1
|
Yook S, Alper HS. Recent advances in genetic engineering and chemical production in yeast species. FEMS Yeast Res 2025; 25:foaf009. [PMID: 40082732 PMCID: PMC11963765 DOI: 10.1093/femsyr/foaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Yeasts have emerged as well-suited microbial cell factory for the sustainable production of biofuels, organic acids, terpenoids, and specialty chemicals. This ability is bolstered by advances in genetic engineering tools, including CRISPR-Cas systems and modular cloning in both conventional (Saccharomyces cerevisiae) and non-conventional (Yarrowia lipolytica, Rhodotorula toruloides, Candida krusei) yeasts. Additionally, genome-scale metabolic models and machine learning approaches have accelerated efforts to create a broad range of compounds that help reduce dependency on fossil fuels, mitigate climate change, and offer sustainable alternatives to petrochemical-derived counterparts. In this review, we highlight the cutting-edge genetic tools driving yeast metabolic engineering and then explore the diverse applications of yeast-based platforms for producing value-added products. Collectively, this review underscores the pivotal role of yeast biotechnology in efforts to build a sustainable bioeconomy.
Collapse
Affiliation(s)
- Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
2
|
Sun T, Sun ML, Lin L, Gao J, Wang K, Ji XJ. Advancing Succinic Acid Biomanufacturing Using the Nonconventional Yeast Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:100-109. [PMID: 39707966 DOI: 10.1021/acs.jafc.4c09990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Succinic acid is an essential bulk chemical with wide-ranging applications in materials, food, and pharmaceuticals. With the advancement of biotechnology, there has been a surge in focus on low-carbon sustainable microbial synthesis methods for producing biobased succinic acid. Due to its high intrinsic acid tolerance, Yarrowia lipolytica has gained recognition as a competitive chassis for the industrial manufacture of succinic acid. This review summarizes the research progress on succinic acid biomanufacturing using Y. lipolytica. First, it introduces the major metabolic routes for succinic acid biosynthesis and the pertinent engineering approaches for building efficient cell factories. Subsequently, we offer a review of methods employed for succinic acid synthesis by Y. lipolytica utilizing alternative substrates as well as the relevant optimization strategies for the fermentation process. Finally, future research directions for improving succinic acid biomanufacturing in Y. lipolytica are delineated in light of the recent progress, obstacles, and trends in this area.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, No. 211 Jianjun Road, Yancheng 224051, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
3
|
Choi E, Song J, Lee Y, Jeong Y, Jang W. Prioritizing susceptibility genes for the prognosis of male-pattern baldness with transcriptome-wide association study. Hum Genomics 2024; 18:34. [PMID: 38566255 PMCID: PMC10985920 DOI: 10.1186/s40246-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Male-pattern baldness (MPB) is the most common cause of hair loss in men. It can be categorized into three types: type 2 (T2), type 3 (T3), and type 4 (T4), with type 1 (T1) being considered normal. Although various MPB-associated genetic variants have been suggested, a comprehensive study for linking these variants to gene expression regulation has not been performed to the best of our knowledge. RESULTS In this study, we prioritized MPB-related tissue panels using tissue-specific enrichment analysis and utilized single-tissue panels from genotype-tissue expression version 8, as well as cross-tissue panels from context-specific genetics. Through a transcriptome-wide association study and colocalization analysis, we identified 52, 75, and 144 MPB associations for T2, T3, and T4, respectively. To assess the causality of MPB genes, we performed a conditional and joint analysis, which revealed 10, 11, and 54 putative causality genes for T2, T3, and T4, respectively. Finally, we conducted drug repositioning and identified potential drug candidates that are connected to MPB-associated genes. CONCLUSIONS Overall, through an integrative analysis of gene expression and genotype data, we have identified robust MPB susceptibility genes that may help uncover the underlying molecular mechanisms and the novel drug candidates that may alleviate MPB.
Collapse
Affiliation(s)
- Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
4
|
Xu J, Yang Y, Li X, Ding S, Zheng L, Xiong C, Yang Y. Pleiotropic activities of succinate: The interplay between gut microbiota and cardiovascular diseases. IMETA 2023; 2:e124. [PMID: 38867936 PMCID: PMC10989957 DOI: 10.1002/imt2.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant contributor to global mortality, imposing a substantial burden and emphasizing the urgent need for disease control to save lives and prevent disability. With advancements in technology and scientific research, novel mechanisms underlying CVDs have been uncovered, leading to the exploration of promising treatment targets aimed at reducing the global burden of the disease. One of the most intriguing findings is the relationship between CVDs and gut microbiota, challenging the traditional understanding of CVDs mechanisms and introducing the concept of the gut-heart axis. The gut microbiota, through changes in microbial compositions and functions, plays a crucial role in influencing local and systemic effects on host physiology and disease development, with its metabolites acting as key regulators. In previous studies, we have emphasized the importance of specific metabolites such as betaine, putrescine, trimethylamine oxide, and N,N,N-trimethyl-5-aminovaleric acid in the potential treatment of CVDs. Particularly noteworthy is the gut microbiota-associated metabolite succinate, which has garnered significant attention due to its involvement in various pathophysiological pathways closely related to CVDs pathogenesis, including immunoinflammatory responses, oxidative stress, and energy metabolism. Furthermore, we have identified succinate as a potential biomarker, highlighting its therapeutic feasibility in managing aortic dissection and aneurysm. This review aims to comprehensively outline the characteristics of succinate, including its biosynthetic process, summarize the current evidence linking it to CVDs causation, and emphasize the host-microbial crosstalk involved in modulating CVDs. The insights presented here offer a novel paradigm for future management and control of CVDs.
Collapse
Affiliation(s)
- Jing Xu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yicheng Yang
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Li
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shusi Ding
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain ProtectionThe Capital Medical UniversityBeijingChina
| | - Lemin Zheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain ProtectionThe Capital Medical UniversityBeijingChina
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science CenterPeking UniversityBeijingChina
| | - Changming Xiong
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuejin Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Al-Mamun A, Ahmed W, Jafary T, Nayak JK, Al-Nuaimi A, Sana A. Recent advances in microbial electrosynthesis system: Metabolic investigation and process optimization. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Son J, Sohn YJ, Baritugo KA, Jo SY, Song HM, Park SJ. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnol Adv 2023; 62:108070. [PMID: 36462631 DOI: 10.1016/j.biotechadv.2022.108070] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
7
|
Eom JS, Park DS, Lee SJ, Gu BH, Lee SJ, Lee SS, Kim SH, Kim BW, Lee SS, Kim M. Metabolomic and transcriptomic study to understand changes in metabolic and immune responses in steers under heat stress. ANIMAL NUTRITION 2022; 11:87-101. [PMID: 36189376 PMCID: PMC9483736 DOI: 10.1016/j.aninu.2022.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
Heat stress (HS) damages livestock by adversely affecting physiological and immunological functions. However, fundamental understanding of the metabolic and immunological mechanisms in animals under HS remains elusive, particularly in steers. To understand the changes on metabolic and immune responses in steers under HS condition, we performed RNA-sequencing and proton nuclear magnetic resonance spectroscopy-based metabolomics on HS-free (THI value: 64.92 ± 0.56) and HS-exposed (THI value: 79.13 ± 0.56) Jersey steer (n = 8, body weight: 559.67 ± 32.72 kg). This study clarifies the metabolic changes in 3 biofluids (rumen fluid, serum, and urine) and the immune responses observed in the peripheral blood mononuclear cells of HS-exposed steers. This integrated approach allowed the discovery of HS-sensitive metabolic and immunological pathways. The metabolomic analysis indicated that HS-exposed steers showed potential HS biomarkers such as isocitrate, formate, creatine, and riboflavin (P < 0.05). Among them, there were several integrative metabolic pathways between rumen fluid and serum. Furthermore, HS altered mRNA expression and immune-related signaling pathways. A meta-analysis revealed that HS decreased riboflavin metabolism and the expression of glyoxylate and dicarboxylate metabolism-related genes. Moreover, metabolic pathways, such as the hypoxia-inducible factor-1 signaling pathway, were downregulated in immune cells by HS (P < 0.05). These findings, along with the datasets of pathways and phenotypic differences as potential biomarkers in steers, can support more in-depth research to elucidate the inter-related metabolic and immunological pathways. This would help suggest new strategies to ameliorate the effects of HS, including disease susceptibility and metabolic disorders, in Jersey steers.
Collapse
Affiliation(s)
- Jun Sik Eom
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Da Som Park
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sang Jin Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Byeong-Woo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sung Sill Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Corresponding authors.
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
- Corresponding authors.
| |
Collapse
|
8
|
Thermophilic Water Gas Shift Reaction at High Carbon Monoxide and Hydrogen Partial Pressures in Parageobacillus thermoglucosidasius KP1013. FERMENTATION 2022. [DOI: 10.3390/fermentation8110596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The facultatively anaerobic Parageobacillus thermoglucosidasius oxidizes carbon monoxide to produce hydrogen via the water gas shift (WGS) reaction. In the current work, we examined the influence of carbon monoxide (CO) and hydrogen (H2) on the WGS reaction in the thermophilic P. thermoglucosidasius by cultivating two hydrogenogenic strains under varying CO and H2 compositions. Microbial growth and dynamics of the WGS reaction were monitored by evaluating parameters such as pressure, headspace composition, metabolic intermediates, pH, and optical density. Our analyses revealed that compared to the previously studied P. thermoglucosidasius strains, the strain KP1013 demonstrated higher CO tolerance and improved WGS reaction kinetics. Under anaerobic conditions, the lag phase before the WGS reaction shortened to 8 h, with KP1013 showing no hydrogen-induced product inhibition at hydrogen partial pressures up to 1.25 bar. The observed lack of product inhibition and the reduced lag phase of the WGS reaction support the possibility of establishing an industrial process for biohydrogen production with P. thermoglucosidasius.
Collapse
|
9
|
Yong MI, Mohamad MS, Choon YW, Chan WH, Adli HK, Syazwan WSW KN, Yusoff N, Remli MA. A hybrid of Bees algorithm and regulatory on/off minimization for optimizing lactate and succinate production. J Integr Bioinform 2022; 19:jib-2022-0003. [PMID: 35852123 PMCID: PMC9521821 DOI: 10.1515/jib-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolic engineering has expanded in importance and employment in recent years and is now extensively applied particularly in the production of biomass from microbes. Metabolic network models have been employed extravagantly in computational processes developed to enhance metabolic production and suggest changes in organisms. The crucial issue has been the unrealistic flux distribution presented in prior work on rational modelling framework adopting Optknock and OptGene. In order to address the problem, a hybrid of Bees Algorithm and Regulatory On/Off Minimization (BAROOM) is used. By employing Escherichia coli as the model organism, the most excellent set of genes in E. coli that can be removed and advance the production of succinate can be decided. Evidences shows that BAROOM outperforms alternative strategies used to escalate in succinate production in model organisms like E. coli by selecting the best set of genes to be removed.
Collapse
Affiliation(s)
- Mohd Izzat Yong
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310Johor, Malaysia
| | - Mohd Saberi Mohamad
- Health Data Science Lab Department of Genetics and Genomics,College of Medical and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
- Big Data Analytics Center, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yee Wen Choon
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, 16100, Kelantan, Malaysia
- Department of Data Science, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100Kota Bharu, Kelantan, Malaysia
| | - Weng Howe Chan
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310Johor, Malaysia
| | - Hasyiya Karimah Adli
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, 16100, Kelantan, Malaysia
- Department of Data Science, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100Kota Bharu, Kelantan, Malaysia
| | - Khairul Nizar Syazwan WSW
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, 16100, Kelantan, Malaysia
- Department of Data Science, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100Kota Bharu, Kelantan, Malaysia
| | - Nooraini Yusoff
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, 16100, Kelantan, Malaysia
- Department of Data Science, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100Kota Bharu, Kelantan, Malaysia
| | - Muhammad Akmal Remli
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, 16100, Kelantan, Malaysia
- Department of Data Science, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
10
|
Abstract
The industrial relevance of organic acids is high; because of their chemical properties, they can be used as building blocks as well as single-molecule agents with a huge annual market. Organic acid chemical platforms can derive from fossil sources by petrochemical refining processes, but most of them also represent natural metabolites produced by many cells. They are the products, by-products or co-products of many primary metabolic processes of microbial cells. Thanks to the potential of microbial cell factories and to the development of industrial biotechnology, from the last decades of the previous century, the microbial-based production of these molecules has started to approach the market. This was possible because of a joint effort of microbial biotechnologists and biochemical and process engineers that boosted natural production up to the titer, yield and productivity needed to be industrially competitive. More recently, the possibility to utilize renewable residual biomasses as feedstock not only for biofuels, but also for organic acids production is further augmenting the sustainability of their production, in a logic of circular bioeconomy. In this review, we briefly present the latest updates regarding the production of some industrially relevant organic acids (citric fumaric, itaconic, lactic and succinic acid), discussing the challenges and possible future developments of successful production.
Collapse
|
11
|
Lall D, Miscevic D, Bruder M, Westbrook A, Aucoin M, Moo-Young M, Perry Chou C. Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli. BIORESOUR BIOPROCESS 2022; 8:122. [PMID: 34970474 PMCID: PMC8668860 DOI: 10.1186/s40643-021-00482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022] Open
Abstract
Strain engineering and bioprocessing strategies were applied for biobased production of porphobilinogen (PBG) using Escherichia coli as the cell factory. The non-native Shemin/C4 pathway was first implemented by heterologous expression of hemA from Rhodopseudomonas spheroids to supply carbon flux from the natural tricarboxylic acid (TCA) pathways for PBG biosynthesis via succinyl-CoA. Metabolic strategies were then applied for carbon flux direction from the TCA pathways to the C4 pathway. To promote PBG stability and accumulation, Clustered Regularly Interspersed Short Palindromic Repeats interference (CRISPRi) was applied to repress hemC expression and, therefore, reduce carbon flowthrough toward porphyrin biosynthesis with minimal impact to cell physiology. To further enhance PBG biosynthesis and accumulation under the hemC-repressed genetic background, we further heterologously expressed native E. coli hemB. Using these engineered E. coli strains for bioreactor cultivation based on ~ 30 g L−1 glycerol, we achieved high PBG titers up to 209 mg L−1, representing 1.73% of the theoretical PBG yield, with improved PBG stability and accumulation. Potential biochemical, genetic, and metabolic factors limiting PBG production were systematically identified for characterization.
Collapse
Affiliation(s)
- Davinder Lall
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Mark Bruder
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Adam Westbrook
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Marc Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
12
|
Tiso T, Winter B, Wei R, Hee J, de Witt J, Wierckx N, Quicker P, Bornscheuer UT, Bardow A, Nogales J, Blank LM. The metabolic potential of plastics as biotechnological carbon sources - Review and targets for the future. Metab Eng 2021; 71:77-98. [PMID: 34952231 DOI: 10.1016/j.ymben.2021.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The plastic crisis requires drastic measures, especially for the plastics' end-of-life. Mixed plastic fractions are currently difficult to recycle, but microbial metabolism might open new pathways. With new technologies for degradation of plastics to oligo- and monomers, these carbon sources can be used in biotechnology for the upcycling of plastic waste to valuable products, such as bioplastics and biosurfactants. We briefly summarize well-known monomer degradation pathways and computed their theoretical yields for industrially interesting products. With this information in hand, we calculated replacement scenarios of existing fossil-based synthesis routes for the same products. Thereby, we highlight fossil-based products for which plastic monomers might be attractive alternative carbon sources. Notably, not the highest yield of product on substrate of the biochemical route, but rather the (in-)efficiency of the petrochemical routes (i.e., carbon, energy use) determines the potential of biochemical plastic upcycling. Our results might serve as a guide for future metabolic engineering efforts towards a sustainable plastic economy.
Collapse
Affiliation(s)
- Till Tiso
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Winter
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany
| | - Ren Wei
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Johann Hee
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Peter Quicker
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - André Bardow
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany; Institute of Energy and Climate Research (IEK 10), Research Center Jülich GmbH, Germany
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
13
|
Enhancement of β-Alanine Biosynthesis in Escherichia coli Based on Multivariate Modular Metabolic Engineering. BIOLOGY 2021; 10:biology10101017. [PMID: 34681116 PMCID: PMC8533518 DOI: 10.3390/biology10101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
β-alanine is widely used as an intermediate in industrial production. However, the low production of microbial cell factories limits its further application. Here, to improve the biosynthesis production of β-alanine in Escherichia coli, multivariate modular metabolic engineering was recruited to manipulate the β-alanine biosynthesis pathway through keeping the balance of metabolic flux among the whole metabolic network. The β-alanine biosynthesis pathway was separated into three modules: the β-alanine biosynthesis module, TCA module, and glycolysis module. Global regulation was performed throughout the entire β-alanine biosynthesis pathway rationally and systematically by optimizing metabolic flux, overcoming metabolic bottlenecks and weakening branch pathways. As a result, metabolic flux was channeled in the direction of β-alanine biosynthesis without huge metabolic burden, and 37.9 g/L β-alanine was generated by engineered Escherichia coli strain B0016-07 in fed-batch fermentation. This study was meaningful to the synthetic biology of β-alanine industrial production.
Collapse
|
14
|
Insights on the Advancements of In Silico Metabolic Studies of Succinic Acid Producing Microorganisms: A Review with Emphasis on Actinobacillus succinogenes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Succinic acid (SA) is one of the top candidate value-added chemicals that can be produced from biomass via microbial fermentation. A considerable number of cell factories have been proposed in the past two decades as native as well as non-native SA producers. Actinobacillus succinogenes is among the best and earliest known natural SA producers. However, its industrial application has not yet been realized due to various underlying challenges. Previous studies revealed that the optimization of environmental conditions alone could not entirely resolve these critical problems. On the other hand, microbial in silico metabolic modeling approaches have lately been the center of attention and have been applied for the efficient production of valuable commodities including SA. Then again, literature survey results indicated the absence of up-to-date reviews assessing this issue, specifically concerning SA production. Hence, this review was designed to discuss accomplishments and future perspectives of in silico studies on the metabolic capabilities of SA producers. Herein, research progress on SA and A. succinogenes, pathways involved in SA production, metabolic models of SA-producing microorganisms, and status, limitations and prospects on in silico studies of A. succinogenes were elaborated. All in all, this review is believed to provide insights to understand the current scenario and to develop efficient mathematical models for designing robust SA-producing microbial strains.
Collapse
|
15
|
Man MY, Mohamad MS, Choon YW, Ismail MA. In silico gene knockout prediction using a hybrid of Bat algorithm and minimization of metabolic adjustment. J Integr Bioinform 2021; 18:jib-2020-0037. [PMID: 34348418 PMCID: PMC8573224 DOI: 10.1515/jib-2020-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Microorganisms commonly produce many high-demand industrial products like fuels, food, vitamins, and other chemicals. Microbial strains are the strains of microorganisms, which can be optimized to improve their technological properties through metabolic engineering. Metabolic engineering is the process of overcoming cellular regulation in order to achieve a desired product or to generate a new product that the host cells do not usually need to produce. The prediction of genetic manipulations such as gene knockout is part of metabolic engineering. Gene knockout can be used to optimize the microbial strains, such as to maximize the production rate of chemicals of interest. Metabolic and genetic engineering is important in producing the chemicals of interest as, without them, the product yields of many microorganisms are normally low. As a result, the aim of this paper is to propose a combination of the Bat algorithm and the minimization of metabolic adjustment (BATMOMA) to predict which genes to knock out in order to increase the succinate and lactate production rates in Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Mei Yen Man
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Saberi Mohamad
- Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain17666, Abu Dhabi, United Arab Emirates
| | - Yee Wen Choon
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia; and Department of Data Science, Universiti Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia
| | - Mohd Arfian Ismail
- Faculty of Computing (FKOM), College of Computing and Applied Sciences, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
16
|
Well Knowledge of the Physiology of Actinobacillus succinogenes to Improve Succinic Acid Production. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anaerobic fermentation of glucose and fructose was performed by Actinobacillus succinogenes 130Z in batch mode using three different volume of bioreactors (0.25, 1 and 3 L). The strategy used was the addition of MgCO3 and fumaric acid (FA) as mineral carbon and the precursor of succinic acid, respectively, in the culture media. Kinetics and yields of succinic acid (SA) production in the presence of sugars in a relevant synthetic medium were investigated. Work on the bench scale (3 L) showed the best results when compared to the small anaerobic reactor’s succinic acid yield and productivity after 96 h of fermentation. For an equal mixture of glucose and fructose used as substrate at 0.4 mol L−1 with the addition of FA as enhancer and under proven optimal conditions (pH 6.8, T = 37 °C, anaerobic condition and 1% v/v of biomass), about 0.5 mol L−1 of SA was obtained, while the theoretical production of succinic acid was 0.74 mol L−1. This concentration corresponded to an experimental yield of 0.88 (mol-C SA/mol-C sugars consumed anaerobically) and a volumetric productivity of 0.48 g-SA L−1 h−1. The succinic acid yield and concentration obtained were significant and in the order of those reported in the literature.
Collapse
|
17
|
Hallstein J, Gomoll A, Lieske A, Büsse T, Balko J, Brüll R, Malz F, Metzsch‐Zilligen E, Pfaendner R, Zehm D. Unraveling the cause for the unusual processing behavior of commercial partially bio‐based poly(butylene succinates) and their stabilization. J Appl Polym Sci 2021. [DOI: 10.1002/app.50669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jannik Hallstein
- Research Division Plastics Fraunhofer Institute for Structural Durability and System Reliability LBF Darmstadt Germany
| | - André Gomoll
- Research Division Synthesis and Polymer Technology Fraunhofer Institute for Applied Polymer Research IAP Potsdam‐Golm Germany
| | - Antje Lieske
- Research Division Synthesis and Polymer Technology Fraunhofer Institute for Applied Polymer Research IAP Potsdam‐Golm Germany
| | - Thomas Büsse
- Research Division Synthesis and Polymer Technology Fraunhofer Institute for Applied Polymer Research IAP Potsdam‐Golm Germany
| | - Jens Balko
- Research Division Synthesis and Polymer Technology Fraunhofer Institute for Applied Polymer Research IAP Potsdam‐Golm Germany
| | - Robert Brüll
- Research Division Plastics Fraunhofer Institute for Structural Durability and System Reliability LBF Darmstadt Germany
| | - Frank Malz
- Research Division Plastics Fraunhofer Institute for Structural Durability and System Reliability LBF Darmstadt Germany
| | - Elke Metzsch‐Zilligen
- Research Division Plastics Fraunhofer Institute for Structural Durability and System Reliability LBF Darmstadt Germany
| | - Rudolf Pfaendner
- Research Division Plastics Fraunhofer Institute for Structural Durability and System Reliability LBF Darmstadt Germany
| | - Daniel Zehm
- Research Division Synthesis and Polymer Technology Fraunhofer Institute for Applied Polymer Research IAP Potsdam‐Golm Germany
| |
Collapse
|
18
|
Billerach G, Preziosi-Belloy L, Lin CSK, Fulcrand H, Dubreucq E, Grousseau E. Impact of nitrogen deficiency on succinic acid production by engineered strains of Yarrowia lipolytica. J Biotechnol 2021; 336:30-40. [PMID: 34090952 DOI: 10.1016/j.jbiotec.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Yarrowia lipolytica strains PGC01003 and PGC202 engineered for succinic acid production were studied and compared to the wild type strain W29. For the first time, these two strains were characterized in a chemically defined medium. Strain growth and organic acid production were investigated in fed-batch mode with glycerol as carbon and energy source. This study evaluated the impact of nitrogen deficiency strategy to redirect carbon flux toward succinic acid synthesis. Strain PGC01003 produced 19 g L-1 succinic acid with an overall yield of 0.23 g g-1 and an overall productivity of 0.23 g L-1 h-1, while strain PGC202 produced 33 g L-1 succinic acid with an overall yield of 0.12 g g-1 and a productivity of 0.57 g L-1 h-1. Nitrogen limitation effectively stopped biomass growth and increased succinic acid yield of PGC01003 and PGC202 by 18 % and 62 %, respectively. However, the specific succinic acid production rate was reduced by 77 % and 66 %, respectively.
Collapse
Affiliation(s)
- Guillaume Billerach
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| | - Laurence Preziosi-Belloy
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| | - Hélène Fulcrand
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| | - Eric Dubreucq
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| | - Estelle Grousseau
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| |
Collapse
|
19
|
Salma A, Abdallah R, Fourcade F, Amrane A, Djelal H. A New Approach to Produce Succinic Acid Through a Co-Culture System. Appl Biochem Biotechnol 2021; 193:2872-2892. [PMID: 33937964 DOI: 10.1007/s12010-021-03572-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023]
Abstract
Microorganisms can produce a wide range of bio-based chemicals that can be used in various industrial applications as molecules of interest. In the present work, an analysis of the power production by pure culture, co-culture, and sequential culture was performed. In this study, both the mono-culture and the co-culture strategies of Actinobacillus succinogenes with Saccharomyces cerevisiae as carbon sources to produce succinic acid using glucose and fructose were examined. The cultures were performed in batch mode and a great attention was paid to the co-culture system to improve the biosynthetic pathway between A. succinogenes and S. cerevisiae by combining these two strains in a single fermentation process. Under microaerobic and anaerobic conditions, the process was characterized in terms of sugars concentration, cell density, metabolites, yield (mol-C products/ mol-C sugars), the temperature conditions for productivity, and pH. The results showed that the process could consume glucose and fructose and could adapt to different concentrations of the two sugars more quickly than by a single organism and the best results were obtained in a sequential co-culture recording 0.27 mol L-1 of succinic acid concentration and a volumetric productivity of 0.3 g L-1 h-1. Under the investigated operating conditions, the combination of these two strains in a single reactor produced a significant amount of succinic acid (0.70 mol-C SA/mol-C substrates). A simultaneous and sequential co-culture strategy can be a powerful new approach in the field of bio-based chemical production.
Collapse
Affiliation(s)
- Alaa Salma
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-3500, Rennes, France
| | - Rawa Abdallah
- Centre Azm pour la Recherche en Biotechnologie et ses Applications, Rue El Mitein, LBA3B, Universite Libanaise, EDST, Tripoli, Lebanon
| | - Florence Fourcade
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-3500, Rennes, France
| | - Abdeltif Amrane
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-3500, Rennes, France
| | - Hayet Djelal
- UniLaSalle-Ecole des Métiers de l'Environnement, Avenue Robert Schuman, Campus de Ker Lann, 35 170, Rennes, France.
| |
Collapse
|
20
|
Salma A, Djelal H, Abdallah R, Fourcade F, Amrane A. Platform molecule from sustainable raw materials; case study succinic acid. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00103-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Miscevic D, Mao JY, Mozell B, Srirangan K, Abedi D, Moo-Young M, Chou CP. Bio-based production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated monomeric fraction in Escherichia coli. Appl Microbiol Biotechnol 2021; 105:1435-1446. [PMID: 33484319 DOI: 10.1007/s00253-021-11108-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/10/2023]
Abstract
In this study, we applied metabolic engineering and bioprocessing strategies to enhance heterologous production of an important biodegradable copolymer, i.e., poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with a modulated 3-hydroxyvalerate (3-HV) monomeric fraction from structurally unrelated carbon of glycerol in engineered Escherichia coli under different oxygenic conditions. We used our previously derived propanologenic (i.e., 1-propanol-producing) E. coli strain with an activated genomic Sleeping beauty mutase (Sbm) operon as a host for heterologous expression of the phaCAB operon. The 3-HV monomeric fraction was modulated by regulating dissimilated carbon flux channeling from the tricarboxylic acid (TCA) cycle into the Sbm pathway for biosynthesis of propionyl-CoA, which is a key precursor to (R)-3-hydroxyvaleryl-CoA (3-HV-CoA) monomer. The carbon flux channeling was regulated either by manipulating a selection of genes involved in the TCA cycle or varying oxygenic condition of the bacterial culture. With these consolidated strategies being implemented, we successfully achieved high-level PHBV biosynthesis with a wide range of 3-HV monomeric fraction from ~ 4 to 50 mol%, potentially enabling the fine-tuning of PHBV mechanical properties at the biosynthesis stage. We envision that similar strategies can be applied to enhance bio-based production of chemicals derived from succinyl-CoA. KEY POINTS: • TCA cycle engineering was applied to enhance 3-HV monomeric fraction in E. coli. • Effects of oxygenic conditions on 3-HV incorporation into PHBV in E. coli were investigated. • Bacterial cultivation for high-level PHBV production in engineered E. coli was performed.
Collapse
Affiliation(s)
- Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Bradley Mozell
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Kajan Srirangan
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, H4P 2R2, Canada
| | - Daryoush Abedi
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Department of Drug & Food Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
22
|
Li C, Ong KL, Cui Z, Sang Z, Li X, Patria RD, Qi Q, Fickers P, Yan J, Lin CSK. Promising advancement in fermentative succinic acid production by yeast hosts. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123414. [PMID: 32763704 DOI: 10.1016/j.jhazmat.2020.123414] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 05/22/2023]
Abstract
As a platform chemical with various applications, succinic acid (SA) is currently produced by petrochemical processing from oil-derived substrates such as maleic acid. In order to replace the environmental unsustainable hydrocarbon economy with a renewable environmentally sound carbohydrate economy, bio-based SA production process has been developed during the past two decades. In this review, recent advances in the valorization of solid organic wastes including mixed food waste, agricultural waste and textile waste for efficient, green and sustainable SA production have been reviewed. Firstly, the application, market and key global players of bio-SA are summarized. Then achievements in SA production by several promising yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica are detailed, followed by calculation and comparison of SA production costs between oil-based substrates and raw materials. Lastly, challenges in engineered microorganisms and fermentation processes are presented together with perspectives on the development of robust yeast SA producers via genome-scale metabolic optimization and application of low-cost raw materials as fermentation substrates. This review provides valuable insights for identifying useful directions for future bio-SA production improvement.
Collapse
Affiliation(s)
- Chong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhenyu Sang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaotong Li
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Raffel Dharma Patria
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech., Av. de la Faculté, 2B, 5030, Gembloux, Belgium
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Chroumpi T, Mäkelä MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv 2020; 43:107551. [DOI: 10.1016/j.biotechadv.2020.107551] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
24
|
Miscevic D, Mao JY, Kefale T, Abedi D, Moo-Young M, Perry Chou C. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol Bioeng 2020; 118:30-42. [PMID: 32860420 DOI: 10.1002/bit.27547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Herein, we report the development of a microbial bioprocess for high-level production of 5-aminolevulinic acid (5-ALA), a valuable non-proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5-ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5-ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl-CoA for enhanced 5-ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high-level 5-ALA biosynthesis from glycerol (~30 g L-1 ) under both microaerobic and aerobic conditions, achieving up to 5.95 g L-1 (36.9% of the theoretical maximum yield) and 6.93 g L-1 (50.9% of the theoretical maximum yield) 5-ALA, respectively. This study represents one of the most effective bio-based production of 5-ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio-based production.
Collapse
Affiliation(s)
- Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Canada
| | - Teshager Kefale
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Daryoush Abedi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.,Department of Drug & Food Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
25
|
Szczerba H, Dudziak K, Krawczyk M, Targoński Z. A Genomic Perspective on the Potential of Wild-Type Rumen Bacterium Enterobacter sp. LU1 as an Industrial Platform for Bio-Based Succinate Production. Int J Mol Sci 2020; 21:ijms21144835. [PMID: 32650546 PMCID: PMC7402333 DOI: 10.3390/ijms21144835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Enterobacter sp. LU1, a wild-type bacterium originating from goat rumen, proved to be a potential succinic acid producer in previous studies. Here, the first complete genome of this strain was obtained and analyzed from a biotechnological perspective. A hybrid sequencing approach combining short (Illumina MiSeq) and long (ONT MinION) reads allowed us to obtain a single continuous chromosome 4,636,526 bp in size, with an average 55.6% GC content that lacked plasmids. A total of 4425 genes, including 4283 protein-coding genes, 25 ribosomal RNA (rRNA)-, 84 transfer RNA (tRNA)-, and 5 non-coding RNA (ncRNA)-encoding genes and 49 pseudogenes, were predicted. It has been shown that genes involved in transport and metabolism of carbohydrates and amino acids and the transcription process constitute the major group of genes, according to the Clusters of Orthologous Groups of proteins (COGs) database. The genetic ability of the LU1 strain to metabolize a wide range of industrially relevant carbon sources has been confirmed. The genome exploration indicated that Enterobacter sp. LU1 possesses all genes that encode the enzymes involved in the glycerol metabolism pathway. It has also been shown that succinate can be produced as an end product of fermentation via the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. The transport system involved in succinate excretion into the growth medium and the genes involved in the response to osmotic and oxidative stress have also been recognized. Furthermore, three intact prophage regions ~70.3 kb, ~20.9 kb, and ~49.8 kb in length, 45 genomic islands (GIs), and two clustered regularly interspaced short palindromic repeats (CRISPR) were recognized in the genome. Sequencing and genome analysis of Enterobacter sp. LU1 confirms many earlier results based on physiological experiments and provides insight into their genetic background. All of these findings illustrate that the LU1 strain has great potential to be an efficient platform for bio-based succinate production.
Collapse
Affiliation(s)
- Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-462-3402
| | - Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | - Zdzisław Targoński
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| |
Collapse
|
26
|
Miscevic D, Mao JY, Moo-Young M, Chou CHP. High-level heterologous production of propionate in engineered Escherichia coli. Biotechnol Bioeng 2020; 117:1304-1315. [PMID: 31956980 DOI: 10.1002/bit.27276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
A propanologenic (i.e., 1-propanol-producing) bacterium Escherichia coli strain was previously derived by activating the genomic sleeping beauty mutase (Sbm) operon. The activated Sbm pathway branches out of the tricarboxylic acid (TCA) cycle at the succinyl-CoA node to form propionyl-CoA and its derived metabolites of 1-propanol and propionate. In this study, we targeted several TCA cycle genes encoding enzymes near the succinyl-CoA node for genetic manipulation to identify the individual contribution of the carbon flux into the Sbm pathway from the three TCA metabolic routes, that is, oxidative TCA cycle, reductive TCA branch, and glyoxylate shunt. For the control strain CPC-Sbm, in which propionate biosynthesis occurred under relatively anaerobic conditions, the carbon flux into the Sbm pathway was primarily derived from the reductive TCA branch, and both succinate availability and the SucCD-mediated interconversion of succinate/succinyl-CoA were critical for such carbon flux redirection. Although the oxidative TCA cycle normally had a minimal contribution to the carbon flux redirection, the glyoxylate shunt could be an alternative and effective carbon flux contributor under aerobic conditions. With mechanistic understanding of such carbon flux redirection, metabolic strategies based on blocking the oxidative TCA cycle (via ∆sdhA mutation) and deregulating the glyoxylate shunt (via ∆iclR mutation) were developed to enhance the carbon flux redirection and therefore propionate biosynthesis, achieving a high propionate titer of 30.9 g/L with an overall propionate yield of 49.7% upon fed-batch cultivation of the double mutant strain CPC-Sbm∆sdhA∆iclR under aerobic conditions. The results also suggest that the Sbm pathway could be metabolically active under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
27
|
Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane. Metab Eng 2019; 54:170-179. [DOI: 10.1016/j.ymben.2019.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/21/2019] [Accepted: 03/31/2019] [Indexed: 12/20/2022]
|
28
|
Vieira V, Maia P, Rocha M, Rocha I. Comparison of pathway analysis and constraint-based methods for cell factory design. BMC Bioinformatics 2019; 20:350. [PMID: 31221092 PMCID: PMC6585037 DOI: 10.1186/s12859-019-2934-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Computational strain optimisation methods (CSOMs) have been successfully used to exploit genome-scale metabolic models, yielding strategies useful for allowing compound overproduction in metabolic cell factories. Minimal cut sets are particularly interesting since their definition allows searching for intervention strategies that impose strong growth-coupling phenotypes, and are not subject to optimality bias when compared with simulation-based CSOMs. However, since both types of methods have different underlying principles, they also imply different ways to formulate metabolic engineering problems, posing an obstacle when comparing their outputs. RESULTS In this work, we perform an in-depth analysis of potential strategies that can be obtained with both methods, providing a critical comparison of performance, robustness, predicted phenotypes as well as strategy structure and size. To this end, we devised a pipeline including enumeration of strategies from evolutionary algorithms (EA) and minimal cut sets (MCS), filtering and flux analysis of predicted mutants to optimize the production of succinic acid in Saccharomyces cerevisiae. We additionally attempt to generalize problem formulations for MCS enumeration within the context of growth-coupled product synthesis. Strategies from evolutionary algorithms show the best compromise between acceptable growth rates and compound overproduction. However, constrained MCSs lead to a larger variety of phenotypes with several degrees of growth-coupling with production flux. The latter have proven useful in revealing the importance, in silico, of the gamma-aminobutyric acid shunt and manipulation of cofactor pools in growth-coupled designs for succinate production, mechanisms which have also been touted as potentially useful for metabolic engineering. CONCLUSIONS The two main groups of CSOMs are valuable for finding growth-coupled mutants. Despite the limitations in maximum growth rates and large strategy sizes, MCSs help uncover novel mechanisms for compound overproduction and thus, analyzing outputs from both methods provides a richer overview on strategies that can be potentially carried over in vivo.
Collapse
Affiliation(s)
- Vítor Vieira
- Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | | | - Miguel Rocha
- Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | - Isabel Rocha
- Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
29
|
Molecular Identification of Bacterial Strains Producing Succinic Acid from Indian Sources. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
31
|
Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol 2018; 102:9893-9910. [PMID: 30259101 DOI: 10.1007/s00253-018-9379-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
Due to environmental issues and the depletion of fossil-based resources, ecofriendly sustainable biomass-based chemical production has been given more attention recently. Succinic acid (SA) is one of the top value added bio-based chemicals. It can be synthesized through microbial fermentation using various waste steam bioresources. Production of chemicals from waste streams has dual function as it alleviates environmental concerns; they could have caused because of their improper disposal and transform them into valuable products. To date, Actinobacillus succinogenes is termed as the best natural SA producer. However, few reviews regarding SA production by A. succinogenes were reported. Herewith, pathways and metabolic engineering strategies, biomass pretreatment and utilization, and process optimization related with SA fermentation by A. succinogenes were discussed in detail. In general, this review covered vital information including merits, achievements, progresses, challenges, and future perspectives in SA production using A. succinogenes. Therefore, it is believed that this review will provide platform to understand the potential of the strain and tackle existing hurdles so as to develop superior strain for industrial applications. It will also be used as a baseline for identification, isolation, and improvement of other SA-producing microbes.
Collapse
|
32
|
McDonald NC, White RL. Reduction of Fumarate to Succinate Mediated by Fusobacterium varium. Appl Biochem Biotechnol 2018; 187:163-175. [PMID: 29911265 DOI: 10.1007/s12010-018-2817-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/07/2018] [Indexed: 02/04/2023]
Abstract
Accumulation of succinate as a fermentation product of Fusobacterium varium was enhanced when the anaerobic bacterium was grown on complex peptone medium supplemented with fumarate. Residual substrates and fermentation products were determined by proton NMR spectroscopy. Cells collected from the fumarate-supplemented medium (8-10 h after inoculation) supported the conversion of fumarate to succinate when suspended with fumarate and a co-substrate (glucose, sorbitol, or glycerol). Succinate production was limited by the availability of fumarate or reducing equivalents supplied by catabolism of a co-substrate via the Embden-Meyerhof-Parnas (EMP) pathway. The choice of reducing co-substrate influenced the yield of acetate and lactate as side products. High conversions of fumarate to succinate were achieved over pH 6.6-8.2 and initial fumarate concentrations up to 300 mM. However, at high substrate concentrations, intracellular retention of succinate reduced extracellular yields. Overall, the efficient utilization of fumarate (≤ 400 mM) combined with the significant extracellular accumulation of succinate (corresponding to ≥ 70% conversion) indicated the effective utilization of fumarate as a terminal electron acceptor by F. varium and the potential of the methodology for the bioproduction of succinate.
Collapse
Affiliation(s)
- Nicholas C McDonald
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Robert L White
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
33
|
Pereira B, Miguel J, Vilaça P, Soares S, Rocha I, Carneiro S. Reconstruction of a genome-scale metabolic model for Actinobacillus succinogenes 130Z. BMC SYSTEMS BIOLOGY 2018; 12:61. [PMID: 29843739 PMCID: PMC5975692 DOI: 10.1186/s12918-018-0585-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Actinobacillus succinogenes is a promising bacterial catalyst for the bioproduction of succinic acid from low-cost raw materials. In this work, a genome-scale metabolic model was reconstructed and used to assess the metabolic capabilities of this microorganism under producing conditions. RESULTS The model, iBP722, was reconstructed based on the functional reannotation of the complete genome sequence of A. succinogenes 130Z and manual inspection of metabolic pathways, covering 1072 enzymatic reactions associated with 722 metabolic genes that involve 713 metabolites. The highly curated model was effective in capturing the growth of A. succinogenes on various carbon sources, as well as the SA production under various growth conditions with fair agreement between experimental and predicted data. Calculated flux distributions under different conditions show that a number of metabolic pathways are affected by the activity of some metabolic enzymes at key nodes in metabolism, including the transport mechanism of carbon sources and the ability to fix carbon dioxide. CONCLUSIONS The established genome-scale metabolic model can be used for model-driven strain design and medium alteration to improve succinic acid yields.
Collapse
Affiliation(s)
- Bruno Pereira
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Joana Miguel
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Paulo Vilaça
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Simão Soares
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Isabel Rocha
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Sónia Carneiro
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| |
Collapse
|
34
|
Ma BX, Ke X, Tang XL, Zheng RC, Zheng YG. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering. World J Microbiol Biotechnol 2018; 34:55. [PMID: 29594560 DOI: 10.1007/s11274-018-2440-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022]
Abstract
Ergosterol is the predominant nature sterol constituent of plasma membrane in Saccharomyces cerevisiae. Herein, the biosynthetic pathway of ergosterol was proposed to be metabolically engineered for the efficient production of ergosta-5,7-dien-3β-ol, which is the precursor of vitamin D4. By target disruption of erg5, involved in the end-steps of post-squalene formation, predominantly accumulated ergosta-5,7-dien-3β-ol (4.12 mg/g dry cell weight). Moreover, the rate-limiting enzymes of ergosta-5,7-dien-3β-ol biosynthesis were characterized. Overexpression of Hmg1p led to a significant accumulation of squalene, and induction of Erg1p/Erg11p expression raised the yield of both total sterols and ergosta-5,7-dien-3β-ol with no obvious changes in growth behavior. Furthermore, the transcription factor allele upc2-1 was overexpressed to explore the effect of combined induction of rate-limiting enzymes. Compared with an obviously enhanced yield of ergosterol in the wild-type strain, decreases of both the ergosta-5,7-dienol levels and the total sterol yield were found in Δerg5-upc2-1, probably due to the unbalanced NADH/NAD+ ratio observed in the erg5 knockouts, suggesting the whole-cell redox homeostasis was also vital for end-product biosynthesis. The data obtained in this study can be used as reference values for the production of sterol-related intermediates involved in the post-squalene biosynthetic pathway in food-grade S. cerevisiae strains.
Collapse
Affiliation(s)
- Bin-Xiang Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Ke
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
35
|
Mienda BS. Escherichia coli genome-scale metabolic gene knockout of lactate dehydrogenase (ldhA), increases succinate production from glycerol. J Biomol Struct Dyn 2017; 36:3680-3686. [PMID: 29057718 DOI: 10.1080/07391102.2017.1395768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genome-scale metabolic model (GEM) of Escherichia coli has been published with applications in predicting metabolic engineering capabilities on different carbon sources and directing biological discovery. The use of glycerol as an alternative carbon source is economically viable in biorefinery. The use of GEM for predicting metabolic gene deletion of lactate dehydrogenase (ldhA) for increasing succinate production in Escherichia coli from glycerol carbon source remained largely unexplored. Here, I hypothesized that metabolic gene knockout of ldhA in E. coli from glycerol could increase succinate production. A proof-of-principle strain was constructed and designated as E. coli BMS5 (ΔldhA), by predicting increased succinate production in E. coli GEM and confirmed the predicted outcomes using wet cell experiments. The mutant GEM (ΔldhA) predicted 11% increase in succinate production from glycerol compared to its wild-type model (iAF1260), and the E. coli BMS5 (ΔldhA) showed 1.05 g/l and its corresponding wild-type produced .05 g/l (23-fold increase). The proof-of-principle strain constructed in this study confirmed the aforementioned hypothesis and further elucidated the fact that E. coli GEM can prospectively and effectively predict metabolic engineering interventions using glycerol as substrate and could serve as platform for new strain design strategies and biological discovery.
Collapse
Affiliation(s)
- Bashir Sajo Mienda
- a Faculty of Science, Department of Microbiology and Biotechnology , Federal University Dutse , PMB 7156 Ibrahim Aliyu bypass , Dutse , Jigawa State , Nigeria
| |
Collapse
|
36
|
Wahl SA, Bernal Martinez C, Zhao Z, van Gulik WM, Jansen MLA. Intracellular product recycling in high succinic acid producing yeast at low pH. Microb Cell Fact 2017; 16:90. [PMID: 28535757 PMCID: PMC5442661 DOI: 10.1186/s12934-017-0702-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metabolic engineering of Saccharomyces cerevisiae for the production of succinic acid has progressed dramatically, and a series of high-producing hosts are available. At low cultivation pH and high titers, the product transport can become bidirectional, i.e. the acid is reentering the cell and is again exported or even catabolized. Here, a quantitative approach for the identification of product recycling fluxes is developed. RESULTS The metabolic flux distributions at two time-points of the fermentation process were analyzed. 13C labeled succinic acid was added to the extracellular space and intracellular enrichments were measured and subsequently used for the estimation of metabolic fluxes. The labeling was introduced by a labeling switch experiment, leading to an immediate labeling of about 85% of the acid while keeping the total acid concentration constant. Within 100 s significant labeling enrichment of the TCA cycle intermediates fumarate, iso-citrate and α-ketoglutarate was observed, while no labeling was detected for malate and citrate. These findings suggest that succinic acid is rapidly exchanged over the cellular membrane and enters the oxidative TCA cycle. Remarkably, in the oxidative direction malate 13C enrichment was not detected, indicating that there is no flux going through this metabolite pool. Using flux modeling and thermodynamic assumptions on compartmentation it was concluded that malate must be predominantly cytosolic while fumarate and iso-citrate were more dominant in the mitochondria. CONCLUSIONS Adding labeled product without changing the extracellular environment allowed to quantify intracellular metabolic fluxes under high producing conditions and identify product degradation cycles. In the specific case of succinic acid production, compartmentation was found to play a major role, i.e. the presence of metabolic activity in two different cellular compartments lead to intracellular product degradation reducing the yield. We also observed that the flux from glucose to succinic acid branches at two points in metabolism: (1) At the level of pyruvate, and (2) at cytosolic malate which was not expected.
Collapse
Affiliation(s)
- S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Cristina Bernal Martinez
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Applikon Biotechnology B.V., Heertjeslaan 2, 2629 JG, Delft, The Netherlands
| | - Zheng Zhao
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Walter M van Gulik
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mickel L A Jansen
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| |
Collapse
|
37
|
Park S, Lee JU, Cho S, Kim H, Oh HB, Pack SP, Lee J. Increased incorporation of gaseous CO 2 into succinate by Escherichia coli overexpressing carbonic anhydrase and phosphoenolpyruvate carboxylase genes. J Biotechnol 2016; 241:101-107. [PMID: 27908774 DOI: 10.1016/j.jbiotec.2016.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/26/2022]
Abstract
Carbon dioxide (CO2) is an abundant and cheap carbon source that is partly responsible for global warming in the atmosphere. The objective of this study was to construct a recombinant E. coli strain that can show enhanced production of succinate derived from CO2. In this study, we confirmed the enhancement of utilization by analyzing succinate containing one carbon-13 (13C) derived from 13CO2. Firstly, the carbonic anhydrase gene (SP(-)HCCA) derived from Hahella chejuensis KCTC 2396 was over-expressed to enhance carbon flux toward bicarbonate ion (HCO3-) synthesis in E. coli. The phosphoenolpyruvate carboxylase gene (ppc) was over-expressed to enhance the production of oxaloacetate by enhancing the carbon flux. Compared with the control strain, the percentage of the succinate containing one 13C (succinate119) to total succinate was enhanced by approximately 2.80-fold and the amount of succinate119 also increased by approximately 4.09-fold in SGJS120. Secondly, the lactate dehydrogenase gene (ldhA) was deleted to re-direct the utilization of the carbon source from glucose to enhance succinate production in SGJS120. However, ldhA deletion did not increase CO2 utilization in SJGS120. Finally, the phosphotransferase system gene (ptsG) and pyruvate kinase F gene (pykF) were deleted to increase the amount of phosphoenolpyruvate (PEP). SGJS126 (pykF deletion strain) showed the highest increase, which was 6.05-fold higher than the control strain. From the results, SP(-)HCCA overexpression and pykF deletion may be useful for enhancing CO2 utilization in E. coli. Additionally, engineered strains showed the potential to reduce the cost of succinate production by using an industrially cheaper carbon source such as CO2 and converting CO2 to a valuable chemical.
Collapse
Affiliation(s)
- Soohyun Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - Jae-Ung Lee
- Department of Chemistry, Sogang University, Seoul, 121-742, Republic of Korea
| | - Sukhyeong Cho
- C1 Gas Refinery R&D Center, Sogang University, Seoul, 121-742,Republic of Korea
| | - Hyeonsoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 121-742, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Chungnam 339-700, Republic of Korea.
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea; C1 Gas Refinery R&D Center, Sogang University, Seoul, 121-742,Republic of Korea.
| |
Collapse
|
38
|
Hintermayer S, Yu S, Krömer JO, Weuster-Botz D. Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
|
40
|
Pateraki C, Patsalou M, Vlysidis A, Kopsahelis N, Webb C, Koutinas AA, Koutinas M. Actinobacillus succinogenes : Advances on succinic acid production and prospects for development of integrated biorefineries. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Kawaguchi H, Hasunuma T, Ogino C, Kondo A. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 2016; 42:30-39. [PMID: 26970511 DOI: 10.1016/j.copbio.2016.02.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/17/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
42
|
Garcia-Mazcorro JF, Ivanov I, Mills DA, Noratto G. Influence of whole-wheat consumption on fecal microbial community structure of obese diabetic mice. PeerJ 2016; 4:e1702. [PMID: 26925326 PMCID: PMC4768707 DOI: 10.7717/peerj.1702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/27/2016] [Indexed: 01/19/2023] Open
Abstract
The digestive tract of mammals and other animals is colonized by trillions of metabolically-active microorganisms. Changes in the gut microbiota have been associated with obesity in both humans and laboratory animals. Dietary modifications can often modulate the obese gut microbial ecosystem towards a more healthy state. This phenomenon should preferably be studied using dietary ingredients that are relevant to human nutrition. This study was designed to evaluate the influence of whole-wheat, a food ingredient with several beneficial properties, on gut microorganisms of obese diabetic mice. Diabetic (db/db) mice were fed standard (obese-control) or whole-wheat isocaloric diets (WW group) for eight weeks; non-obese mice were used as control (lean-control). High-throughput sequencing using the MiSeq platform coupled with freely-available computational tools and quantitative real-time PCR were used to analyze fecal bacterial 16S rRNA gene sequences. Short-chain fatty acids were measured in caecal contents using quantitative high-performance liquid chromatography photo-diode array analysis. Results showed no statistical difference in final body weights between the obese-control and the WW group. The bacterial richness (number of Operational Taxonomic Units) did not differ among the treatment groups. The abundance of Ruminococcaceae, a family containing several butyrate-producing bacteria, was found to be higher in obese (median: 6.9%) and WW-supplemented mice (5.6%) compared to lean (2.7%, p = 0.02, Kruskal-Wallis test). Caecal concentrations of butyrate were higher in obese (average: 2.91 mmol/mg of feces) but especially in WW-supplemented mice (4.27 mmol/mg) compared to lean controls (0.97 mmol/mg), while caecal succinic acid was lower in the WW group compared to obese but especially to the lean group. WW consumption was associated with ∼3 times higher abundances of Lactobacillus spp. compared to both obese and lean control mice. Analysis of weighted UniFrac distances revealed a distinctive clustering of lean microbial communities separately from both obese and WW-supplemented mice (p = 0.001, ANOSIM test). Predictive metagenome analysis revealed significant differences in several metabolic features of the microbiota among the treatment groups, including carbohydrate, amino acids and vitamin metabolism (p < 0.01, Kruskal-Wallis test). However, obese and WW groups tended to share more similar abundances of gene families compared to lean mice. Using an in vivo model of obesity and diabetes, this study suggests that daily WW supplementation for eight weeks may not be enough to influence body weight or to output a lean-like microbiome, both taxonomically and metabolically. However, WW-supplementation was associated with several statistically significant differences in the gut microbiome compared to obese controls that deserve further investigation.
Collapse
Affiliation(s)
- Jose F Garcia-Mazcorro
- Faculty of Veterinary Medicine, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo Leon, Mexico; Research Group Medical Eco-Biology, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo Leon, Mexico
| | - Ivan Ivanov
- Veterinary Physiology and Pharmacology, Texas A&M University , College Station, Texas , United States
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis , Davis, California , United States
| | - Giuliana Noratto
- School of Food Science, Washington State University, Pullman, Washington, United States; Current Address: Nutrition and Food Science, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
43
|
Mienda BS, Shamsir MS, Md. Illias R. Model-assisted formate dehydrogenase-O (fdoH) gene knockout for enhanced succinate production in Escherichia coli from glucose and glycerol carbon sources. J Biomol Struct Dyn 2016; 34:2305-16. [DOI: 10.1080/07391102.2015.1113387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bashir Sajo Mienda
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, Skudai Johor Bahru 81310, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, Skudai Johor Bahru 81310, Malaysia
| | - Rosli Md. Illias
- Faculty of Chemical Engineering, Department of Bioprocess Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia
| |
Collapse
|
44
|
Tan Z, Chen J, Zhang X. Systematic engineering of pentose phosphate pathway improves Escherichia coli succinate production. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:262. [PMID: 27980672 PMCID: PMC5134279 DOI: 10.1186/s13068-016-0675-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/24/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Succinate biosynthesis of Escherichia coli is reducing equivalent-dependent and the EMP pathway serves as the primary reducing equivalent source under anaerobic condition. Compared with EMP, pentose phosphate pathway (PPP) is reducing equivalent-conserving but suffers from low efficacy. In this study, the ribosome binding site library and modified multivariate modular metabolic engineering (MMME) approaches are employed to overcome the low efficacy of PPP and thus increase succinate production. RESULTS Altering expression levels of different PPP enzymes have distinct effects on succinate production. Specifically, increased expression of five enzymes, i.e., Zwf, Pgl, Gnd, Tkt, and Tal, contributes to increased succinate production, while the increased expression of two enzymes, i.e., Rpe and Rpi, significantly decreases succinate production. Modular engineering strategy is employed to decompose PPP into three modules according to position and function. Engineering of Zwf/Pgl/Gnd and Tkt/Tal modules effectively increases succinate yield and production, while engineering of Rpe/Rpi module decreases. Imbalance of enzymatic reactions in PPP is alleviated using MMME approach. Finally, combinational utilization of engineered PPP and SthA transhydrogenase enables succinate yield up to 1.61 mol/mol glucose, which is 94% of theoretical maximum yield (1.71 mol/mol) and also the highest succinate yield in minimal medium to our knowledge. CONCLUSIONS In summary, we systematically engineered the PPP for improving the supply of reducing equivalents and thus succinate production. Besides succinate, these PPP engineering strategies and conclusions can also be applicable to the production of other reducing equivalent-dependent biorenewables.
Collapse
Affiliation(s)
- Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Park, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jing Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Park, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Park, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
45
|
Mienda BS, Shamsir MS, Md. Illias R. Model-aided atpE gene knockout strategy in Escherichia coli for enhanced succinic acid production from glycerol. J Biomol Struct Dyn 2015; 34:1705-16. [DOI: 10.1080/07391102.2015.1090341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bashir Sajo Mienda
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Rosli Md. Illias
- Faculty of Chemical Engineering, Department of Bioprocess Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| |
Collapse
|
46
|
Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 2015; 36:168-75. [DOI: 10.1016/j.copbio.2015.08.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022]
|
47
|
Yin X, Li J, Shin HD, Du G, Liu L, Chen J. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Biotechnol Adv 2015; 33:830-41. [DOI: 10.1016/j.biotechadv.2015.04.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 01/15/2023]
|
48
|
Guo H, Liu P, Madzak C, Du G, Zhou J, Chen J. Identification and application of keto acids transporters in Yarrowia lipolytica. Sci Rep 2015; 5:8138. [PMID: 25633653 PMCID: PMC4311248 DOI: 10.1038/srep08138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/08/2015] [Indexed: 01/18/2023] Open
Abstract
Production of organic acids by microorganisms is of great importance for obtaining building-block chemicals from sustainable biomass. Extracellular accumulation of organic acids involved a series of transporters, which play important roles in the accumulation of specific organic acid while lack of systematic demonstration in eukaryotic microorganisms. To circumvent accumulation of by-product, efforts have being orchestrated to carboxylate transport mechanism for potential clue in Yarrowia lipolytica WSH-Z06. Six endogenous putative transporter genes, YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D24607g, YALI0D20108g and YALI0E32901g, were identified. Transport characteristics and substrate specificities were further investigated using a carboxylate-transport-deficient Saccharomyces cerevisiae strain. These transporters were expressed in Y. lipolytica WSH-Z06 to assess their roles in regulating extracellular keto acids accumulation. In a Y. lipolytica T1 line over expressing YALI0B19470g, α-ketoglutarate accumulated to 46.7 g·L−1, whereas the concentration of pyruvate decreased to 12.3 g·L−1. Systematic identification of these keto acids transporters would provide clues to further improve the accumulation of specific organic acids with higher efficiency in eukaryotic microorganisms.
Collapse
Affiliation(s)
- Hongwei Guo
- 1] School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China [2] Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Peiran Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Catherine Madzak
- UMR1238 Microbiologie et Génétique Moléculaire, INRA/CNRS/AgroPan's Tech, CBAI, BP 01, 78850 Thiverval-Grignon, France
| | - Guocheng Du
- 1] School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China [2] Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- 1] School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China [2] Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- 1] School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China [2] Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
49
|
Thakker C, Martínez I, Li W, San KY, Bennett GN. Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol 2014; 42:403-22. [PMID: 25502283 DOI: 10.1007/s10295-014-1560-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022]
Abstract
The review describes efforts toward metabolic engineering of production of organic acids. One aspect of the strategy involves the generation of an appropriate amount and type of reduced cofactor needed for the designed pathway. The ability to capture reducing power in the proper form, NADH or NADPH for the biosynthetic reactions leading to the organic acid, requires specific attention in designing the host and also depends on the feedstock used and cell energetic requirements for efficient metabolism during production. Recent work on the formation and commercial uses of a number of small mono- and diacids is discussed with redox differences, major biosynthetic precursors and engineering strategies outlined. Specific attention is given to those acids that are used in balancing cell redox or providing reduction equivalents for the cell, such as formate, which can be used in conjunction with metabolic engineering of other products to improve yields. Since a number of widely studied acids derived from oxaloacetate as an important precursor, several of these acids are covered with the general strategies and particular components summarized, including succinate, fumarate and malate. Since malate and fumarate are less reduced than succinate, the availability of reduction equivalents and level of aerobiosis are important parameters in optimizing production of these compounds in various hosts. Several other more oxidized acids are also discussed as in some cases, they may be desired products or their formation is minimized to afford higher yields of more reduced products. The placement and connections among acids in the typical central metabolic network are presented along with the use of a number of specific non-native enzymes to enhance routes to high production, where available alternative pathways and strategies are discussed. While many organic acids are derived from a few precursors within central metabolism, each organic acid has its own special requirements for high production and best compatibility with host physiology.
Collapse
Affiliation(s)
- Chandresh Thakker
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | | | | | |
Collapse
|
50
|
Porro D, Branduardi P, Sauer M, Mattanovich D. Old obstacles and new horizons for microbial chemical production. Curr Opin Biotechnol 2014; 30:101-6. [PMID: 25000188 DOI: 10.1016/j.copbio.2014.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 01/05/2023]
Abstract
Microorganisms appear as ideal catalysts for chemical conversions. Diverse metabolic routes seem to open doors to the whole range of chemistry. Indeed, a vast amount of scientific papers suggesting new microbial cell factories for old and new products is published every year. However, only very few of them reached industrial relevance. Chemical balances and some metabolic tricks allow natural microorganisms the efficient production of some chemicals, but not others. So first of all it is important to choose metabolically feasible products of value for synthetic chemistry. Here we see a clear task for the chemical and biotechnology industries to communicate for defining the right target molecules. Finally, despite our limited current knowledge, synthetic biology points to a future independent from natural strain backgrounds.
Collapse
Affiliation(s)
- Danilo Porro
- University of Milano Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Paola Branduardi
- University of Milano Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Michael Sauer
- BOKU-VIBT University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Diethard Mattanovich
- BOKU-VIBT University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|