1
|
Dyson PJ, Banat IM, Quinn GA. War and peace: exploring microbial defence systems as a source of new antimicrobial therapies. Front Pharmacol 2025; 15:1504901. [PMID: 39840088 PMCID: PMC11747395 DOI: 10.3389/fphar.2024.1504901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
The WHO has compiled a list of pathogens that urgently require new antibiotics in response to the rising reports of antibiotic resistance and a diminished supply of new antibiotics. At the top of this list is fluoroquinolone-resistant Salmonella typhi, fluoroquinolone-resistant Shigella spp. and vancomycin-resistant Enterococcus faecium. Although these problems have been covered in great detail by other contemporary reviews, there are still some fundamental gaps in the translation of current knowledge of the infectious process and the molecular ecology of antibiotic production into a sustainable protocol for the treatment of pathogenic diseases. Therefore, in this narrative review we briefly discuss newly approved antimicrobial drugs (since 2014) that could help to alleviate the burden of multiresistant pathogens listed on the WHO priority list. Being conscious that such treatments may eventually run the risk of future cycles of resistance, we also discuss how new understandings in the molecular ecology of antibiotic production and the disease process can be harnessed to create a more sustainable solution for the treatment of pathogenic diseases.
Collapse
Affiliation(s)
- Paul J. Dyson
- Medical School, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Ibrahim M. Banat
- Centre for Molecular Biosciences, Ulster University, Coleraine, United Kingdom
| | - Gerry A. Quinn
- Centre for Molecular Biosciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
2
|
Pal S, Chatterjee N, Sinha Roy S, Chattopadhyay B, Acharya K, Datta S, Dhar P. Valorization of oil refinery by-products: production of sophorolipids utilizing fatty acid distillates and their potential antibacterial, anti-biofilm, and antifungal activities. World J Microbiol Biotechnol 2024; 40:344. [PMID: 39384621 DOI: 10.1007/s11274-024-04144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
Starmerella bombicola is a native yeast strain producing sophorolipids as secondary metabolites. This study explores the production, characterization, and biological activities of sophorolipids and investigates the antimicrobial, anti-biofilm, and antifungal properties of sophorolipids produced from oil refinery wastes by the yeast Starmerella bombicola. The present work demonstrated that S. bombicola MTCC 1910 when grown in oil refinery wastes namely palm fatty acid distillates and soy fatty acid distillates enhanced the rate of sophorolipids production drastically in comparison to vegetable oil, sunflower oil used as hydrophobic feedstock. Sophorolipid yields were 18.14, 37.21, and 46.1 g/L with sunflower oil, palm, and soy fatty acid distillates respectively. The crude biosurfactants were characterized using TLC, FTIR, and HPLC revealing to be acetylated sophorolipids containing both the acidic and lactonic isomeric forms. The surface lowering and emulsifying properties of the sophorolipids from refinery wastes were significantly higher than the sunflower oil-derived sophorolipids. Also, all the sophorolipids exhibited strong antibacterial properties (minimum inhibitory concentrations were between 50 and 200 µg mL-1) against Salmonella typhimurium, Bacillus cereus, and Staphylococcus epidermidis and were validated with morphological analysis by Scanning electron microscopy. All the sophorolipids were potent biofilm inhibitors and eradicators (minimum biofilm inhibitory and eradication concentrations were between 12.5 to 1000 µg mL-1) for all the tested organisms. Furthermore, antifungal activities were also found to exhibit about 16-56% inhibition at 1 mg mL-1 for fungal mycelial growth. Therefore, this endeavour of sophorolipids production using palm and soy fatty acid distillates not only opens up a window for the bioconversion of industrial wastes into productive biosurfactants but also concludes that sophorolipids from oil refinery wastes are potent antimicrobial, anti-biofilm, and antifungal agents, highlighting their potential in biotechnological and medical applications.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India
| | - Sagnik Sinha Roy
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Brajadulal Chattopadhyay
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, 35, Ballygunge Circular Rd, Ballygunge, Kolkata, 700019, West Bengal, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Rajabazar, Machuabazar, Kolkata, 700009, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, 700027, West Bengal, India.
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata, 700 098, West Bengal, India.
| |
Collapse
|
3
|
Quinn GA, Dyson PJ. Going to extremes: progress in exploring new environments for novel antibiotics. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:8. [PMID: 39843508 PMCID: PMC11721673 DOI: 10.1038/s44259-024-00025-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2025]
Abstract
The discoveries of penicillin and streptomycin were pivotal for infection control with the knowledge subsequently being used to enable the discovery of many other antibiotics currently used in clinical practice. These valuable compounds are generally derived from mesophilic soil microorganisms, predominantly Streptomyces species. Unfortunately, problems with the replication of results suggested that this discovery strategy was no longer viable, motivating a switch to combinatorial chemistry in conjunction with existing screening programmes to derive new antimicrobials. However, the chemical space occupied by these synthetic products is vastly reduced compared to those of natural products. More recent approaches such as using artificial intelligence to 'design' synthetic ligands to dock with molecular targets suggest that chemical synthesis is still a promising option for discovery. It is important to employ diverse discovery strategies to combat the worrying increase in antimicrobial resistance (AMR). Here, we reconsider whether nature can supply innovative solutions to recalcitrant infections. Specifically, we assess progress in identifying novel antibiotic-producing organisms from extreme and unusual environments. Many of these organisms have adapted physiologies which often means they produce different repertoires of bioactive metabolites compared to their mesophilic counterparts, including antibiotics. In addition, we examine insights into the regulation of extremotolerant bacterial physiologies that can be harnessed to increase the production of clinically important antibiotics and stimulate the synthesis of new antibiotics in mesophilic microorganisms. Finally, we comment on the insights provided by combinatorial approaches to the treatment of infectious diseases that might enhance the efficacy of antibiotics and reduce the development of AMR.
Collapse
Affiliation(s)
- Gerry A Quinn
- Centre for Molecular Biosciences, Ulster University, Coleraine, BT52 1SA, N, Ireland, UK
| | - Paul J Dyson
- Institute of Life Sciences, Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
4
|
Wang H, Gao R, Song X, Yuan X, Chen X, Zhao Y. Study on the production of Sophorolipid by Starmerella bombicola yeast using fried waste oil fermentation. Biosci Rep 2024; 44:BSR20230345. [PMID: 38063133 PMCID: PMC10830443 DOI: 10.1042/bsr20230345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024] Open
Abstract
Sophorolipids (SLs) are surface active compounds that have excellent surface-lowering properties. SLs were produced by Starmerella bombicola (CGMCC1576) yeast with sunflower seed oil, fried waste oil, cooked tung oil and raw tung oil used as hydrophobic carbon sources. The results showed that the strain could use sunflower seed oil and fried waste oil as hydrophobic carbon sources to produce SLs, and the yields were 44.52 and 39.09 gl-1. It could not be used as cooked tung oil and raw tung oil. The analysis by high-performance liquid chromatography/high resolution mass spectrometry (HPLC-MS/MS) showed that the main composition and structure of SLs produced by fermentation using fried waste oil were similar to that of sunflower seed oil as hydrophobic carbon source. The yield of SLs was the highest when the fried waste oil was used as hydrophobic carbon source, glucose (8%), waste oil (6%) and yeast (0.3%). When fried waste oil was used as a hydrophobic carbon source in a parallel 4-strand fermentation tank (FT), the combination with the largest yield and the most cost saving was that 3% of fried waste oil was added into the initial medium, and another 3% was again added after 72 h of fermentation. The total yield of SLs was 121.28 gl-1, and the yield of lactone SLs was 48.07 gl-1.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Food and Drug, Baotou Light Industry Vocational Technical College, Baotou, Inner Mongolia, China
| | - Ruifang Gao
- Modern Agriculture and Animal Husbandry Development Center, Bureau of Agriculture and Animal, Husbandry of Bayannur City, Bayannur, Inner Mongolia, China
| | - Xin Song
- Institute of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xiangdong Yuan
- Department of Food and Drug, Baotou Light Industry Vocational Technical College, Baotou, Inner Mongolia, China
| | - Xiuli Chen
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, Inner Mongolia, China
| | | |
Collapse
|
5
|
Araujo JMM, Monteiro JM, Silva DHDS, Veira AK, Silva MRC, Ferraz FA, Braga FHR, de Siqueira EP, Monteiro ADS. Candida krusei M4CK Produces a Bioemulsifier That Acts on Melaleuca Essential Oil and Aids in Its Antibacterial and Antibiofilm Activity. Antibiotics (Basel) 2023; 12:1686. [PMID: 38136720 PMCID: PMC10740703 DOI: 10.3390/antibiotics12121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 12/24/2023] Open
Abstract
Surface-active compounds (SACs) of microbial origin are an active group of biomolecules with potential use in the formulation of emulsions. In this sense, the present study aimed to isolate and select yeasts from fruits that could produce SACs for essential oil emulsions. The Candida krusei M4CK was isolated from the Byrsonima crassifolia fruit to make SACs. This emulsification activity (E24) was equal to or greater 50% in all carbon sources, such as olive oil, sunflower oil, kerosene, hexane, and hexadecane. E24 followed exponential growth according to the growth phase. The stability of emulsions was maintained over a wide range of temperatures, pH, and salinity. The OMBE4CK (melaleuca essential oil emulsion) had better and more significant inhibitory potential for biofilm reduction formation. In addition, bioemulsifier BE4CK alone on Escherichia coli and Pseudomonas aeruginosa biofilm showed few effective results, while there was a significant eradication for Staphylococcus aureus biofilms. The biofilms formed by S. aureus were eradicated in all concentrations of OMBE4CK. At the same time, the preformed biofilm by E. coli and P. aeruginosa were removed entirely at concentrations of 25 mg/mL, 12.5 mg/mL, and 6.25 mg/mL. The results show that the bioemulsifier BE4CK may represent a new potential for antibiofilm application.
Collapse
Affiliation(s)
- Jéssica Mayra Mendes Araujo
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, Saint Louis 65055-310, Brazil; (J.M.M.A.); (J.M.M.)
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | - Joveliane Melo Monteiro
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, Saint Louis 65055-310, Brazil; (J.M.M.A.); (J.M.M.)
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | | | - Amanda Karoline Veira
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | - Maria Raimunda Chagas Silva
- Laboratório de Ciências do Ambiente, Universidade CEUMA, Saint Louis 65075-120, Brazil; (M.R.C.S.); (F.H.R.B.)
| | - Fernanda Avelino Ferraz
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | - Fábio H. Ramos Braga
- Laboratório de Ciências do Ambiente, Universidade CEUMA, Saint Louis 65075-120, Brazil; (M.R.C.S.); (F.H.R.B.)
| | - Ezequias Pessoa de Siqueira
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
| | - Andrea de Souza Monteiro
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, Saint Louis 65055-310, Brazil; (J.M.M.A.); (J.M.M.)
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| |
Collapse
|
6
|
Master NG, Markande AR. Importance of microbial amphiphiles: interaction potential of biosurfactants, amyloids, and other exo-polymeric-substances. World J Microbiol Biotechnol 2023; 39:320. [PMID: 37747579 DOI: 10.1007/s11274-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although diverse in biochemical composition, these amphiphiles have been reported for common microbial traits like biofilm formation and pathogenicity due to their ability to act as surface active agents with active interfacial properties essential for microbes to grow in various niches. This enables microbes to reduce surface tension, emulsification, dispersion, and attachment at the interface. In this report, the ecological importance and biotechnological usage of important amphiphiles have been discussed. The low molecular weight amphiphiles like biosurfactants, siderophores, and peptides showing helical and antimicrobial activities have been extensively reported for their ability to work as quorum-sensing mediators. While high molecular weight amphiphiles make up amyloid fibers, exopolysaccharides, liposomes, or magnetosomes have been shown to have a significant influence in deciding microbial physiology and survival. In this report, we have discussed the functional similarities and biochemical variations of several amphipathic biomolecules produced by microbes, and the present report shows these amphiphiles showing polyphyletic and ecophysiological groups of microorganisms and hence can `be replaced in biotechnological applications depending on the compatibility of the processes.
Collapse
Affiliation(s)
- Nishita G Master
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
7
|
Seena S, Ferrão R, Pala M, Roelants SLKW, Soetaert W, Stevens CV, Ferreira L, Rai A. Acidic sophorolipid and antimicrobial peptide based formulation as antimicrobial and antibiofilm agents. BIOMATERIALS ADVANCES 2023; 146:213299. [PMID: 36706607 DOI: 10.1016/j.bioadv.2023.213299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Antimicrobial peptides (AMPs) are considered promising candidates to treat various infections in soft tissues and skin. However, no effective treatment based on AMPs has been reached to clinics due to their instability in serum and wounds. Biosurfactants such as acidic sophorolipids (ASLs) of very high concentrations (equal or above 5 mg/mL) have been demonstrated to be antimicrobial agents, however these concentrations might induce cytotoxic effects to human cells. Here, we have demonstrated the synergistic antimicrobial effect of ASL nanoparticles (NPs) and LL37 peptides (below their minimum inhibitory concentrations; MICs) to eradicate Gram-positive and Gram-negative bacteria in human serum (HS) and in the presence of trypsin. The formulations containing ASL NPs (500 μg/mL) and LL37 peptides (15-25 μg/mL) effectively kill wide strains of bacteria in 5 % HS and the presence of trypsin. Moreover, the combination of ASL NPs (500 μg/mL) and LL37 peptides (15 μg/mL) prevents the formation of S. aureus biofilm and eradicates the one-day old biofilm. Importantly, the combination of ASL NPs and LL37 peptides severely damages the cell membrane of Escherichia coli (E. coli) as shown by atomic force microscopy (AFM). The combination of ASL NPs and LL37 peptides rapidly damages the outer (OM) and inner membrane (IM) of E. coli, while ASL NPs (1000 μg/mL) alone slowly compromise the integrity of the bacterial membrane. Importantly, the combination of ASL NPs and LL37 peptides is biocompatible to human keratinocyte cells (HaCaTs) and human umbilical vein endothelial cells (HUVECs), and induces the expression of anti-inflammatory cytokine in macrophages. Overall, ASL NPs in combination with LL37 peptides might be developed as an effective topical formulation to prevent bacterial infections in the skin.
Collapse
Affiliation(s)
- Sahadevan Seena
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Rafaela Ferrão
- CNC - Centro de Neurociências e Biologia Celular, CIBB - Centro de Inovação em Biomedicina e Biotecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - Melike Pala
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - S L K W Roelants
- InBio, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University and Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Wim Soetaert
- InBio, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University and Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Christian V Stevens
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lino Ferreira
- CNC - Centro de Neurociências e Biologia Celular, CIBB - Centro de Inovação em Biomedicina e Biotecnologia, Universidade de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Akhilesh Rai
- CNC - Centro de Neurociências e Biologia Celular, CIBB - Centro de Inovação em Biomedicina e Biotecnologia, Universidade de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
8
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
9
|
Madankar CS, Borde PK. Review on sophorolipids – a promising microbial bio-surfactant. TENSIDE SURFACT DET 2023. [DOI: 10.1515/tsd-2022-2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
Surfactants are amphiphilic molecules used primarily for cleaning. Petroleum-based surfactants have a high production rate, but are non-biodegradable and destructive to the environment. Environmentally friendly biosurfactants are therefore becoming increasingly important. In addition to not being toxic; they are environmentally safe and mild to the skin. Depending on their structure, there are different types of biosurfactants. One of the types are the glycolipids, they are low molecular weight biosurfactants, and consist of sophorolipids. Sophorolipids are getting more attention as alternative to petroleum-based surfactants due to excellent stability at various pH levels, temperatures, and salinities. In addition to being anti-microbial, they have excellent wetting and foaming abilities and act as emulsifiers. There are numerous applications of sophorolipids in food, agriculture, biomedicine, cosmetics and personal care.
Collapse
Affiliation(s)
- Chandu S. Madankar
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology , Mumbai , India
| | - Priti K. Borde
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology , Mumbai , India
| |
Collapse
|
10
|
Amirinejad N, Shahriary P, Hassanshahian M. Investigation of the synergistic effect of glycolipid biosurfactant produced by Shewanella algae with some antibiotics against planktonic and biofilm forms of MRSA and antibiotic resistant Acinetobacter baumannii. World J Microbiol Biotechnol 2023; 39:45. [DOI: 10.1007/s11274-022-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
|
11
|
Ryu V, Chuesiang P, Ngo H, Ashby RD, Fan X. Sustainable bio-based antimicrobials derived from fatty acids: Synthesis, safety, and efficacy. Crit Rev Food Sci Nutr 2022; 64:5911-5923. [PMID: 36571149 DOI: 10.1080/10408398.2022.2160430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Some conventional sanitizers and antibiotics used in food industry may be of concerns due to generation of toxic byproducts, impact on the environment, and the emergence of antibiotic resistance bacteria. Bio-based antimicrobials can be an alternative to conventional sanitizers since they are produced from renewable resources, and the bacterial resistance to these compounds is of less concern than those of currently used antibiotics. Among the bio-based antimicrobial compounds, those produced via either fermentation or chemical synthesis by covalently or electrovalently attaching specific moieties to the fatty acid have drawn attention in recent years. Disaccharide, arginine, vitamin B1, and phenolics are linked to fatty acids resulting in the production of sophorolipid, lauric arginate ethyl ester, thiamin dilauryl sulfate, and phenolic branched-chain fatty acid, respectively, all of which are reported to exhibit antimicrobial activity by targeting the cell membrane of the bacteria. Also, studies that applied these compounds as food preservatives by combining them with other compounds or treatments have been reviewed regarding extending the shelf life and inactivating foodborne pathogens of foods and food products. In addition, the phenolic branched-chain fatty acids, which are relatively new compounds compared to the others, are highlighted in this review.
Collapse
Affiliation(s)
- Victor Ryu
- USDA, ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Piyanan Chuesiang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Helen Ngo
- USDA, ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Richard D Ashby
- USDA, ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Xuetong Fan
- USDA, ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| |
Collapse
|
12
|
Büttner H, Pidot SJ, Scherlach K, Hertweck C. Endofungal bacteria boost anthelminthic host protection with the biosurfactant symbiosin. Chem Sci 2022; 14:103-112. [PMID: 36605741 PMCID: PMC9769094 DOI: 10.1039/d2sc04167g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
Effective protection of soil fungi from predators is crucial for their survival in the niche. Thus, fungi have developed efficient defence strategies. We discovered that soil beneficial Mortierella fungi employ a potent cytotoxin (necroxime) against fungivorous nematodes. Interestingly, this anthelminthic agent is produced by bacterial endosymbionts (Candidatus Mycoavidus necroximicus) residing within the fungus. Analysis of the symbiont's genome indicated a rich biosynthetic potential, yet nothing has been known about additional metabolites and their potential synergistic functions. Here we report that two distinct Mortierella endosymbionts produce a novel cyclic lipodepsipeptide (symbiosin), that is clearly of bacterial origin, but has striking similarities to various fungal specialized metabolites. The structure and absolute configuration of symbiosin were fully elucidated. By comparative genomics of symbiosin-positive strains and in silico analyses of the deduced non-ribosomal synthetases, we assigned the (sym) biosynthetic gene cluster and proposed an assembly line model. Bioassays revealed that symbiosin is not only an antibiotic, in particular against mycobacteria, but also exhibits marked synergistic effects with necroxime in anti-nematode tests. By functional analyses and substitution experiments we found that symbiosin is a potent biosurfactant and that this particular property confers a boost in the anthelmintic action, similar to formulations of therapeutics in human medicine. Our findings illustrate that "combination therapies" against parasites already exist in ecological contexts, which may inspire the development of biocontrol agents and therapeutics.
Collapse
Affiliation(s)
- Hannah Büttner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute792 Elizabeth StreetMelbourne3000Australia
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena07743 JenaGermany
| |
Collapse
|
13
|
Chen K, Chen CY, Chen HL, Komaki R, Kawakami N, Isono T, Satoh T, Hung DY, Liu YL. Self-Assembly Behavior of Sugar-Based Block Copolymers in the Complex Phase Window Modulated by Molecular Architecture and Configuration. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kai Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yu Chen
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ryoya Komaki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Nao Kawakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Du-Yuan Hung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Ling Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Hu M, Kalimuthu S, Zhang C, Ali IAA, Neelakantan P. Trans-cinnamaldehyde-Biosurfactant Complex as a Potent Agent against Enterococcus faecalis Biofilms. Pharmaceutics 2022; 14:2355. [PMID: 36365173 PMCID: PMC9692797 DOI: 10.3390/pharmaceutics14112355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 01/18/2024] Open
Abstract
Enterococcus faecalis is an opportunistic microbial pathogen frequently associated with diverse infections, including those of the skin and teeth, as well as those from surgical wounds. It forms robust biofilms that are highly tolerant to most antimicrobials and first-line antibiotics. Therefore, investigating alternative strategies to eradicate its biofilms is a critical need. We recently demonstrated that trans-cinnamaldehyde (TC) potently kills E. faecalis biofilm cells and prevents biofilm recovery, and yet, the extreme hydrophobicity of TC hampers clinical translation. Here, we report that a complex of TC with an FDA-approved biosurfactant (acidic sophorolipid/ASL) significantly reduces the bacterial viability and biomass of E. faecalis biofilms, compared to TC alone. A confocal laser-scanning microscopic analysis demonstrated that the TC-ASL treatment significantly decreased the biofilm thickness and volume. In conclusion, our study highlights the anti-biofilm potential of the newly developed TC-ASL.
Collapse
Affiliation(s)
- Mingxin Hu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Chengfei Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Islam A. A. Ali
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
15
|
Co-interaction of nitrofurantoin and saponins surfactants with biomembrane leads to an increase in antibiotic’s antibacterial activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Ma XJ, Wang T, Zhang HM, Shao JQ, Jiang M, Wang H, Zhu HX, Zhou D. Comparison of inhibitory effects and mechanisms of lactonic sophorolipid on different pathogenic bacteria. Front Microbiol 2022; 13:929932. [PMID: 36238587 PMCID: PMC9552708 DOI: 10.3389/fmicb.2022.929932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Crude sophorolipids (SLs) have been proven to perform varying degrees of inhibitory effects on different pathogenic bacteria. However, systematic comparative studies of pure lactonic sophorolipid (LSL) among different types of bacteria are few. In this study, the antibacterial effects and mechanisms of LSL on pathogenic bacteria of Staphylococcus aureus, Lactobacillus sp., Pseudomonas aeruginosa, and Escherichia coli were investigated. Bacteriostatic circle, antibacterial rate, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of LSL on different pathogenic bacteria were measured. Then, the antibacterial mechanisms of LSL on S. aureus and P. aeruginosa were explored using ultrastructural observation, cell membrane permeability analysis, intracellular ATP content determination, and extracellular UV absorption detection. With the minimum MIC and MBC values of 0.05 and 0.20 mg/ml, LSL exhibited the best inhibitory effect against S. aureus, followed by P. aeruginosa. LSL showed no significant inhibitory effect on E. coli and Lactobacillus sp. For both S. aureus and P. aeruginosa, LSL achieved bacteriostatic and bactericidal effects by destroying the cell wall, increasing the permeability of the cell membrane and leading to the flow out of intracellular contents. However, the action mode and action intensity of LSL on the cell wall and membrane of these two bacteria were significantly different. LSL had a greater influence on the cell membrane of S. aureus by “leaking,” while it exhibited a stronger effect on the cell wall of P. aeruginosa by “blasting.” These results contributed to a better understanding of the relationship between LSL and different bacterial cell structures, further suggesting the conclusion that LSL might be used for the targeted treatment of special pathogenic bacteria.
Collapse
Affiliation(s)
- Xiao-jing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Ministry of Education, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei, China
- *Correspondence: Xiao-jing Ma,
| | - Tong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hui-min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jun-qian Shao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mei Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huai Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Ministry of Education, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei, China
| | - Hui-xia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Ministry of Education, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei, China
| | - Dong Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
- Dong Zhou,
| |
Collapse
|
17
|
Sophorolipids—Bio-Based Antimicrobial Formulating Agents for Applications in Food and Health. Molecules 2022; 27:molecules27175556. [PMID: 36080322 PMCID: PMC9457973 DOI: 10.3390/molecules27175556] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Sophorolipids are well-known glycolipid biosurfactants, produced mainly by non-pathogenic yeast species such as Candida bombicola with high yield. Its unique environmental compatibility and high biodegradable properties have made them a focus in the present review for their promising applications in diverse areas. This study aims to examine current research trends of sophorolipids and evaluate their applications in food and health. A literature search was conducted using different research databases including PubMed, ScienceDirect, EBSCOhost, and Wiley Online Library to identify studies on the fundamental mechanisms of sophorolipids and their applications in food and health. Studies have shown that various structural forms of sophorolipids exhibit different biological and physicochemical properties. Sophorolipids represent one of the most attractive biosurfactants in the industry due to their antimicrobial action against both Gram-positive and Gram-negative microorganisms for applications in food and health sectors. In this review, we have provided an overview on the fundamental properties of sophorolipids and detailed analysis of their applications in diverse areas such as food, agriculture, pharmaceutical, cosmetic, anticancer, and antimicrobial activities.
Collapse
|
18
|
Filipe GA, Bigotto BG, Baldo C, Gonçalves MC, Kobayashi RKT, Lonni AASG, Celligoi MAPC. Development of a multifunctional and self-preserving cosmetic formulation using sophorolipids and palmarosa essential oil against acne-causing bacteria. J Appl Microbiol 2022; 133:1534-1542. [PMID: 35686654 DOI: 10.1111/jam.15659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022]
Abstract
AIMS The objective of this study was to evaluate the antibacterial effect of sophorolipids in combination with palmarosa essential oil and to develop a cosmetic formulation against acne-causing bacteria. METHODS AND RESULTS The antibacterial activity of sophorolipids, palmarosa oil and their combined effect was evaluated by broth microdilution and checkerboard methods. Antioxidant activity was determined by the DPPH method. The results showed that the compounds presented antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis. The combination of sophorolipid and palmarosa oil resulted in synergistic and additive interaction reducing the concentration needed for the effectiveness against S. aureus and S. epidermidis, to 98.4% and 50%, respectively. The compounds interaction showed an additive effect for antioxidant activity. The cosmetic formulation without any chemical preservative presents antibacterial activity against S. aureus, S. epidermidis and Cutibacterium acnes. The pH values and organoleptic characteristics of formulations remained stable under all conditions tested. CONCLUSIONS The association of sophorolipids and palmarosa oil resulted in a self-preserving cosmetic formulation with great stability, and effective antioxidant and antibacterial activities against acne-causing micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed the development of an effective multifunctional cosmetic formulation with natural preservatives to treat acne vulgaris and other skin infections.
Collapse
Affiliation(s)
- Giovanna Amaral Filipe
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | - Briane Gisele Bigotto
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | - Cristiani Baldo
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | | | | | | | | |
Collapse
|
19
|
Ma E, Chen K, Sun L, Fu Z, Guo J, Liu J, Zhao J, Liu Z, Lei Z, Li L, Hu X, Guo X. Rapid Construction of Green Nanopesticide Delivery Systems Using Sophorolipids as Surfactants by Flash Nanoprecipitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4912-4920. [PMID: 35417168 DOI: 10.1021/acs.jafc.2c00743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Green delivery carriers of nanopesticides, like sophorolipid biosurfactants, are of great significance to reduce environmental pollution and promote sustainable agricultural development. However, the molecular diversity of an unisolated sophorolipid mixture with almost unpredictable self-assembly properties has limited the in-depth study of its structure-activity relationship and hindered the development of green pesticide delivery systems. In this work, the acidic and lactonic sophorolipids were successfully separated from the sophorolipid mixture through silica gel column chromatography. A series of cost-effective green nanopesticides loaded with lambda-cyhalothrin (LC) were rapidly fabricated based on a combination of the acidic and lactonic sophorolipids as surfactants by flash nanoprecipitation. The effects of the acidic-to-lactonic ratio on particle size, drug loading capacity, and biological activity against Hyphantria cunea of LC-loaded nanoparticles were systematically investigated. The resultant nanopesticides exhibited a better insecticidal efficacy than a commercial emulsifiable concentrate formulation. This work opens up a novel strategy to construct scalable, cost-effective, and environmentally friendly nanopesticide systems.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zhinan Fu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiangtao Guo
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jigang Zhao
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zhigang Lei
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Li Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
20
|
Bhangale AP, Wadekar SD, Kale SB, Mali SN, Pratap AP. Non-traditional oils with water-soluble substrate as cell growth booster for the production of mannosylerythritol lipids by Pseudozyma antarctica (ATCC 32657) with their antimicrobial activity. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2021-2366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Among glycolipids, mannosylerythritol lipids (MEL), are mild and environmentally friendly surfactants used in various industrial applications. MELs are produced by biofermentation using non-traditional oils with various water-soluble carbon sources as cell growth booster. This substrate affects the production yield and cost of MEL. In this research work, the non-traditional oils jatropha oil, karanja oil and neem oil were used as new substrates along with glucose, glycerol and honey as new water-soluble substrates. All these oils are new feedstocks for the production of MEL using Pseudozyma antarctica (ATCC 32657). Jatropha oil, karanja oil and neem oil with honey as substrates resulted in higher MEL yields of (8.07, 7.75, and 1.86) g/L and better cell growth of (8.07, 7.75, and 1.86) g/L, respectively, than non-traditional oils with glucose and glycerol as substrates. Neem oil gave a lower yield of MEL (1.54 g/L) as well as cell growth (6.06 g/L) compared to jatropha oil and karanja oil (7.03 and 6.17) g/L, respectively. Crude MEL from the fermentation broth was detected by thin-layer chromatography (TLC), Fourier transform infrared spectrommetry (FT-IR), high performance liquid chromatography (HPLC) and proton nuclear magnetic resonance spectroscopy (1H NMR). Purified MEL has been used as an antimicrobial agent in cosmetic products associated with gram-positive and gram-negative bacteria and fungi.
Collapse
Affiliation(s)
- Akash P. Bhangale
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) , Nathalal Parekh Marg , Matunga (East) , Mumbai 400 019 , India
| | - Sushant D. Wadekar
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) , Nathalal Parekh Marg , Matunga (East) , Mumbai 400 019 , India
| | - Sandeep B. Kale
- Department of Chemical Engineering , DBT–ICT Centre for Energy Biosciences, Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) , Nathalal Parekh Marg, Matunga (East) , Mumbai 400 019 , India
| | - Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| | - Amit P. Pratap
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) , Nathalal Parekh Marg , Matunga (East) , Mumbai 400 019 , India
| |
Collapse
|
21
|
Umar A, Zafar A, Wali H, Siddique MP, Qazi MA, Naeem AH, Malik ZA, Ahmed S. Low-cost production and application of lipopeptide for bioremediation and plant growth by Bacillus subtilis SNW3. AMB Express 2021; 11:165. [PMID: 34894306 PMCID: PMC8665955 DOI: 10.1186/s13568-021-01327-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
At present time, every nation is absolutely concern about increasing agricultural production and bioremediation of petroleum-contaminated soil. Hence, with this intention in the current study potent natural surfactants characterized as lipopeptides were evaluated for low-cost production by Bacillus subtilis SNW3, previously isolated from the Fimkessar oil field, Chakwal Pakistan. The significant results were obtained by using substrates in combination (white beans powder (6% w/v) + waste frying oil (1.5% w/v) and (0.1% w/v) urea) with lipopeptides yield of about 1.17 g/L contributing 99% reduction in cost required for medium preparation. To the best of our knowledge, no single report is presently describing lipopeptide production by Bacillus subtilis using white beans powder as a culture medium. Additionally, produced lipopeptides display great physicochemical properties of surface tension reduction value (SFT = 28.8 mN/m), significant oil displacement activity (ODA = 4.9 cm), excessive emulsification ability (E24 = 69.8%), and attains critical micelle concentration (CMC) value at 0.58 mg/mL. Furthermore, biosurfactants produced exhibit excellent stability over an extensive range of pH (1-11), salinity (1-8%), temperature (20-121°C), and even after autoclaving. Subsequently, produced lipopeptides are proved suitable for bioremediation of crude oil (86%) and as potent plant growth-promoting agent that significantly (P < 0.05) increase seed germination and plant growth promotion of chili pepper, lettuce, tomato, and pea maximum at a concentration of (0.7 g/100 mL), showed as a potential agent for agriculture and bioremediation processes by lowering economic and environmental stress.
Collapse
|
22
|
Silveira VAI, Kobayashi RKT, de Oliveira Junior AG, Mantovani MS, Nakazato G, Celligoi MAPC. Antimicrobial effects of sophorolipid in combination with lactic acid against poultry-relevant isolates. Braz J Microbiol 2021; 52:1769-1778. [PMID: 34173211 PMCID: PMC8578371 DOI: 10.1007/s42770-021-00545-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to evaluate the antibacterial effect of sophorolipid in combination with lactic acid against relevant bacteria isolated from the poultry industry. Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli were isolated from chicken meat and antibacterial tests with sophorolipid and lactic acid were performed. Checkerboard, time-kill, and scanning electron microscopy analyses were used to confirm the antibacterial action and the combined effects. Although no inhibitory effects were observed for E. coli and Salmonella, these compounds presented antibacterial activity against L. monocytogenes and S. aureus. Additionally, sophorolipid and lactic acid were not cytotoxic at the concentrations used in the tests. The combination of sophorolipid and lactic acid resulted in an additive interaction, reducing the concentration of the active compounds needed for effectiveness against S. aureus and L. monocytogenes, to 50% and 75%, respectively. These findings lead to the possibility of developing a new, sustainable, and natural antimicrobial solution that is considered noncytotoxic and has wide applicability in the poultry industry to reduce substantial losses in this sector.
Collapse
Affiliation(s)
- Victória Akemi Itakura Silveira
- Department of Biochemistry and Biotechnology, State University of Londrina, Mailbox 10.011, Londrina, Paraná, 86057-970, Brazil
| | | | | | - Mario Sérgio Mantovani
- Department of General Biology, State University of Londrina, Mailbox 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Gerson Nakazato
- Department of Microbiology, State University of Londrina, Mailbox 10.011, Londrina, Paraná, 86057-970, Brazil
| | | |
Collapse
|
23
|
Sharma J, Sundar D, Srivastava P. Biosurfactants: Potential Agents for Controlling Cellular Communication, Motility, and Antagonism. Front Mol Biosci 2021; 8:727070. [PMID: 34708073 PMCID: PMC8542798 DOI: 10.3389/fmolb.2021.727070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Biosurfactants are surface-active molecules produced by microorganisms, either on the cell surface or secreted extracellularly. They form a thin film on the surface of microorganisms and help in their detachment or attachment to other cell surfaces. They are involved in regulating the motility of bacteria and quorum sensing. Here, we describe the various types of biosurfactants produced by microorganisms and their role in controlling motility, antagonism, virulence, and cellular communication.
Collapse
Affiliation(s)
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
24
|
Franco Marcelino PR, Ortiz J, da Silva SS, Ortiz A. Interaction of an acidic sophorolipid biosurfactant with phosphatidylcholine model membranes. Colloids Surf B Biointerfaces 2021; 207:112029. [PMID: 34399158 DOI: 10.1016/j.colsurfb.2021.112029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Sophorolipids (SLs) constitute a group of unique biosurfactants (BS) in the light of their outstanding properties, among which their antimicrobial activities stand out. SLs can exist mainly in an acidic and a lactonic form, both of which display inhibitory activity. Given the amphipathic nature of SLs it is feasible that these antimicrobial actions are the result of the perturbation of the physicochemical properties of targeted membranes. Thus, in this work we have carried out a biophysical study to unveil the molecular details of the interaction of an acidic SL with a model phospholipid membrane made of 1,2-dipalmitoy-sn-glycero-3-phosphocholine (DPPC). Using differential scanning calorimetry it was found that SL altered the phase behaviour of DPPC at low molar fractions, producing fluid phase immiscibility with the result of formation of biosurfactant-enriched domains within the phospholipid bilayer. Fourier-transform infrared spectroscopy showed that SL interacted with DPPC increasing ordering of the phospholipid acyl chain palisade and hydration of the lipid/water interface. Small angle X-ray scattering showed that SL did not modify bilayer thickness in the biologically relevant Lα fluid phase. SL was found to induce contents leakage in 1-palmitoy-2-oleoy-sn-glycero-3-phosphocholine (POPC) unilamellar liposomes, at sublytic concentrations below the cmc. This SL-induced membrane permeabilization at concentrations below the onset for membrane solubilization can be the result of the formation of laterally segregated domains, which might contribute to provide a molecular basis for the reported antimicrobial actions of SLs.
Collapse
Affiliation(s)
- Paulo Ricardo Franco Marcelino
- Laboratório de Bioprocessos e Produtos Sustentáveis (LBios), Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Brazil
| | - Julia Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Spain
| | - Silvio Silvério da Silva
- Laboratório de Bioprocessos e Produtos Sustentáveis (LBios), Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Brazil
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Spain.
| |
Collapse
|
25
|
Ceresa C, Fracchia L, Fedeli E, Porta C, Banat IM. Recent Advances in Biomedical, Therapeutic and Pharmaceutical Applications of Microbial Surfactants. Pharmaceutics 2021; 13:466. [PMID: 33808361 PMCID: PMC8067001 DOI: 10.3390/pharmaceutics13040466] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
The spread of antimicrobial-resistant pathogens typically existing in biofilm formation and the recent COVID-19 pandemic, although unrelated phenomena, have demonstrated the urgent need for methods to combat such increasing threats. New avenues of research for natural molecules with desirable properties to alleviate this situation have, therefore, been expanding. Biosurfactants comprise a group of unique and varied amphiphilic molecules of microbial origin capable of interacting with lipidic membranes/components of microorganisms and altering their physicochemical properties. These features have encouraged closer investigations of these microbial metabolites as new pharmaceutics with potential applications in clinical, hygiene and therapeutic fields. Mounting evidence has indicated that biosurfactants have antimicrobial, antibiofilm, antiviral, immunomodulatory and antiproliferative activities that are exploitable in new anticancer treatments and wound healing applications. Some biosurfactants have already been approved for use in clinical, food and environmental fields, while others are currently under investigation and development as antimicrobials or adjuvants to antibiotics for microbial suppression and biofilm eradication strategies. Moreover, due to the COVID-19 pandemic, biosurfactants are now being explored as an alternative to current products or procedures for effective cleaning and handwash formulations, antiviral plastic and fabric surface coating agents for shields and masks. In addition, biosurfactants have shown promise as drug delivery systems and in the medicinal relief of symptoms associated with SARS-CoV-2 acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK;
| |
Collapse
|
26
|
Shu Q, Lou H, Wei T, Liu X, Chen Q. Contributions of Glycolipid Biosurfactants and Glycolipid-Modified Materials to Antimicrobial Strategy: A Review. Pharmaceutics 2021; 13:227. [PMID: 33562052 PMCID: PMC7914807 DOI: 10.3390/pharmaceutics13020227] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Glycolipid biosurfactants are natural amphiphiles and have gained particular interest recently in their biodegradability, diversity, and bioactivity. Microbial infection has caused severe morbidity and mortality and threatened public health security worldwide. Glycolipids have played an important role in combating many diseases as therapeutic agents depending on the self-assembly property, the anticancer and anti-inflammatory properties, and the antimicrobial properties, including antibacterial, antifungal, and antiviral effects. Besides, their role has been highlighted as scavengers in impeding the biofilm formation and rupturing mature biofilm, indicating their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction in vast hospital infections. Notably, glycolipids have been widely applied to the synthesis of novel antimicrobial materials due to their excellent amphipathicity, such as nanoparticles and liposomes. Accordingly, this review will provide various antimicrobial applications of glycolipids as functional ingredients in medical therapy.
Collapse
Affiliation(s)
| | | | | | | | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Q.S.); (H.L.); (T.W.); (X.L.)
| |
Collapse
|
27
|
Abhyankar I, Sevi G, Prabhune AA, Nisal A, Bayatigeri S. Myristic Acid Derived Sophorolipid: Efficient Synthesis and Enhanced Antibacterial Activity. ACS OMEGA 2021; 6:1273-1279. [PMID: 33490786 PMCID: PMC7818304 DOI: 10.1021/acsomega.0c04683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 05/13/2023]
Abstract
Microbial glycolipids are one of the most interesting alternatives to chemical-based surfactants as they exhibit improved biodegradability and less toxicity. However, their potential has been limited because of specificity of the yeast toward fatty acids having a carbon 16 or carbon 18 chain. This study focuses on sophorolipid (SL) production by the yeast Starmerella bombicola using myristic acid, a medium-chain carbon-14 fatty acid that has not been used as a substrate for SL production. The production was optimized for inoculum size and lipophilic substrate concentration. Furthermore, we also studied the effect of medium-chain fatty acid on yeast cell growth and optimized the process for excellent yield. The myristic acid SL (MASL) so synthesized consisted of mono- and diacetylated forms with preferential glycosylation at the methyl end group, as determined by high-resolution mass spectrometry. Individual congeners of the crude mixture were separated using dry column chromatography and then structurally characterized by mass spectrometry. The synthesized MASL was also shown to have promising surface tension, lowering abilities with a low CMC of 14 mg/L. The SL derived from myristic acid exhibited superior antibacterial activity as compared to SL derived from oleic acid. MASL was also found to be more potent against Gram-positive organisms as compared to Gram-negative organisms. This work, therefore, demonstrates successful synthesis of myristic acid-derived SL and its superior antibacterial activity, establishing a promising future for this biosurfactant.
Collapse
Affiliation(s)
- Isha Abhyankar
- PSE
Division, CSIR-National Chemical Laboratory, Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 21002, India
| | - Ganesh Sevi
- CMC
Division, CSIR-National Chemical Laboratory, Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 21002, India
| | - Asmita A. Prabhune
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Homi Bhabha
Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 21002, India
| | - Anuya Nisal
- PSE
Division, CSIR-National Chemical Laboratory, Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 21002, India
- . Phone: +91 20 25903013
| | - Santhakumari Bayatigeri
- CMC
Division, CSIR-National Chemical Laboratory, Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 21002, India
| |
Collapse
|
28
|
Expression, Purification and Crystallization of Asrij, A Novel Scaffold Transmembrane Protein. J Membr Biol 2021; 254:65-74. [PMID: 33433647 DOI: 10.1007/s00232-020-00166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Asrij/OCIAD1 is a scaffold transmembrane protein belonging to the Ovarian Carcinoma Immunoreactive Antigen Domain containing protein family. In Drosophila and mouse models, Asrij localizes at the endosomal and mitochondrial membrane and is shown to regulate the stemness of hematopoietic stem cells. Interaction of Asrij with ADP Ribosylation Factor 1 (Arf1) is shown to be crucial for hematopoietic niche function and prohemocyte maintenance. Here, we report the heterologous expression, standardization of detergents and purification methodologies for crystallization of Asrij/OCIAD1. To probe the activity of bacterially expressed Asrij, we developed a protein complementation assay and conclusively show that Asrij and Arf1 physically interact. Further, we find that sophorolipids improve the solubility and monodispersibility of Asrij. Hence, we propose that sophorolipids could be novel additives for stabilization of membrane proteins. To our knowledge, this is the first study detailing methodology for the production and crystallization of a heterologously expressed scaffold membrane protein and will be widely applicable to understand membrane protein structure and function.
Collapse
|
29
|
Genomics- and Metabolomics-Based Investigation of the Deep-Sea Sediment-Derived Yeast, Rhodotorula mucilaginosa 50-3-19/20B. Mar Drugs 2020; 19:md19010014. [PMID: 33396687 PMCID: PMC7823890 DOI: 10.3390/md19010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 01/10/2023] Open
Abstract
Red yeasts of the genus Rhodotorula are of great interest to the biotechnological industry due to their ability to produce valuable natural products, such as lipids and carotenoids with potential applications as surfactants, food additives, and pharmaceuticals. Herein, we explored the biosynthetic potential of R. mucilaginosa 50-3-19/20B collected from the Mid-Atlantic Ridge using modern genomics and untargeted metabolomics tools. R. mucilaginosa 50-3-19/20B exhibited anticancer activity when grown on PDA medium, while antimicrobial activity was observed when cultured on WSP-30 medium. Applying the bioactive molecular networking approach, the anticancer activity was linked to glycolipids, namely polyol esters of fatty acid (PEFA) derivatives. We purified four PEFAs (1–4) and the known methyl-2-hydroxy-3-(1H-indol-2-yl)propanoate (5). Their structures were deduced from NMR and HR-MS/MS spectra, but 1–5 showed no anticancer activity in their pure form. Illumina-based genome sequencing, de novo assembly and standard biosynthetic gene cluster (BGC) analyses were used to illustrate key components of the PEFA biosynthetic pathway. The fatty acid producing BGC3 was identified to be capable of producing precursors of PEFAs. Some Rhodotorula strains are able to convert inulin into high-yielding PEFA and cell lipid using a native exo-inulinase enzyme. The genomic locus for an exo-inulinase enzyme (g1629.t1), which plays an instrumental role in the PEFA production via the mannitol biosynthesis pathway, was identified. This is the first untargeted metabolomics study on R. mucilaginosa providing new genomic insights into PEFA biosynthesis.
Collapse
|
30
|
Adetunji AI, Olaniran AO. Production and potential biotechnological applications of microbial surfactants: An overview. Saudi J Biol Sci 2020; 28:669-679. [PMID: 33424354 PMCID: PMC7783833 DOI: 10.1016/j.sjbs.2020.10.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Microbial surfactants are amphipathic molecules that consist of hydrophilic and hydrophobic domains, which allow partition of two fluid phases of varying degree of polarity. They are classified into two main groups: bioemulsifier and biosurfactant, depending on their molecular weight. Microbial surfactants occur in various categories according to their chemical nature and producing organisms. These biomolecules are produced by diverse groups of microorganisms including fungi, bacteria, and yeasts. Their production is significantly influenced by substrate type, fermentation technology and microbial strains. Owing to inherent multifunctional properties and assorted synthetic aptitude of the microbes, microbial surfactants are mostly preferred than their chemical counterparts for various industrial and biomedical applications including bioremediation, oil recovery; as supplements in laundry formulations and as emulsion-stabilizers in food and cosmetic industries as well as therapeutic agents in medicine. The present review discusses on production of microbial surfactants as promising and alternative broad-functional biomolecules for various biotechnological applications.
Collapse
Key Words
- %, Percent
- Akt, Threonine protein kinase
- Bioemulsifiers
- Biosurfactants
- Biotechnological applications
- CMC, Critical micelle concentration
- CTAB, Cethyltrimethylammonium bromide
- Da, Dalton
- E24, Emulsification index
- IC50, Half-maximal inhibitory concentration
- KDa, Kilodalton
- MBC, Minimum bactericidal concentration
- MIC, Minimum inhibitory concentration
- Microbial surfactants
- SACs, Surface active compounds
- ST, Surface tension
- Surface-active compounds
- g/L, Gram per litre
- h, Hour
- mL, Millilitre
- mN/M, Millinewton per metre
- mg/L, Milligram per liter
- mg/mL, Milligram per milliliter
- nm, Nanometre
- sec, Second
- v/v, volume per volume
- µL, Microlitre
- µg/mL, Microgram per milliliter
- µm, Micrometre
- ˚C, Degree Celsius
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban 4000, South Africa
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
31
|
Thakur S, Singh A, Sharma R, Aurora R, Jain SK. Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications. Curr Drug Metab 2020; 21:885-901. [PMID: 33032505 DOI: 10.2174/1389200221666201008143238] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Surfactants are an important category of additives that are used widely in most of the formulations as solubilizers, stabilizers, and emulsifiers. Current drug delivery systems comprise of numerous synthetic surfactants (such as Cremophor EL, polysorbate 80, Transcutol-P), which are associated with several side effects though used in many formulations. Therefore, to attenuate the problems associated with conventional surfactants, a new generation of surface-active agents is obtained from the metabolites of fungi, yeast, and bacteria, which are termed as biosurfactants. OBJECTIVES In this article, we critically analyze the different types of biosurfactants, their origin along with their chemical and physical properties, advantages, drawbacks, regulatory status, and detailed pharmaceutical applications. METHODS 243 papers were reviewed and included in this review. RESULTS Briefly, Biosurfactants are classified as glycolipids, rhamnolipids, sophorolipids, trehalolipids, surfactin, lipopeptides & lipoproteins, lichenysin, fatty acids, phospholipids, and polymeric biosurfactants. These are amphiphilic biomolecules with lipophilic and hydrophilic ends and are used as drug delivery vehicles (foaming, solubilizer, detergent, and emulsifier) in the pharmaceutical industry. Despite additives, they have some biological activity as well (anti-cancer, anti-viral, anti-microbial, P-gp inhibition, etc.). These biomolecules possess better safety profiles and are biocompatible, biodegradable, and specific at different temperatures. CONCLUSION Biosurfactants exhibit good biomedicine and additive properties that can be used in developing novel drug delivery systems. However, more research should be driven due to the lack of comprehensive toxicity testing and high production cost which limits their use.
Collapse
Affiliation(s)
- Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ritika Sharma
- Sri Sai College of Pharmacy, Badhani, Pathankot, 145001, India
| | - Rohan Aurora
- The International School Bangalore, Karnataka, 562125, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
32
|
Haggag Y, Elshikh M, El-Tanani M, Bannat IM, McCarron P, Tambuwala MM. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Deliv Transl Res 2020; 10:1353-1366. [PMID: 32239473 PMCID: PMC7447623 DOI: 10.1007/s13346-020-00750-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Poly(lactic-co-glycolic acid) nanocapsules containing amphiphilic biosurfactant sophorolipids were formulated using a dispersion-based procedure. Di-block copolymers were used to vary peripheral poly(ethylene glycol) density, and variation in the oil core was used to achieve efficient encapsulation of the sophorolipid payload. Particulate size, zeta potential, encapsulation efficiency, release and stability were characterised. A glyceryl monocaprate core composition had the lowest particulate size, maximum encapsulation efficiency and optimum shelf-life stability compared to other formulations. This core composition was used to deliver sophorolipid to both in vitro and in vivo model tumour cell lines (CT26 murine colon carcinoma) and the effect of peripheral hydrophilicity was evaluated. Formulations with 10% poly(ethylene glycol) density achieved more than 80% reduction in cancer cell viability after 72 h and enhanced cellular uptake in CT26 cells. These formulations exhibited higher tumour accumulation and a longer blood circulation profile when compared to the non-poly(ethylene glycol)-containing nanocapsules. Animals treated with sophorolipid-loaded nanocapsules showed a tumour growth inhibition of 57% when compared to controls. An assessment of tumour mass within the same study cohort showed the biggest reduction when compared control and free drug-treated cohorts. This study shows that hydrophilic poly(lactic-co-glycolic acid) nanocapsules loaded with sophorolipids can address the poor intracellular delivery associated with these biosurfactants and is a promising approach for the treatment of colon neoplasia. Graphical abstract.
Collapse
Affiliation(s)
- Yusuf Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed Elshikh
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
| | - Ibrahim M Bannat
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK.
| |
Collapse
|
33
|
Singh PK, Bohr SSR, Hatzakis NS. Direct Observation of Sophorolipid Micelle Docking in Model Membranes and Cells by Single Particle Studies Reveals Optimal Fusion Conditions. Biomolecules 2020; 10:E1291. [PMID: 32906821 PMCID: PMC7564020 DOI: 10.3390/biom10091291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022] Open
Abstract
Sophorolipids (SLs) are naturally produced glycolipids that acts as drug delivery for a spectrum of biomedical applications, including as an antibacterial antifungal and anticancer agent, where they induce apoptosis selectively in cancerous cells. Despite their utility, the mechanisms underlying their membrane interactions, and consequently cell entry, remains unknown. Here, we combined a single liposome assay to observe directly and quantify the kinetics of interaction of SL micelles with model membrane systems, and single particle studies on live cells to record their interaction with cell membranes and their cytotoxicity. Our single particle readouts revealed several repetitive docking events on individual liposomes and quantified how pH and membrane charges, which are known to vary in cancer cells, affect the docking of SL micelles on model membranes. Docking of sophorolipids micelles was found to be optimal at pH 6.5 and for membranes with -5% negatively charge lipids. Single particle studies on mammalian cells reveled a two-fold increased interaction on Hela cells as compared to HEK-293 cells. This is in line with our cell viability readouts recording an approximate two-fold increased cytotoxicity by SLs interactions for Hela cells as compared to HEK-293 cells. The combined in vitro and cell assays thus support the increased cytotoxicity of SLs on cancer cells to originate from optimal charge and pH interactions between membranes and SL assemblies. We anticipate studies combining quantitative single particle studies on model membranes and live cell may reveal hitherto unknown molecular insights on the interactions of sophorolipid and additional nanocarriers mechanism.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
34
|
Juma A, Lemoine P, Simpson ABJ, Murray J, O'Hagan BMG, Naughton PJ, Dooley JG, Banat IM. Microscopic Investigation of the Combined Use of Antibiotics and Biosurfactants on Methicillin Resistant Staphylococcus aureus. Front Microbiol 2020; 11:1477. [PMID: 32733412 PMCID: PMC7358407 DOI: 10.3389/fmicb.2020.01477] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
One current strategy to deal with the serious issue of antibiotic resistance is to use biosurfactants, weak antimicrobials in their own right, with antibiotics in order to extend the efficacy of antibiotics. Although an adjuvant effect has been observed, the underlying mechanisms are poorly understood. To investigate the nature of the antibiotic and biosurfactant interaction, we undertook a scanning electron microscopy (SEM) and atomic force microscopy (AFM) microscopic study of the effects of the tetracycline antibiotic, combined with sophorolipid and rhamnolipid biosurfactants, on Methicillin-resistant Staphylococcus aureus using tetracycline concentrations below and above the minimum inhibitory concentration (MIC). Control and treated bacterial samples were prepared with an immersion technique by adsorbing the bacteria onto glass substrates grafted with the poly-cationic polymer polyethyleneimine. Bacterial surface morphology, hydrophobic and hydrophilic surface characters as well as the local bacterial cell stiffness were measured following combined antibiotic and biosurfactant treatment. The sophorolipid biosurfactant stands alone insofar as, when used with the antibiotic at sub-MIC concentration, it resulted in bacterial morphological changes, larger diameters (from 758 ± 75 to 1276 ± 220 nm, p-value = 10-4) as well as increased bacterial core stiffness (from 205 ± 46 to 396 ± 66 mN/m, p-value = 5 × 10-5). This investigation demonstrates that such combination of microscopic analysis can give useful information which could complement biological assays to understand the mechanisms of synergy between antibiotics and bioactive molecules such as biosurfactants.
Collapse
Affiliation(s)
- Abulaziz Juma
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick Lemoine
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Alistair B J Simpson
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Jason Murray
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Barry M G O'Hagan
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick J Naughton
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James G Dooley
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
35
|
Investigating the biomolecular interactions between model proteins and glycine betaine surfactant with reference to the stabilization of emulsions and antimicrobial properties. Colloids Surf B Biointerfaces 2020; 194:111226. [PMID: 32623332 DOI: 10.1016/j.colsurfb.2020.111226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Binding effect and interaction of 2-pentadecanoyloxymethyl)trimethylammonium bromide (DMGM-14) with bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were systematically investigated by the fluorescence spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), surface tension analysis, and molecular docking studies. The emulsion properties and particle size distribution of surfactant/protein complexes containing sunflower oil were studied using static light scattering and confocal laser scanning microscopy (CLSM). The fluorescence spectroscopy and ITC analysis confirmed the complexes formation of DMGM-14 with BSA and HEWL which was also verified by surface tension measurements. CD results explained the conformational changes in BSA and HEWL upon DMGM-14 complexation. Molecular docking study provides insight into the binding of DMGM-14 into the specific sites of BSA and HEWL. Besides, the studies drew a detailed picture on the emulsification properties of DMGM-14 with BSA and HEWL. In addition, the in vitro experiment revealed a broad antibacterial spectrum of DMGM-14 and DMGM-14/HEWL complex including activity against Gram-positive and Gram-negative bacteria. In conclusion, the present study revealed that the interaction between DMGM-14 with BSA and HEWL is important for the pharmaceutical, biological, and food products.
Collapse
|
36
|
Nguyen BVG, Nagakubo T, Toyofuku M, Nomura N, Utada AS. Synergy between Sophorolipid Biosurfactant and SDS Increases the Efficiency of P. aeruginosa Biofilm Disruption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6411-6420. [PMID: 32479089 DOI: 10.1021/acs.langmuir.0c00643] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biofilms are communities of bacteria encased in self-secreted extracellular polymeric substances (EPS) that adhere stubbornly to submerged surfaces. Once established, these communities can cause serious chronic illnesses in medical settings, while they can promote corrosion and biofouling in industrial settings. Due to the difficulty of their removal, strongly oxidizing chemicals and detergents can be used to degrade and remove biofilms by killing the cells and degrading the matrix; however, the choice of compounds is limited in delicate environments due to the potential damage they may cause. In the case of detergents, most are synthesized from nonrenewable petrochemicals that have a degree of aquatic toxicity. There is a growing need to identify and characterize alternatives to synthetic surfactants. Biosurfactants, which are surfactants produced by microorganisms, are a promising alternative since they can be synthesized from renewable resources, have low environmental toxicity, and have been shown to have higher degrees of specificity in the mechanism of action. Sophorolipids are a class of glycolipid surfactants produced by yeast that have demonstrated great promise due to large yields from renewable feedstocks and for antimicrobial properties; however, the effect of the application of sophorolipids to Gram-negative bacterial biofilms has not been well studied. We investigate the antibiofilm properties of sophorolipids by demonstrating its ability to cause the catastrophic disruption of Pseudomonas aeruginosa PAO1 biofilms in microfluidic channels. We show that while sophorolipids inflict little damage to the bacteria, they weaken the EPS biofilm matrix, leading to surface-detachment and breakup of the biofilm. Furthermore, we find that sophorolipids act cooperatively with the widely used surfactant, sodium dodecyl sulfate. When combined, concentrations ∼100-fold lower than the minimum effective concentration, when used independently, recover potency. Biosurfactants are typically expensive to produce, thus our work demonstrates a means to improve efficacy while simultaneously reducing both cost and the amount of environmentally harmful substances used.
Collapse
|
37
|
Feldman M, Smoum R, Mechoulam R, Steinberg D. Potential combinations of endocannabinoid/endocannabinoid-like compounds and antibiotics against methicillin-resistant Staphylococcus aureus. PLoS One 2020; 15:e0231583. [PMID: 32294120 PMCID: PMC7159245 DOI: 10.1371/journal.pone.0231583] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Infections caused by antibiotic-resistant strains of Staphylococcus aureus have reached epidemic proportions globally. Our previous study showed antimicrobial effects of anandamide (AEA) and arachidonoyl serine (AraS) against methicillin (MET)-resistant S. aureus (MRSA) strains, proposing the therapeutic potential of these endocannabinoid/endocannabinoid-like (EC/EC-like) agents for the treatment of MRSA. Here, we investigated the potential synergism of combinations of AEA and AraS with different types of antibiotics against MRSA grown under planktonic growth or biofilm formation. The most effective combinations under planktonic conditions were mixtures of AEA and ampicillin (AMP), and of AraS and gentamicin (GEN). The combination with the highest synergy in the biofilm formation against all tested bacterial strains was AEA and MET. Moreover, the combination of AraS and MET synergistically caused default of biofilm formation. Slime production of MRSA was also dramatically impaired by AEA or AraS combined with MET. Our data suggest the novel potential activity of combinations of EC/EC-like agents and antibiotics in the prevention of MRSA biofilm formation.
Collapse
Affiliation(s)
- Mark Feldman
- Biofilm Research Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| | - Reem Smoum
- The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
38
|
Sen S, Borah SN, Kandimalla R, Bora A, Deka S. Sophorolipid Biosurfactant Can Control Cutaneous Dermatophytosis Caused by Trichophyton mentagrophytes. Front Microbiol 2020; 11:329. [PMID: 32226417 PMCID: PMC7080852 DOI: 10.3389/fmicb.2020.00329] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Trichophyton mentagrophytes, a zoophilic species, is one of the most frequently isolated dermatophytes in many parts of the world. This study investigated the efficacy of a sophorolipid (SL-YS3) produced by Rhodotorula babjevae YS3 against dermatophytosis caused by T. mentagrophytes. SL-YS3 was characterized by gas chromatography–mass spectrometry (GC–MS) and ultra-performance liquid chromatography, coupled with electrospray mass spectrometry (UPLC-ESI-MS). SL-YS3 comprised of six different fatty acids as the hydrophobic components of constituent congeners and sophorose as the hydrophilic component. Inhibitory effects of purified SL-YS3 against hyphal growth was found to be 85% at a 2 mg ml–1 concentration, and MIC was 1 mg ml–1. Microscopic examination with scanning electron microscopy (SEM), atomic force microscopy, and confocal laser scanning microscopy (CLSM) revealed that SL-YS3 exerts its effect by disrupting cell membrane integrity causing cell death. SL-YS3 was also effective in reducing the biofilms formed by T. mentagrophytes, which was observed spectrophotometrically with crystal-violet staining and further validated with SEM and CLSM studies of treated biofilms. In vivo studies in a mouse model of cutaneous dermatophytosis involving macroscopic observations, percent culture recovery from skin samples, and histopathological studies showed that SL-YS3 could effectively cure the infected mice after 21 days of topical treatment. Terbinafine (TRB) was used as a standard drug in the experiments. We demonstrate, for the first time, the antidermatophytic activity of a sophorolipid biosurfactant. The findings are suggestive that SL-YS3 can be formulated as a novel antifungal compound to treat cutaneous mycoses caused by T. mentagrophytes.
Collapse
Affiliation(s)
- Suparna Sen
- Environmental Biotechnology Laboratory, Resource Management and Environment Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Siddhartha Narayan Borah
- Environmental Biotechnology Laboratory, Resource Management and Environment Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Raghuram Kandimalla
- Drug Discovery Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Arijit Bora
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati, India
| | - Suresh Deka
- Environmental Biotechnology Laboratory, Resource Management and Environment Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
39
|
Chen J, Lü Z, An Z, Ji P, Liu X. Antibacterial Activities of Sophorolipids and Nisin and Their Combination against Foodborne Pathogen
Staphylococcus aureus. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
- Department of Plant Pathology University of Georgia Tifton GA 31794 USA
| | - Zhifei Lü
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| | - Pingsheng Ji
- Department of Plant Pathology University of Georgia Tifton GA 31794 USA
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| |
Collapse
|
40
|
Yuan Y, Li H, Liu C, Zhang S, Xu Y, Wang D. Fabrication and Characterization of Lutein-Loaded Nanoparticles Based on Zein and Sophorolipid: Enhancement of Water Solubility, Stability, and Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11977-11985. [PMID: 31589424 DOI: 10.1021/acs.jafc.9b05175] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lutein is a hydrophobic carotenoid with various beneficial biological activities. Its use as a functional food, however, is currently limited by its low-water solubility, chemical instability, and poor bioavailability. The purpose of this work is to fabricate lutein-loaded nanoparticles to overcome these challenges. Lutein was encapsulated in zein nanoparticles coated with sophorolipid (ZSLNPs). The properties of ZSLNPs were characterized by transmission electron microscopy and dynamic light scattering. The results showed that the ZSLNPs were spheres with particle size around 200 nm and negative surface potentials (ζ = -54 mV). The encapsulation efficiency and loading capacity of the lutein in the ZSLNPs was 90.04% and 0.82%, respectively. Infrared spectroscopy analysis indicated that the dominant driving forces of the ZSLNPs formation mainly included electrostatic, hydrophobic interactions and hydrogen bonding. X-ray analysis showed that the encapsulated lutein was in an amorphous form. Circular dichroism analysis suggested that the incorporation of lutein or sophorolipid led to the change in secondary structure of zein. In addition, the ZSLNPs had good stability, redispersibility, and increased the water solubility of lutein. Furthermore, in vitro studies showed that the ZSLNPs had great biocompatibility and bioaccessibility of lutein. Overall, these findings indicated that the core/shell nanoparticles developed in the work may be suitable for encapsulating this important nutrient in functional foods.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong Province 266003 , People's Republic of China
| | - Hao Li
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong Province 266003 , People's Republic of China
| | - Chengzhen Liu
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong Province 266003 , People's Republic of China
| | - Shuaizhong Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong Province 266003 , People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong Province 266003 , People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong Province 266003 , People's Republic of China
| |
Collapse
|
41
|
Medical-Grade Silicone Coated with Rhamnolipid R89 Is Effective against Staphylococcus spp. Biofilms. Molecules 2019; 24:molecules24213843. [PMID: 31731408 PMCID: PMC6864460 DOI: 10.3390/molecules24213843] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are considered two of the most important pathogens, and their biofilms frequently cause device-associated infections. Microbial biosurfactants recently emerged as a new generation of anti-adhesive and anti-biofilm agents for coating implantable devices to preserve biocompatibility. In this study, R89 biosurfactant (R89BS) was evaluated as an anti-biofilm coating on medical-grade silicone. R89BS is composed of homologues of the mono- (75%) and di-rhamnolipid (25%) families, as evidenced by mass spectrometry analysis. The antimicrobial activity against Staphylococcus spp. planktonic and sessile cells was evaluated by microdilution and metabolic activity assays. R89BS inhibited S. aureus and S. epidermidis growth with minimal inhibitory concentrations (MIC99) of 0.06 and 0.12 mg/mL, respectively and dispersed their pre-formed biofilms up to 93%. Silicone elastomeric discs (SEDs) coated by R89BS simple adsorption significantly counteracted Staphylococcus spp. biofilm formation, in terms of both built-up biomass (up to 60% inhibition at 72 h) and cell metabolic activity (up to 68% inhibition at 72 h). SEM analysis revealed significant inhibition of the amount of biofilm-covered surface. No cytotoxic effect on eukaryotic cells was detected at concentrations up to 0.2 mg/mL. R89BS-coated SEDs satisfy biocompatibility requirements for leaching products. Results indicate that rhamnolipid coatings are effective anti-biofilm treatments and represent a promising strategy for the prevention of infection associated with implantable devices.
Collapse
|
42
|
Fan X, Sokorai KJB, Gurtler JB. Advanced oxidation process for the inactivation of Salmonella typhimurium on tomatoes by combination of gaseous ozone and aerosolized hydrogen peroxide. Int J Food Microbiol 2019; 312:108387. [PMID: 31669763 DOI: 10.1016/j.ijfoodmicro.2019.108387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
Fresh produce-associated outbreaks of foodborne illnesses continue to occur every year in the U.S., suggesting limitations of current practices and the need for effective intervention technologies. Advanced oxidation process involves production of hydrogen radicals, which are the strongest oxidant. The objective of the present study was to evaluate the effectiveness of advanced oxidation process by combining gaseous ozone and aerosolized hydrogen peroxide. Grape tomatoes were inoculated with a 2-strain cocktail of Salmonella typhimurium on both stem scar and smooth surface. Gaseous ozone (800 and 1600 ppm) and aerosolized hydrogen peroxide (2.5, 5 and 10%) were separately or simultaneously introduced into a treatment chamber where the inoculated tomatoes were placed. During the 30 min treatments, hydrogen peroxide was aerosolized using an atomizer operated in two modes: continuously or 15 s on/50 s off. After the treatments, surviving Salmonella on the smooth surface and stem scar were enumerated. Results showed that ozone alone reduced Salmonella populations by <0.6 log CFU/fruit on both the smooth surface and the stem scar area, and aerosolized hydrogen peroxide alone reduced the populations by up to 2.1 log CFU/fruit on the smooth surface and 0.8 log CFU/fruit on stem scar area. However, the combination treatments reduced the populations by up to 5.2 log CFU/fruit on smooth surface and 4.2 log CFU/fruit on the stem scar. Overall, our results demonstrate that gaseous ozone and aerosolized hydrogen peroxide have synergistic effects on the reduction of Salmonella populations on tomatoes.
Collapse
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, 4Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Kimberly J B Sokorai
- U.S. Department of Agriculture, 4Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Joshua B Gurtler
- U.S. Department of Agriculture, 4Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
43
|
Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar Drugs 2019; 17:md17070408. [PMID: 31323998 PMCID: PMC6669457 DOI: 10.3390/md17070408] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Biosurfactants are amphiphilic secondary metabolites produced by microorganisms. Marine bacteria have recently emerged as a rich source for these natural products which exhibit surface-active properties, making them useful for diverse applications such as detergents, wetting and foaming agents, solubilisers, emulsifiers and dispersants. Although precise structural data are often lacking, the already available information deduced from biochemical analyses and genome sequences of marine microbes indicates a high structural diversity including a broad spectrum of fatty acid derivatives, lipoamino acids, lipopeptides and glycolipids. This review aims to summarise biosyntheses and structures with an emphasis on low molecular weight biosurfactants produced by marine microorganisms and describes various biotechnological applications with special emphasis on their role in the bioremediation of oil-contaminated environments. Furthermore, novel exploitation strategies are suggested in an attempt to extend the existing biosurfactant portfolio.
Collapse
|
44
|
Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 2019; 127:12-28. [PMID: 30828919 DOI: 10.1111/jam.14243] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
Synthetic surfactants are becoming increasingly unpopular in many applications due to previously disregarded effects on biological systems and this has led to a new focus on replacing such products with biosurfactants that are biodegradable and produced from renewal resources. Microbially derived biosurfactants have been investigated in numerous studies in areas including: increasing feed digestibility in an agricultural context, improving seed protection and fertility, plant pathogen control, antimicrobial activity, antibiofilm activity, wound healing and dermatological care, improved oral cavity care, drug delivery systems and anticancer treatments. The development of the potential of biosurfactants has been hindered somewhat by the myriad of approaches taken in their investigations, the focus on pathogens as source species and the costs associated with large-scale production. Here, we focus on various microbial sources of biosurfactants and the current trends in terms of agricultural and biomedical applications.
Collapse
Affiliation(s)
- P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - R Marchant
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - V Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - I M Banat
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| |
Collapse
|
45
|
Akiyode O, Boateng J. Composite Biopolymer-Based Wafer Dressings Loaded with Microbial Biosurfactants for Potential Application in Chronic Wounds. Polymers (Basel) 2018; 10:E918. [PMID: 30960843 PMCID: PMC6403717 DOI: 10.3390/polym10080918] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
In this study two bioactive polysaccharide polymers kappa-carrageenan (CARR) and sodium alginate (SA) incorporated with microbial biosurfactants (BSs) were formulated as medicated wafer dressings for potential application in chronic wounds. Wafers were loaded with BSs at concentrations of 0.1% and 0.2% rhamnolipids (RL) and 0.1% and 5% sophorolipids (SL) and were functionally characterized using scanning electron microscopy (SEM), texture analysis (mechanical strength and in vitro wound adhesion), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD) and exudate handling properties (pore analysis, swelling index, water absorption (Aw), equilibrium water content (EWC), evaporative water loss (EWL) and water vapor transmission rate (WVTR). The wafers were tactile and ductile in appearance with a hardness range of 2.7⁻4.1 N and can withstand normal stresses but are also flexible to prevent damage to newly formed skin tissues. Wafers were porous (SEM) with pore sizes ranging from 78.8 to 141 µm, and BSs were not visible on the wafer surface or pore walls. The BSs enhanced the porosity of the wafers with values above 98%, while the Aw and EWC ranged from 2699⁻3569% and 96.58⁻98.00%, respectively. The EWL ranged from 85 to 86% after 24 h while the WVTR ranged from 2702⁻3080 g/m² day-1. The compatibility of BSs within the CARR-SA matrix was confirmed by seven characteristic functional groups which were consistently transmitted in the ATR-FTIR spectra. These novel medicated dressing prototypes can potentially help to achieve more rapid wound healing.
Collapse
Affiliation(s)
- Olufunke Akiyode
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Kent ME4 4TB, UK.
| | - Joshua Boateng
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Kent ME4 4TB, UK.
| |
Collapse
|
46
|
Enhanced Biosurfactant Production by Bacillus pumilus 2IR in Fed-Batch Fermentation Using 5-L Bioreactor. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2018. [DOI: 10.1007/s40995-018-0599-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
48
|
Influence of Hydrogen Peroxide, Lactic Acid, and Surfactants from Vaginal Lactobacilli on the Antibiotic Sensitivity of Opportunistic Bacteria. Probiotics Antimicrob Proteins 2018; 9:131-141. [PMID: 27832440 DOI: 10.1007/s12602-016-9238-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We studied as hydrogen peroxide, lactic acid, or surfactants from clinical isolates of vaginal lactobacilli and cell-free supernatants from probiotic strain LCR35 can influence on the sensitivity of opportunistic bacteria to antibiotics. We found that the most effective in increasing sensitivity to antibiotics were hydrogen peroxide and surfactants or their combination but no lactic acid. In some cases, the effect of the composition of hydrogen peroxide and surfactants was clearly higher than the sum of effects of these substances alone. With using of the supernatant of LCR35 was shown that the combination of surfactant and lactate has greater effect compared with surfactants alone. In concluding, metabolites of vaginal lactobacilli are suitable for the role of "antibiotic assistants" and it can help solve the problems the antibiotic resistance.
Collapse
|
49
|
Vasudevan S, Prabhune AA. Photophysical studies on curcumin-sophorolipid nanostructures: applications in quorum quenching and imaging. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170865. [PMID: 29515826 PMCID: PMC5830715 DOI: 10.1098/rsos.170865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/04/2018] [Indexed: 05/02/2023]
Abstract
Sophorolipid biosurfactants are biodegradable, less toxic and FDA approved. The purified acidic form of sophorolipid is stimuli-responsive with self-assembling properties and used for solubilizing hydrophobic drugs. This study encapsulated curcumin (CU) with acidic sophorolipid (ASL) micelles and analysed using photophysical studies like UV-visible spectroscopy, photoluminescence (PL) spectroscopy and time-correlated single photon counting (TCSPC). TEM images have revealed ellipsoid micelles of approximately 100 nm size and were confirmed by dynamic light scattering. The bacterial fluorescence uptake studies showed the uptake of formed CUASL nanostructures into both Gram-positive and Gram-negative bacteria. They also showed quorum quenching activity against Pseudomonas aeruginosa. The results have demonstrated this system has potential theranostic applications.
Collapse
Affiliation(s)
| | - Asmita A. Prabhune
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi-Bhabha Road, Pune 411008, India
| |
Collapse
|
50
|
Antimicrobial activity and inactivation mechanism of lactonic and free acid sophorolipids against Escherichia coli O157:H7. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|