic long-term facilitation (pLTF), a form of respiratory memory lasting hours after repetitive exposures to brief periods of low oxygen (acute intermittent hypoxia; AIH) via neuronal/microglial fractalkine signaling. AIH-induced pLTF is regulated by the balance between competing intracellular signaling cascades initiated by serotonin vs adenosine, respectively. Although brainstem raphe neurons release the relevant serotonin, the cellular source of adenosine is unknown. We tested a model in which hypoxia initiates fractalkine signaling between phrenic motor neurons and nearby microglia that triggers extracellular adenosine accumulation. With moderate AIH, phrenic motor neuron adenosine 2A receptor activation undermines serotonin-dominant pLTF; in contrast, severe AIH drives pLTF by a unique, adenosine-dominant mechanism. Phrenic motor neuron fractalkine knockdown, cervical spinal fractalkine receptor inhibition on nearby microglia, and microglial depletion enhance serotonin-dominant pLTF with moderate AIH but suppress adenosine-dominant pLTF with severe AIH. Thus, microglia play novel functions in the healthy spinal cord, regulating hypoxia-induced neuroplasticity within the motor neurons responsible for breathing.
Collapse
Affiliation(s)
- Alexandria B. Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida; Gainesville, FL, USA 32610
| | - Arash Tadjalli
- Current Address: Nova Southeastern University, College of Allopathic Medicine (NSU MD), Department of Medical Education, 3200 South University Drive, Fort Lauderdale, FL 33328-2018
| | - Kayla A. Burrowes
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida; Gainesville, FL, USA 32610
| | - Jose R. Oberto
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida; Gainesville, FL, USA 32610
| | - Edward K. Luca
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida; Gainesville, FL, USA 32610
| | - Yasin B. Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida; Gainesville, FL, USA 32610
| | - Maria Nikodemova
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida; Gainesville, FL, USA 32610
| | - Jyoti J. Watters
- Current Address: Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706
| | - Tracy L. Baker
- Current Address: Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida; Gainesville, FL, USA 32610
| |
Collapse
|
4
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
5
|
Iemmolo M, Ghersi G, Bivona G. The Cytokine CX3CL1 and ADAMs/MMPs in Concerted Cross-Talk Influencing Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24098026. [PMID: 37175729 PMCID: PMC10179166 DOI: 10.3390/ijms24098026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroinflammation plays a fundamental role in the development and progression of neurodegenerative diseases. It could therefore be said that neuroinflammation in neurodegenerative pathologies is not a consequence but a cause of them and could represent a therapeutic target of neuronal degeneration. CX3CL1 and several proteases (ADAMs/MMPs) are strongly involved in the inflammatory pathways of these neurodegenerative pathologies with multiple effects. On the one hand, ADAMs have neuroprotective and anti-apoptotic effects; on the other hand, they target cytokines and chemokines, thus causing inflammatory processes and, consequently, neurodegeneration. CX3CL1 itself is a cytokine substrate for the ADAM, ADAM17, which cleaves and releases it in a soluble isoform (sCX3CL1). CX3CL1, as an adhesion molecule, on the one hand, plays an inhibiting role in the pro-inflammatory response in the central nervous system (CNS) and shows neuroprotective effects by binding its membrane receptor (CX3CR1) present into microglia cells and maintaining them in a quiescent state; on the other hand, the sCX3CL1 isoform seems to promote neurodegeneration. In this review, the dual roles of CX3CL1 and ADAMs/MMPs in different neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (MH), and multiple sclerosis (MS), are investigated.
Collapse
Affiliation(s)
- Matilda Iemmolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
6
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
7
|
Soares NL, Vieira HLA. Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Future. Neurochem Res 2021; 47:218-233. [PMID: 34586585 DOI: 10.1007/s11064-021-03456-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Microglia are the immune guardians of the central nervous system (CNS), with critical functions in development, maintenance of homeostatic tissue balance, injury and repair. For a long time considered a forgotten 'third element' with basic phagocytic functions, a recent surge in interest, accompanied by technological progress, has demonstrated that these distinct myeloid cells have a wide-ranging importance for brain function. This review reports microglial origins, development, and function in the healthy brain. Moreover, it also targets microglia dysfunction and how it contributes to the progression of several neurological disorders, focusing on particular molecular mechanisms and whether these may present themselves as opportunities for novel, microglia-targeted therapeutic approaches, an ever-enticing prospect. Finally, as it has been recently celebrated 100 years of microglia research, the review highlights key landmarks from the past century and looked into the future. Many challenging problems have arisen, thus it points out some of the most pressing questions and experimental challenges for the ensuing century.
Collapse
Affiliation(s)
- Nuno L Soares
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.,Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Lisboa, Portugal
| |
Collapse
|
8
|
Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 2021; 231:107989. [PMID: 34492237 DOI: 10.1016/j.pharmthera.2021.107989] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation was initially thought of as a consequence of neurodegenerative disease pathology, but more recently it is becoming clear that it plays a significant role in the development and progression of disease. Thus, neuroinflammation is seen as a realistic and valuable therapeutic target for neurodegeneration. Neuroinflammation can be modulated by neuron-glial signaling through various soluble factors, and one such critical modulator is Fractalkine or C-X3-C Motif Chemokine Ligand 1 (CX3CL1). CX3CL1 is produced in neurons and is a unique chemokine that is initially translated as a transmembrane protein but can be proteolytically processed to generate a soluble chemokine. CX3CL1 has been shown to signal through its sole receptor CX3CR1, which is located on microglial cells within the central nervous system (CNS). Although both the membrane bound and soluble forms of CX3CL1 appear to interact with CX3CR1, they do seem to have different signaling capabilities. It is believed that the predominant function of CX3CL1 within the CNS is to reduce the proinflammatory response and many studies have shown neuroprotective effects. However, in some cases CX3CL1 appears to be promoting neurodegeneration. This review focusses on presenting a comprehensive overview of the complex nature of CX3CL1/CX3CR1 signaling in neurodegeneration and how it may present as a therapeutic in some neurodegenerative diseases but not others. The role of CX3CL1/CXCR1 is reviewed in the context of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), ischemia, retinopathies, spinal cord and neuropathic pain, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy.
Collapse
Affiliation(s)
- Meena S Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Paula C Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA.
| |
Collapse
|
9
|
Karpus WJ. Cytokines and Chemokines in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2020; 204:316-326. [PMID: 31907274 DOI: 10.4049/jimmunol.1900914] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022]
Abstract
Experimental autoimmune encephalomyelitis is a CD4+ T cell-mediated demyelinating disease of the CNS that serves as a model for multiple sclerosis. Cytokines and chemokines shape Th1 and Th17 effector responses as well as regulate migration of leukocytes to the CNS during disease. The CNS cellular infiltrate consists of Ag-specific and nonspecific CD4+ and CD8+ T cells, neutrophils, B cells, monocytes, macrophages, and dendritic cells. The mechanism of immune-mediated inflammation in experimental autoimmune encephalomyelitis has been extensively studied in an effort to develop therapeutic modalities for multiple sclerosis and, indeed, has provided insight in modern drug discovery. The present Brief Review highlights critical pathogenic aspects of cytokines and chemokines involved in generation of effector T cell responses and migration of inflammatory cells to the CNS. Select cytokines and chemokines are certainly important in the regulatory response, which involves T regulatory, B regulatory, and myeloid-derived suppressor cells. However, that discussion is beyond the scope of this brief review.
Collapse
Affiliation(s)
- William J Karpus
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
10
|
Microglial and Astrocytic Function in Physiological and Pathological Conditions: Estrogenic Modulation. Int J Mol Sci 2020; 21:ijms21093219. [PMID: 32370112 PMCID: PMC7247358 DOI: 10.3390/ijms21093219] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
There are sexual differences in the onset, prevalence, and outcome of numerous neurological diseases. Thus, in Alzheimer’s disease, multiple sclerosis, and major depression disorder, the incidence in women is higher than in men. In contrast, men are more likely to present other pathologies, such as amyotrophic lateral sclerosis, Parkinson’s disease, and autism spectrum. Although the neurological contribution to these diseases has classically always been studied, the truth is that neurons are not the only cells to be affected, and there are other cells, such as glial cells, that are also involved and could be key to understanding the development of these pathologies. Sexual differences exist not only in pathology but also in physiological processes, which shows how cells are differentially regulated in males and females. One of the reasons these sexual differences may occur could be due to the different action of sex hormones. Many studies have shown an increase in aromatase levels in the brain, which could indicate the main role of estrogens in modulating proinflammatory processes. This review will highlight data about sex differences in glial physiology and how estrogenic compounds, such as estradiol and tibolone, could be used as treatment in neurological diseases due to their anti-inflammatory effects and the ability to modulate glial cell functions.
Collapse
|
11
|
Cui LY, Chu SF, Chen NH. The role of chemokines and chemokine receptors in multiple sclerosis. Int Immunopharmacol 2020; 83:106314. [PMID: 32197226 PMCID: PMC7156228 DOI: 10.1016/j.intimp.2020.106314] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 01/13/2023]
Abstract
Summarize the study of the role of chemokines and their receptors in multiple sclerosis (MS) patients and MS animal models. Discuss their potential significance in inflammatory injury and repair of MS. Summarize the progress in the research of MS antagonists in recent years with chemokine receptors as targets.
Multiple sclerosis (MS) is a chronic inflammatory disease that is characterized by leukocyte infiltration and subsequent axonal damage, demyelinating inflammation, and formation of sclerosing plaques in brain tissue. The results of various studies in patients indicate that autoimmunity and inflammation make an important impact on the pathogenesis of MS. Chemokines are key mediators of inflammation development and cell migration, mediating various immune cell responses, including chemotaxis and immune activation, and are important in immunity and inflammation, therefore we focus on chemokines and their receptors in multiple sclerosis. In this article, we summarize the study of the role of prominent chemokines and their receptors in MS patients and MS animal modelsand discuss their potential significance in inflammatory injury and repair of MS. We have also summarized the progress in the treatment of multiple sclerosis antagonists in recent years with chemokine receptors as targets.
Collapse
Affiliation(s)
- Li-Yuan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Chen G, Zhou Z, Sha W, Wang L, Yan F, Yang X, Qin X, Wu M, Li D, Tian S, Chen G. A novel CX3CR1 inhibitor AZD8797 facilitates early recovery of rat acute spinal cord injury by inhibiting inflammation and apoptosis. Int J Mol Med 2020; 45:1373-1384. [PMID: 32323731 PMCID: PMC7138267 DOI: 10.3892/ijmm.2020.4509] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate the effect of the CX3CR1 inhibitor AZD8797 in early recovery after acute SCI and elucidate its potential mechanism in blocking inflammation and apoptosis. Adult rats were sacrificed after 3, 7, 10, or 14 days of SCI. The injured spinal tissues were collected for assessing C-X3-C motif chemokine ligand 1(CX3CL1)/C-X3-C motif chemokine receptor 1 (CX3CR1) expression at each time point via western blotting (WB) and quantitative PCR. The cellular localization of the proteins was detected by immunofluorescence. Another batch of rats (subdivided into sham, injury model, AZD8797 and methylprednisolone groups) were used to evaluate locomotive recovery with a Basso Beattie Bresnahan score. Based on the expression level of CX3CR1, these rats were sacrificed at the most prominent stage of CX3CR1 expression (10 days after SCI), for assessing the serum levels of tumor necrosis factor-α/interleukin (IL)-6/IL-1β and the expression of CX3CL1/CX3CR1/caspase 3/Bcl-2/Bax in the spinal cord tissues through WB and ELISA. Additionally, apoptosis and necrosis in the injured spinal cord were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining/fluoro-jade B staining. Expression levels of both CX3CR1 and CX3CL1 reached their peak 10 days after the injury, followed by a dramatic downward trend at 14 days. The enhanced expression of CX3CR1 was detected in astrocytes and microglia of the injured spinal cord. AZD8797 improved locomotive recovery after 10 days of SCI and was as effective as methylprednisolone. The effect of AZD8797 was mediated by suppressing apoptosis, necrosis and inflammatory responses, as assessed by WB/ELISA and morphological examinations. The current study has demonstrated that AZD8797 can effectively block overwhelming inflammation, apoptosis and necrosis after SCI and facilitate early recovery of locomotive function.
Collapse
Affiliation(s)
- Guozhao Chen
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Zhiping Zhou
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Weiping Sha
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Liming Wang
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Fei Yan
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xia Qin
- Department of ICU, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Di Li
- Department of Neurosurgery and Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Shoujin Tian
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital ofSoochow University, Suzhou, Jiangsu 215031, P.R. China
| |
Collapse
|
13
|
Watson AES, Goodkey K, Footz T, Voronova A. Regulation of CNS precursor function by neuronal chemokines. Neurosci Lett 2020; 715:134533. [DOI: 10.1016/j.neulet.2019.134533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
|
14
|
Zhang Y, Wang M, Lu Q, Li Q, Lin M, Huang J, Hong Y. Inhibitory Effects of Mas-Related Gene C Receptor on Chronic Morphine-Induced Spinal Glial Activation in Rats. J Pharmacol Exp Ther 2019; 368:237-245. [PMID: 30487293 DOI: 10.1124/jpet.118.252494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/20/2018] [Indexed: 03/08/2025] Open
Abstract
Glial activation plays a pivotal role in morphine tolerance. This study investigated effects of Mas-related gene (Mrg) C receptor on morphine-induced activation of microglia and astrocytes in the spinal cord and its underlying mechanisms. Intrathecal administration of morphine (20 μg, daily) for 6 days induced a great decline in morphine antinociception and increased expression of glial fibrillary acidic protein and OX-42 in the spinal dorsal horn. These changes were greatly attenuated by the intermittent coinjection of bovine adrenal medulla 8-22 (BAM8-22, 1 nmol), a specific agonist of MrgC receptor. These modulatory effects were accompanied by the reduction of P2X4 and interleukin-1β expressions in the spinal dorsal horn. Chronic morphine increased the expression of fractalkine in medium- and small-sized neurons of dorsal root ganglia (DRG). Treatment with BAM8-22 inhibited these changes as well as an increase in Toll-like receptor 4 (TLR4) protein in DRG. Chronic treatment of DRG explant cultures with morphine (3.3 μM, 5 days) increased the levels of fractalkine mRNA. Application of BAM8-22 (10 nM) for 60 minutes completely blocked the increase of fractalkine mRNA induced by morphine. Our findings indicate that the inhibition of morphine tolerance by MrgC receptor was associated with the modulation of astrocytes and microglia in the spinal dorsal horn and fractalkine and TLR4 expressions in DRG. As MrgC receptor is exclusively located in DRG, intermittent combination of MrgC receptor agonist could be a promising adjunct with limited side effects for chronic use of opiates.
Collapse
Affiliation(s)
- Yunshan Zhang
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Mei Wang
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Qiuhua Lu
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Qi Li
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Mingyan Lin
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Jianzhong Huang
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Yanguo Hong
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Lou ZY, Cheng J, Wang XR, Zhao YF, Gan J, Zhou GY, Liu ZG, Xiao BG. The inhibition of CB 1 receptor accelerates the onset and development of EAE possibly by regulating microglia/macrophages polarization. J Neuroimmunol 2018; 317:37-44. [PMID: 29501084 DOI: 10.1016/j.jneuroim.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
Cannabinoid 1 receptor (CB1R) regulates the neuro-inflammatory and neurodegenerative damages of experimental autoimmune encephalomyelitis (EAE) and of multiple sclerosis (MS). The mechanism by which CB1R inhibition exerts inflammatory effects is still unclear. Here, we explored the cellular and molecular mechanisms of CB1R in the treatment of EAE by using a specific and selective CB1R antagonist SR141716A. Our study demonstrated that SR141716A accelerated the clinical onset and development of EAE, accompanied by body weight loss. SR141716A significantly up-regulated the expression of toll like receptor-4 (TLR-4) and nuclear factor-kappaB/p65 (NF-κB/p65) on microglia/macrophages of EAE mice as well as levels of inflammatory factors (TNF-α, IL-1β, IL-6) and chemokines (MCP-1, CX3CL1), accompanied by the shifts of cytokines from Th2 (IL-4, IL-10) to Th1 (IFN-γ)/Th17 (IL-17) in the spinal cords of EAE mice. Similar changes happened on splenic mononuclear cells (MNCs) except chemokine CX3CL1. Consistently, SR141716A promoted BV-2 microglia to release inflammatory factors (TNF-α, IL-1β, IL-6) while inhibited the production of IL-10 and chemokines (MCP-1, CX3CL1). Furthermore, when splenic CD4+ T cells co-cultured with SR141716A-administered BV-2 microglia, the levels of IL-4 and IL-10 were decreased while production of IL-17 and IFN-γ increased significantly. Our research indicated that inhibition of CB1R induced M1 phenotype-Th17 axis changed of microglia/macrophages through TLR-4 and NF-κB/p65 which accelerated the onset and development of EAE. Therefore, CB1R may be a promising target for the treatment of MS/EAE, but its complexity remains to be carefully considered and studied in further clinical application.
Collapse
Affiliation(s)
- Zhi-Yin Lou
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Cheng
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Rong Wang
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong-Fei Zhao
- Department of Neurology, JinShan Hospital, Fudan Univeristy, Shanghai, China
| | - Jing Gan
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guo-Yu Zhou
- Department of Geriatric, Qilu Hospital, Shandong University, Jinan, China
| | - Zhen-Guo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Lillico R, Zhou T, Khorshid Ahmad T, Stesco N, Gozda K, Truong J, Kong J, Lakowski TM, Namaka M. Increased Post-Translational Lysine Acetylation of Myelin Basic Protein Is Associated with Peak Neurological Disability in a Mouse Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. J Proteome Res 2018; 17:55-62. [PMID: 29111742 DOI: 10.1021/acs.jproteome.7b00270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Citrullination of arginine residues is a post-translational modification (PTM) found on myelin basic protein (MBP), which neutralizes MBPs positive charge, and is implicated in myelin damage and multiple sclerosis (MS). Here we identify lysine acetylation as another neutralizing PTM to MBP that may be involved in myelin damage. We quantify changes in lysine and arginine PTMs on MBP derived from mice induced with an experimental autoimmune encephalomyelitis (EAE) model of MS using liquid chromatography tandem mass spectrometry. The changes in PTMs are correlated to changes in neurological disability scoring (NDS), as a marker of myelin damage. We found that lysine acetylation increased by 2-fold on MBP during peak NDS post-EAE induction. We also found that mono- and dimethyl-lysine, as well as asymmetric dimethyl-arginine residues on MBP were elevated at peak EAE disability. These findings suggest that the acetylation and methylation of lysine on MBP are PTMs associated with the neurological disability produced by EAE. Since histone deacetylase (HDAC) inhibitors have been previously shown to improve neurological disability, we also show that treatment with trichostatin A (a HDAC inhibitor) improves the NDS of EAE mice but does not change MBP acetylation.
Collapse
Affiliation(s)
- Ryan Lillico
- The Rady Faculty of Health Sciences, College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Ting Zhou
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Tina Khorshid Ahmad
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Nicholas Stesco
- The Rady Faculty of Health Sciences, College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Kiana Gozda
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Jessica Truong
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Ted M Lakowski
- The Rady Faculty of Health Sciences, College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Michael Namaka
- The Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC) , Winnipeg, Manitoba R3A 1R9, Canada
| |
Collapse
|
17
|
Stojić-Vukanić Z, Pilipović I, Djikić J, Vujnović I, Nacka-Aleksić M, Bufan B, Arsenović-Ranin N, Kosec D, Leposavić G. Strain specificities in age-related changes in mechanisms promoting and controlling rat spinal cord damage in experimental autoimmune encephalomyelitis. Exp Gerontol 2017; 101:37-53. [PMID: 29128575 DOI: 10.1016/j.exger.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022]
Abstract
The study investigated strain specificities in age-related differences in CD8+ T cell- and microglial cell-mediated mechanisms implicated in induction/perpetuation and/or control of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in Albino Oxford (AO) and Dark Agouti (DA) rats exhibiting age-related changes in the susceptibility to EAE in the opposite direction (increase in relatively resistant AO rats vs decrease in DA rats). In the inductive phase of EAE, the greater number of fully differentiated effector CD8+ T lymphocytes was found in draining lymph nodes (dLNs) from aged rats of both strains than in strain-matched young rats, but this was particularly prominent in AO rats, which exhibited milder EAE of prolonged duration compared with their DA counterparts. Consistently, dLN IFN-γ+ and IL-17+ CD8+ T cell counts were greater in aged AO than in DA rats. Additionally, the magnitudes of myelin basic protein (MBP)-induced rise in the frequency of IFN-γ+ and IL-17+ CD8+ T cells (providing important help to neuroantigen-specific CD4+ T cells in EAE models characterized by clinically mild disease) were greater in dLN cell cultures from aged AO rats. Consistently, the magnitudes of MBP-induced rise in the frequency of both IFN-γ+ and IL-17+ CD8+ T cells were greater in spinal cord mononuclear cell cultures from aged AO rats compared with their DA counterparts. Besides, with aging CD4+CD25+Foxp3+/CD8+CD25+Foxp3+ regulatory T cell ratio changed in spinal cord in the opposite direction. Consequently, in aged AO rats it was shifted towards CD8+CD25+Foxp3+ regulatory T cells (exhibiting lower suppressive capacity) when compared with DA rats. Moreover, the frequency of CX3CR1+ cells among microglia changed with aging and the disease development. In aged rats, in the effector phase of EAE it was lower in AO than in DA rats. This was accompanied by higher frequency of cells expressing IL-1β (whose down-regulation is central for CX3CR1-mediated neuroprotection), but lower that of phagocyting cells among microglia from aged AO compared their DA counterparts. The study indicates the control points linked with strain differences in age-related changes in EAE pathogenesis.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
18
|
Liu YZ, Wang C, Wang Q, Lin YZ, Ge YS, Li DM, Mao GS. RETRACTED: Role of fractalkine/CX3CR1 signaling pathway in the recovery of neurological function after early ischemic stroke in a rat model. Life Sci 2017; 184:87-94. [PMID: 28624392 DOI: 10.1016/j.lfs.2017.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors and Editor-in-Chief. Concern was raised about the reliability of the Western blot results, as detailed here: https://pubpeer.com/publications/7BB8F6559AF31100A59484E5D97802; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. In addition, a portion of Figure 5A, CA3 ‘Positive control’ group appears to contain image similarities with Figure 5A, CA1 ‘CX3CR1 inhibitor’ group. The journal requested that the corresponding author comment on these concerns and provide the raw data. However, the authors were not able to satisfactorily fulfill this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yan-Zhi Liu
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Chun Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Qian Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Yong-Zhong Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Yu-Song Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, PR China.
| | - Dong-Mei Li
- Department of Neurovascular Surgery, General Hospital of Armed Police Forces, Beijing 100039, PR China
| | - Geng-Sheng Mao
- Department of Neurovascular Surgery, General Hospital of Armed Police Forces, Beijing 100039, PR China
| |
Collapse
|
19
|
O'Sullivan SA, Dev KK. The chemokine fractalkine (CX3CL1) attenuates H 2O 2-induced demyelination in cerebellar slices. J Neuroinflammation 2017; 14:159. [PMID: 28810923 PMCID: PMC5558650 DOI: 10.1186/s12974-017-0932-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023] Open
Abstract
Background Fractalkine/CX3CR1 signalling has been implicated in many neurodegenerative and neurological diseases of the central nervous system (CNS). This signalling pathway plays an important role in regulating reactive oxygen species (ROS), as well as itself being altered in conditions of oxidative stress. Here, we investigated the effects of recombinant fractalkine (rCX3CL1) in models of hydrogen peroxide (H2O2)-induced demyelination and astrocyte toxicity, within organotypic cerebellar slice cultures. Methods Organotypic cerebellar slice cultures were generated from postnatal day 10 C57BL/6J mice to assess myelination. Immunohistochemistry was used to measure the degree of myelination. Fluorescent images were obtained using a leica SP8 confocal microscope and data analysed using ImageJ software. Results We show here, for the first time, that rCX3CL1 significantly attenuated bolus H2O2-induced demyelination as measured by expression of myelin basic protein (MBP) and attenuated reduced vimentin expression. Using the GOX-CAT system to continuously generate low levels of H2O2 and induce demyelination, we observed similar protective effects of rCX3CL1 on MBP and MOG fluorescence, although in this model, the decrease in vimentin expression was not altered. Conclusions This data indicates possible protective effects of fractalkine signalling in oxidative stress-induced demyelination in the central nervous system. This opens up the possibility of fractalkine receptor (CX3CR1) modulation as a potential new target for protecting against oxidative stress-induced demyelination in both inflammatory and non-inflammatory nervous system disorders.
Collapse
Affiliation(s)
- Sinead A O'Sullivan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Khorshid Ahmad T, Zhou T, AlTaweel K, Cortes C, Lillico R, Lakowski TM, Gozda K, Namaka MP. Experimental Autoimmune Encephalomyelitis (EAE)-Induced Elevated Expression of the E1 Isoform of Methyl CpG Binding Protein 2 (MeCP2E1): Implications in Multiple Sclerosis (MS)-Induced Neurological Disability and Associated Myelin Damage. Int J Mol Sci 2017; 18:ijms18061254. [PMID: 28604632 PMCID: PMC5486076 DOI: 10.3390/ijms18061254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/15/2017] [Accepted: 05/13/2017] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disease characterized by the destruction of central nervous system (CNS) myelin. At present, there is no cure for MS due to the inability to repair damaged myelin. Although the neurotrophin brain derived neurotrophic factor (BDNF) has a beneficial role in myelin repair, these effects may be hampered by the over-expression of a transcriptional repressor isoform of methyl CpG binding protein 2 (MeCP2) called MeCP2E1. We hypothesize that following experimental autoimmune encephalomyelitis (EAE)-induced myelin damage, the immune system induction of the pathogenic MeCP2E1 isoform hampers the myelin repair process by repressing BDNF expression. Using an EAE model of MS, we identify the temporal gene and protein expression changes of MeCP2E1, MeCP2E2 and BDNF. The expression changes of these key biological targets were then correlated with the temporal changes in neurological disability scores (NDS) over the entire disease course. Our results indicate that MeCP2E1 mRNA levels are elevated in EAE animals relative to naïve control (NC) and active control (AC) animals during all time points of disease progression. Our results suggest that the EAE-induced elevations in MeCP2E1 expression contribute to the repressed BDNF production in the spinal cord (SC). The sub-optimal levels of BDNF result in sustained NDS and associated myelin damage throughout the entire disease course. Conversely, we observed no significant differences in the expression patterns displayed for the MeCP2E2 isoform amongst our experimental groups. However, our results demonstrate that baseline protein expression ratios between the MeCP2E1 versus MeCP2E2 isoforms in the SC are higher than those identified within the dorsal root ganglia (DRG). Thus, the DRG represents a more conducive environment than that of the SC for BDNF production and transport to the CNS to assist in myelin repair. Henceforth, the sub-optimal BDNF levels we report in the SC may arise from the elevated MeCP2E1 vs. MeCP2E2 ratio in the SC that creates a more hostile environment thereby preventing local BDNF production. At the level of transcript, we demonstrate that EAE-induces the pathological enhanced expression of MeCP2E1 that contributes to enhanced NDS during the entire disease course. Thus, the pathological induction of the MeCP2E1 isoform contributes to the disruption of the normal homeostatic signaling equilibrium network that exists between cytokines, neurotrophins and chemokines that regulate the myelin repair process by repressing BDNF. Our research suggests that the elevated ratio of MeCP2E1 relative to MeCP2E2 may be a useful diagnostic marker that clinicians can utilize to determine the degree of neurological disability with associated myelin damage. The elevated MeCP2E1 vs. MeCP2E2 ratios (E1/E2) in the SC prevent BDNF from reaching optimal levels required for myelin repair. Thus, the lower E1/E2 ratios in the DRG, allow the DRG to serve as a weak secondary compensatory mechanism for enhanced production and delivery of BDNF to the SC to try to assist in myelin repair.
Collapse
Affiliation(s)
- Tina Khorshid Ahmad
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Ting Zhou
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Khaled AlTaweel
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Claudia Cortes
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Ryan Lillico
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Ted Martin Lakowski
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Kiana Gozda
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Michael Peter Namaka
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, MB R3E 0T5, Canada.
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
- Department of Medical Rehabilitation, College of Medicine, Faculty of Health Sciences, Winnipeg, MB R3E 0T6, Canada.
- Department of Internal Medicine, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada.
| |
Collapse
|
21
|
Podsiadło K, Sulkowski G, Dąbrowska-Bouta B, Strużyńska L. Blockade of the kinin B1 receptor affects the cytokine/chemokine profile in rat brain subjected to autoimmune encephalomyelitis. Inflammopharmacology 2017; 25:459-469. [PMID: 28160128 DOI: 10.1007/s10787-017-0312-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/14/2017] [Indexed: 12/13/2022]
Abstract
Kinins are bioactive peptides which provide multiple functions, including critical regulation of the inflammatory response. Released during tissue injury, kinins potentiate the inflammation which represents a hallmark of numerous neurological disorders, including those of autoimmune origin such as multiple sclerosis (MS). In the present work, we assess the expression of B1 receptor (B1R) in rat brain during the course of experimental autoimmune encephalomyelitis (EAE) which is an animal model of MS. We apply pharmacological inhibition to investigate the role of this receptor in the development of neurological deficits and in shaping the cytokine/chemokine profile during the course of the disease. Overexpression of B1R is observed in brain tissue of rats subjected to EAE, beginning at the very early asymptomatic phase of the disease. This overexpression is suppressed by a specific antagonist known as DALBK. The involvement of B1R in the progression of neurological symptoms in immunized rats is confirmed. Analysis of an array of cytokines/chemokines identified a sub-group as being B1R-dependent. Increase of the protein levels for the proinflammatory cytokines (Il-6, TNF-α but not IL-1β), chemokines attracting immune cells into nervous tissue (MCP-1, MIP-3α, LIX), and protein levels of fractalkine and vascular endothelial growth factor observed in EAE rats, were significantly diminished after DALBK administration. This may indicate the protective potential of pharmacological inhibition of B1R. However, simultaneously reduced protein levels of anti-inflammatory and neuroprotective factors (IL-10, IL-4, and CNTF) was noticed. The results show that B1R-mediated signaling regulates the cellular response profile following neuroinflammation in EAE.
Collapse
Affiliation(s)
- Karolina Podsiadło
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 A. Pawińskiego str., 02-106, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 A. Pawińskiego str., 02-106, Warsaw, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 A. Pawińskiego str., 02-106, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 A. Pawińskiego str., 02-106, Warsaw, Poland.
| |
Collapse
|
22
|
Hyperexcitability in Spinal WDR Neurons following Experimental Disc Herniation Is Associated with Upregulation of Fractalkine and Its Receptor in Nucleus Pulposus and the Dorsal Root Ganglion. Int J Inflam 2016; 2016:6519408. [PMID: 28116212 PMCID: PMC5220471 DOI: 10.1155/2016/6519408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction. Lumbar radicular pain following intervertebral disc herniation may be associated with a local inflammatory response induced by nucleus pulposus (NP) cells. Methods. In anaesthetized Lewis rats, extracellular single unit recordings of wide dynamic range (WDR) neurons in the dorsal horn and qPCR were used to explore the effect of NP application onto the dorsal nerve roots (L3-L5). Results. A clear increase in C-fiber response was observed following NP conditioning. In the NP tissue, the expression of interleukin-1β (IL-1β), colony stimulating factor 1 (Csf1), fractalkine (CX3CL1), and the fractalkine receptor CX3CR1 was increased. Minocycline, an inhibitor of microglial activation, inhibited the increase in neuronal activity and attenuated the increase in IL-1β, Csf1, CX3L1, and CX3CR1 expression in NP tissue. In addition, the results demonstrated an increase in the expression of TNF, CX3CL1, and CX3CR1 in the dorsal root ganglions (DRGs). Conclusion. Hyperexcitability in the pain pathways and the local inflammation after disc herniation may involve upregulation of CX3CL1 signaling in both the NP and the DRG.
Collapse
|
23
|
Duffy SS, Perera CJ, Makker PGS, Lees JG, Carrive P, Moalem-Taylor G. Peripheral and Central Neuroinflammatory Changes and Pain Behaviors in an Animal Model of Multiple Sclerosis. Front Immunol 2016; 7:369. [PMID: 27713744 PMCID: PMC5031691 DOI: 10.3389/fimmu.2016.00369] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/06/2016] [Indexed: 01/27/2023] Open
Abstract
Pain is a widespread and debilitating symptom of multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system. Although central neuroinflammation and demyelination have been implicated in MS-related pain, the contribution of peripheral and central mechanisms during different phases of the disease remains unclear. In this study, we used the animal model experimental autoimmune encephalomyelitis (EAE) to examine both stimulus-evoked and spontaneous pain behaviors, and neuroinflammatory changes, over the course of chronic disease. We found that mechanical allodynia of the hind paw preceded the onset of clinical EAE but was unmeasurable at clinical peak. This mechanical hypersensitivity coincided with increased microglial activation confined to the dorsal horn of the spinal cord. The development of facial mechanical allodynia also emerged in preclinical EAE, persisted at the clinical peak, and corresponded with pathology of the peripheral trigeminal afferent pathway. This included T cell infiltration, which arose prior to overt central lesion formation and specific damage to myelinated neurons during the clinical peak. Measurement of spontaneous pain using the mouse grimace scale, a facial expression-based coding system, showed increased facial grimacing in mice with EAE during clinical disease. This was associated with multiple peripheral and central neuroinflammatory changes including a decrease in myelinating oligodendrocytes, increased T cell infiltration, and macrophage/microglia and astrocyte activation. Overall, these findings suggest that different pathological mechanisms may underlie stimulus-evoked and spontaneous pain in EAE, and that these behaviors predominate in unique stages of the disease.
Collapse
Affiliation(s)
- Samuel S Duffy
- School of Medical Sciences, UNSW Medicine, The University of New South Wales (UNSW Australia) , Sydney, NSW , Australia
| | - Chamini J Perera
- School of Medical Sciences, UNSW Medicine, The University of New South Wales (UNSW Australia) , Sydney, NSW , Australia
| | - Preet G S Makker
- School of Medical Sciences, UNSW Medicine, The University of New South Wales (UNSW Australia) , Sydney, NSW , Australia
| | - Justin G Lees
- School of Medical Sciences, UNSW Medicine, The University of New South Wales (UNSW Australia) , Sydney, NSW , Australia
| | - Pascal Carrive
- School of Medical Sciences, UNSW Medicine, The University of New South Wales (UNSW Australia) , Sydney, NSW , Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, UNSW Medicine, The University of New South Wales (UNSW Australia) , Sydney, NSW , Australia
| |
Collapse
|
24
|
Mifflin KA, Kerr BJ. Pain in autoimmune disorders. J Neurosci Res 2016; 95:1282-1294. [PMID: 27448322 DOI: 10.1002/jnr.23844] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
Abstract
Most autoimmune diseases are associated with pathological pain development. Autoimmune diseases with pathological pain include complex regional pain syndrome, rheumatoid arthritis, and Guillian-Barré syndrome to name a few. The present Review explores research linking the immune system to the development of pathological pain in autoimmune diseases. Pathological pain has been linked to T-cell activation and the release of cytokines from activated microglia in the dorsal horn of the spinal cord. New research on the role of autoantibodies in autoimmunity has generated insights into potential mechanisms of pain associated with autoimmune disease. Autoantibodies may act through various mechanisms in autoimmune disorders. These include the alteration of neuronal excitability via specific antigens such as the voltage-gated potassium channel complexes or by mediating bone destruction in rheumatoid arthritis. Although more research must be done to understand better the role of autoantibodies in autoimmune disease related pain, this may be a promising area of research for new analgesic therapeutic targets. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katherine A Mifflin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Reversal of neurochemical alterations in the spinal dorsal horn and dorsal root ganglia by Mas-related gene (Mrg) receptors in a rat model of spinal nerve injury. Neurobiol Dis 2016; 91:274-83. [DOI: 10.1016/j.nbd.2016.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/12/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
|
26
|
Frezel N, Sohet F, Daneman R, Basbaum AI, Braz JM. Peripheral and central neuronal ATF3 precedes CD4+ T-cell infiltration in EAE. Exp Neurol 2016; 283:224-34. [PMID: 27343802 DOI: 10.1016/j.expneurol.2016.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 01/04/2023]
Abstract
Experimental allergic encephalomyelitis (EAE), an animal model of multiple sclerosis produced by immunization with myelin oligodendrocyte glycoprotein (MOG) and adjuvants, results from profound T-cell mediated CNS demyelination. EAE is characterized by progressive, ascending motor dysfunction and symptoms of ongoing pain and hypersensitivity, in some cases preceding or concomitant with the motor deficits. In this regard, the EAE model mimics major features of multiple sclerosis, where a central neuropathic pain state is common. Although the latter condition is presumed to arise from a CNS loss of inhibitory controls secondary to the demyelination, dysfunction of sensory neurons may also contribute. Based on our previous studies that demonstrated the utility of monitoring expression of activating transcription factor 3 (ATF3), a sensitive marker of injured sensory neurons, here we followed both ATF3 and CD4+ T cells invasion of sensory ganglia (as well as the CNS) at different stages of the EAE model. We found that ATF3 is induced in peripheral sensory ganglia and brainstem well before the appearance of motor deficits. Unexpectedly, the ATF3 induction always preceded T cell infiltration, typically in adjacent, but non-overlapping regions. Surprisingly, control administration of the pertussis toxin and/or Complete Freund's adjuvants, without MOG, induced ATF3 in sensory neurons. In contrast, T cell infiltration only occurred with MOG. Taken together, our results suggest that the clinical manifestations in the EAE result not only from central demyelination but also from neuronal stress and subsequent pathophysiology of sensory neurons.
Collapse
Affiliation(s)
- Noémie Frezel
- Department Anatomy, University California San Francisco, San Francisco, CA 94158, United States.
| | - Fabien Sohet
- Department Anatomy, University California San Francisco, San Francisco, CA 94158, United States.
| | - Richard Daneman
- Department Anatomy, University California San Francisco, San Francisco, CA 94158, United States.
| | - Allan I Basbaum
- Department Anatomy, University California San Francisco, San Francisco, CA 94158, United States.
| | - Joao M Braz
- Department Anatomy, University California San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
27
|
Abstract
OBJECTIVES The paradoxical development of chronic abdominal pain is an underrecognized side effect of opioid use. Narcotic bowel syndrome (NBS), occurring in a small proportion of chronic opioid users, consists of chronic or intermittent abdominal pain, which often increases in severity despite continued or escalating dosages of opioids prescribed to relieve pain. METHODS A PubMed search was conducted using terms such as "narcotic bowel syndrome" and "opioid hyperalgesia" through January 2014. RESULTS Abdominal pain is the defining symptom of NBS and is thought to be mediated by central nervous system dysfunction; it should be distinguished from the peripheral side effects of opioids, such as nausea, bloating, intermittent vomiting, abdominal distension, and constipation. This latter cluster of symptoms is called opioid bowel dysfunction, although it may co-occur with NBS. Hypothesized mechanisms of the central effects of opioids on nociception in NBS include spinal cord inflammation and dysfunction in opioid receptor activity and related neuroanatomical substrates. With continued use, ∼6% of patients taking narcotics chronically will develop NBS, with profound consequences in terms of daily function. The primary management paradigm for NBS is a structured opioid withdrawal program accompanied by centrally acting adjunctive therapy comprising antidepressants, benzodiazepines, and clonidine to target pain, anxiety, and depression, and prevent withdrawal effects, in addition to peripherally acting agents such as laxatives (e.g., osmotic laxatives and chloride channel activators) to control transient constipation. Such structured withdrawal programs have been prospectively evaluated in small clinical trials and have met with considerable success in the short term. CONCLUSIONS Because rates of NBS are likely to rise, integrated intensive pharmacotherapy and psychosocial interventions are needed to help patients with NBS go off and stay off opioids. These programs will likely also reduce comorbid psychopathology and lead to adequate pain control and improved quality of life.
Collapse
|
28
|
Cairns BE, O'Brien M, Dong XD, Gazerani P. Elevated Fractalkine (CX3CL1) Levels in the Trigeminal Ganglion Mechanically Sensitize Temporalis Muscle Nociceptors. Mol Neurobiol 2016; 54:3695-3706. [PMID: 27209190 DOI: 10.1007/s12035-016-9935-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
Abstract
It has been proposed that after nerve injury or tissue inflammation, fractalkine (CX3CL1) released from dorsal root ganglion neurons acts on satellite glial cells (SGCs) through CX3C receptor 1 (CX3CR1) to induce neuroplastic changes. The existence and importance of fractalkine/CX3CR1 signaling in the trigeminal ganglia has not yet been clarified. This study investigated (1) whether trigeminal ganglion neurons that innervate temporalis muscle and their associated SGCs contain fractalkine and/or express CX3CR1, (2) if intraganglionic injection of fractalkine increases the mechanical sensitivity of temporalis muscle afferent fibers, (3) whether complete Freund's adjuvant (CFA)-induced inflammation of the temporalis muscle alters the expression of fractalkine or its receptor in the trigeminal ganglion, and (4) if intraganglionic administration of CX3CR1 antibodies alters afferent mechanical sensitivity. Immunohistochemistry and in vivo electrophysiological recordings in male and female rats were used to address these questions. It was found that ∼50 % of temporalis ganglion neurons and ∼25 % of their associated SGCs express CX3CR1, while only neurons expressed fractalkine. Temporalis muscle inflammation increased the expression of fractalkine, but only in male rats. Intraganglionic injection of fractalkine (25 g/ml; 3 μl) induced prolonged afferent mechanical sensitization. Intraganglionic injection of CX3CR1 antibody increased afferent mechanical threshold, but this effect was greater in controls than in rats with CFA-induced muscle inflammation. These findings raise the possibility that basal fractalkine signalling within the trigeminal ganglion plays an important role in mechanical sensitivity of masticatory muscle sensory afferent fibers and that inhibition of CX3CR1 signaling within the trigeminal ganglia may induce analgesia through a peripheral mechanism.
Collapse
Affiliation(s)
- Brian E Cairns
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada.,SMI®, Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7-D3, 9220, Aalborg East, Denmark
| | - Melissa O'Brien
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Xu-Dong Dong
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Parisa Gazerani
- SMI®, Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7-D3, 9220, Aalborg East, Denmark.
| |
Collapse
|
29
|
Li D, Chen H, Luo XH, Sun Y, Xia W, Xiong YC. CX3CR1-Mediated Akt1 Activation Contributes to the Paclitaxel-Induced Painful Peripheral Neuropathy in Rats. Neurochem Res 2016; 41:1305-14. [PMID: 26961886 DOI: 10.1007/s11064-016-1827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Painful peripheral neuropathy is a serious dose-limiting side effect of paclitaxel therapy, which unfortunately often happens during the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms of the painful peripheral neuropathy remain largely unknown. Here, we found that paclitaxel treatment (3 × 8 mg/kg, cumulative dose 24 mg/kg) upregulated the expression of CX3CR1 and phosphorylated Akt1 in DRG and spinal dorsal horn. Blocking of Akt1 pathway activation with different inhibitor (MK-2206 or LY294002) significantly attenuated mechanical allodynia and thermal hyperalgesia induced by paclitaxel. Furthermore, inhibition of CX3CR1 by using neutralizing antibody not only prevented Akt1 activation in DRG and spinal dorsal horn but also alleviated pain-related behavior induced by paclitaxel treatment. This study suggested that CX3CR1/Akt1 signaling pathway may be a potential target for prevention and reversion of the painful peripheral neuropathy induced by paclitaxel.
Collapse
Affiliation(s)
- Dai Li
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Hui Chen
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Xiao-Huan Luo
- Center For Reproductive Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China
| | - Yang Sun
- Department of Pain, Branch of The First Affiliate Hospital of Xinjiang Medical University, Changji, People's Republic of China
| | - Wei Xia
- Center For Reproductive Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.
| | - Yuan-Chang Xiong
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
30
|
Poniatowski ŁA, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I. Analysis of the Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Traumatic Brain and Spinal Cord Injury: Insight into Recent Advances in Actions of Neurochemokine Agents. Mol Neurobiol 2016; 54:2167-2188. [PMID: 26927660 PMCID: PMC5355526 DOI: 10.1007/s12035-016-9787-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
CX3CL1 (fractalkine) is the only member of the CX3C (delta) subfamily of chemokines which is unique and combines the properties of both chemoattractant and adhesion molecules. The two-form ligand can exist either in a soluble form, like all other chemokines, and as a membrane-anchored molecule. CX3CL1 discloses its biological properties through interaction with one dedicated CX3CR1 receptor which belongs to a family of G protein-coupled receptors (GPCR). The CX3CL1/CX3CR1 axis acts in many physiological phenomena including those occurring in the central nervous system (CNS), by regulating the interactions between neurons, microglia, and immune cells. Apart from the role under physiological conditions, the CX3CL1/CX3CR1 axis was implied to have a role in different neuropathologies such as traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries represent a serious public health problem, despite improvements in therapeutic management. To date, no effective treatment has been determined, so they constitute a leading cause of death and severe disability. The course of TBI and SCI has two consecutive poorly demarcated phases: the initial, primary injury and secondary injury. Recent evidence has implicated the role of the CX3CL1/CX3CR1 axis in neuroinflammatory processes occurring after CNS injuries. The importance of the CX3CL1/CX3CR1 axis in the pathophysiology of TBI and SCI in the context of systemic and direct local immune response is still under investigation. This paper, based on a review of the literature, updates and summarizes the current knowledge about CX3CL1/CX3CR1 axis involvement in TBI and SCI pathogenesis, indicating possible molecular and cellular mechanisms with a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Łukasz A Poniatowski
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.
| | - Piotr Wojdasiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.,Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.,Department of Pediatric and Neurological Rehabilitation, Faculty of Rehabilitation, Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Robert Gasik
- Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Łukasz Kubaszewski
- Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Orthopaedics and Traumatology, Wiktor Dega Orthopaedic and Rehabilitation Clinical Hospital, Poznań University of Medical Sciences, 28 Czerwca 1956 135/147, 61-545, Poznań, Poland
| | | |
Collapse
|
31
|
Zhang X, Feng X, Cai W, Liu T, Liang Z, Sun Y, Yan C, Han Y. Chemokine CX3CL1 and its receptor CX3CR1 are associated with human atherosclerotic lesion volnerability. Thromb Res 2015; 135:1147-53. [PMID: 25845619 DOI: 10.1016/j.thromres.2015.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND CX3CL1 and its receptor CX3CR1 have been emphasized in atherosclerosis recently. In this study we investigated the role of the chemokines CX3CL1 and their receptor CX3CR1 in atherogenesis and identified whether the genetic variations in CX3CL1 and CX3CR1 impacted the atherosclerosis process in coronary artery disease (CAD) or not. METHODS CX3CL1/CX3CR1 expression in coronary and carotid artery specimens were analysed by immunohistochemistry. CX3CR1 expression on CD4(+) CD28(-) T cells was analysed by flow cytometry. We also screened for CX3CL1/CX3CR1 sequence variations selected from the hapmap database and examined the association between CX3CL1/CX3CR1 and CAD in the Chinese Han population. RESULTS Immunohistochemical staining of tissue from CAD patients showed increased CX3CL1/CX3CR1 expression in atherosclerotic coronary and carotid artery plaques compared with normal arteries. CX3CL1/CX3CR1 expression was correlated with the severity of the atherosclerosis lesion. Patients with CAD also showed an increased number of CX3CR1(+) CD4(+) CD28(-) T cells. Compared with their corresponding wild-type genotypes, CX3CL1 rs170364 and CX3CR1 rs17793056 were associated with increased susceptibility to CAD. CONCLUSIONS CX3CL1 and CX3CR1 may contribute to the formation of coronary atherosclerotic plaque in CAD.CX3CL1 rs170364 and CX3CR1 rs17793056 polymorphisms may be independent genetic risk factors for CAD.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Cardiovascular Research Institute and Department of Cardiology, ShenYang Military General Hospital, 83 Wenhua Road, Shenyang 110840, China
| | - Xueyao Feng
- Cardiovascular Research Institute and Department of Cardiology, ShenYang Military General Hospital, 83 Wenhua Road, Shenyang 110840, China
| | - Wenzhi Cai
- Cardiovascular Research Institute and Department of Cardiology, ShenYang Military General Hospital, 83 Wenhua Road, Shenyang 110840, China
| | - Tengfei Liu
- Cardiovascular Research Institute and Department of Cardiology, ShenYang Military General Hospital, 83 Wenhua Road, Shenyang 110840, China
| | - Zhenyang Liang
- Cardiovascular Research Institute and Department of Cardiology, ShenYang Military General Hospital, 83 Wenhua Road, Shenyang 110840, China
| | - Ying Sun
- Cardiovascular Research Institute and Department of Cardiology, ShenYang Military General Hospital, 83 Wenhua Road, Shenyang 110840, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, ShenYang Military General Hospital, 83 Wenhua Road, Shenyang 110840, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, ShenYang Military General Hospital, 83 Wenhua Road, Shenyang 110840, China
| |
Collapse
|
32
|
Sun S, Yu H, Yu H, Honglin M, Ni W, Zhang Y, Guo L, He Y, Xue Z, Ni Y, Li J, Feng Y, Chen Y, Shao R, Chai R, Li H. Inhibition of the activation and recruitment of microglia-like cells protects against neomycin-induced ototoxicity. Mol Neurobiol 2015; 51:252-67. [PMID: 24781382 DOI: 10.1007/s12035-014-8712-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/09/2014] [Indexed: 12/18/2022]
Abstract
One of the most unfortunate side effects of aminoglycoside (AG) antibiotics such as neomycin is that they target sensory hair cells (HCs) and can cause permanent hearing impairment. We have observed HC loss and microglia-like cell (MLC) activation in the inner ear (cochlea) following neomycin administration. We focused on CX3CL1, a membrane-bound glycoprotein expressed on neurons and endothelial cells, as a way to understand how the MLCs are activated and the role these cells play in HC loss. CX3CL1 is the exclusive ligand for CX3CR1, which is a chemokine receptor expressed on the surface of macrophages and MLCs. In vitro experiments showed that the expression levels of CX3CL1 and CX3CR1 increased in the cochlea upon neomycin treatment, and CX3CL1 was expressed on HCs, while CX3CR1 was expressed on MLCs. When cultured with 1 μg/mL exogenous CX3CL1, MLCs were activated by CX3CL1, and the cytokine level was increased in the cochleae leading to apoptosis in the HCs. In CX3CR1 knockout mice, a significantly greater number of cochlear HCs survived than in wild-type mice when the cochlear explants were cultured with neomycin in vitro. Furthermore, inhibiting the activation of MLCs with minocycline reduced the neomycin-induced HC loss and improved the hearing function in neomycin-treated mice in vivo. Our results demonstrate that CX3CL1-induced MLC activation plays an important role in the induction of HC death and provide evidence for CX3CL1 and CX3CR1 as promising new therapeutic targets for the prevention of hearing loss.
Collapse
Affiliation(s)
- Shan Sun
- Research Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fernandes A, Miller-Fleming L, Pais TF. Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci 2014; 71:3969-85. [PMID: 25008043 PMCID: PMC11113719 DOI: 10.1007/s00018-014-1670-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/28/2022]
Abstract
Microglial cells contribute to normal function of the central nervous system (CNS). Besides playing a role in the innate immunity, they are also involved in neuronal plasticity and homeostasis of the CNS. While microglial cells get activated and undergo phenotypic changes in different disease contexts, they are far from being the "villains" in the CNS. Mounting evidence indicates that microglial dysfunction can exacerbate the pathogenesis of several diseases in the CNS. Several molecular mechanisms tightly regulate the production of inflammatory and toxic factors released by microglia. These mechanisms involve the interaction with other glial cells and neurons and the fine regulation of signaling and transcription activation pathways. The purpose of this review is to discuss microglia activation and to highlight the molecular pathways that can counteract the detrimental role of microglia in several neurologic diseases. Recent work presented in this review support that the understanding of microglial responses can pave the way to design new therapies for inflammatory diseases of the CNS.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Leonor Miller-Fleming
- Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
- Present Address: Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, CB21GA Cambridge, UK
| | - Teresa F. Pais
- Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
34
|
Ashhurst TM, van Vreden C, Niewold P, King NJC. The plasticity of inflammatory monocyte responses to the inflamed central nervous system. Cell Immunol 2014; 291:49-57. [PMID: 25086710 PMCID: PMC7094263 DOI: 10.1016/j.cellimm.2014.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022]
Abstract
Over the last three decades it has become increasingly clear that monocytes, originally thought to have fixed, stereotypic responses to foreign stimuli, mediate exquisitely balanced protective and pathogenic roles in disease and immunity. This balance is crucial in core functional organs, such as the central nervous system (CNS), where minor changes in neuronal microenvironments and the production of immune factors can result in significant disease with fatal consequences or permanent neurological sequelae. Viral encephalitis and multiple sclerosis are examples of important human diseases in which the pathogenic contribution of monocytes recruited from the bone marrow plays a critical role in the clinical expression of disease, as they differentiate into macrophage or dendritic cells in the CNS to carry out effector functions. While antigen-specific lymphocyte populations are central to the adaptive immune response in both cases, in viral encephalitis a prominent macrophage infiltration may mediate immunopathological damage, seizure induction, and death. However, the autoimmune response to non-replicating, non-infectious, but abundant, self antigen has a different disease progression, associated with differentiation of significant numbers of infiltrating monocytes into dendritic cells in the CNS. Whilst a predominant presence of macrophages or dendritic cells in the inflamed CNS in viral encephalitis or multiple sclerosis is well described, the way in which the inflamed CNS mobilizes monocytes in the bone marrow to migrate to the CNS and the key drivers that lead to these specific differentiation pathways in vivo are not well understood. Here we review the current understanding of factors facilitating inflammatory monocyte generation, migration and entry into the brain, as well as their differentiation towards macrophages or dendritic cells in viral and autoimmune disease in relation to their respective disease outcomes.
Collapse
Affiliation(s)
- Thomas Myles Ashhurst
- Viral Immunopathology Laboratory, Discipline of Pathology, Bosch Institute and The Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Caryn van Vreden
- Viral Immunopathology Laboratory, Discipline of Pathology, Bosch Institute and The Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paula Niewold
- Viral Immunopathology Laboratory, Discipline of Pathology, Bosch Institute and The Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicholas Jonathan Cole King
- Viral Immunopathology Laboratory, Discipline of Pathology, Bosch Institute and The Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|