1
|
Akasha R, Enrera JA, Fatima SB, Hegazy AM, Hussein W, Nawaz M, Alshammari MD, Almuntashiri S, Albadari N, Break MKB, Syed RU. Oxidative phosphorylation and breast cancer progression: insights into PGC-1α's role in mitochondrial function. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04018-w. [PMID: 40095051 DOI: 10.1007/s00210-025-04018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Breast cancer still ranks high as a leading cause of mortality in women due to its complex relationship with metabolic reprogramming and tumor progression. The peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), a key transcriptional coactivator regulating mitochondrial biogenesis and oxidative phosphorylation (OXPHOS), plays a dual role in breast cancer metabolism. On the one hand, PGC-1α enhances mitochondrial function and energy production, facilitating tumor survival and metastasis, particularly in hypoxic environments. On the other hand, its suppression can limit tumor aggressiveness and energy metabolism. This dual functionality underscores its context-dependent role in cancer progression, where its activation or inhibition varies across tumor subtypes and microenvironmental conditions. The purpose of this review is to provide a comprehensive understanding of PGC-1α's dual roles in breast cancer, elucidating its regulation of mitochondrial function, its contribution to tumor progression, and the therapeutic implications of targeting this key metabolic regulator.
Collapse
Affiliation(s)
- Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Hail, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Hail, Saudi Arabia
| | - Syeda Bushra Fatima
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - A M Hegazy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Hail, Saudi Arabia
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sultan Almuntashiri
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Najah Albadari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, 81442, Hail, Saudi Arabia.
| |
Collapse
|
2
|
Viebahn-Haensler R, León Fernández OS. Mitochondrial Dysfunction, Its Oxidative Stress-Induced Pathologies and Redox Bioregulation through Low-Dose Medical Ozone: A Systematic Review. Molecules 2024; 29:2738. [PMID: 38930804 PMCID: PMC11207058 DOI: 10.3390/molecules29122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Our hypothesis that controlled ozone applications interfere with the redox balance of a biological organism (first published in 1998 with a preclinical trial on protecting the liver from CCl4 intoxication) has been verified over the past two decades in reactive oxygen species (ROS)-induced mitochondrial pathologies, such as rheumatoid arthritis, osteoarthritis, aging processes and type 2 diabetes, and in the prevention of intoxications. Low-dose ozone acts as a redox bioregulator: the restoration of the disturbed redox balance is comprehensible in a number of preclinical and clinical studies by a remarkable increase in the antioxidant repair markers, here mainly shown as a glutathione increase and a reduction in oxidative stress markers, mainly malondialdehyde. The mechanism of action is shown, and relevant data are displayed, evaluated and comprehensively discussed: the repair side of the equilibrium increases by 21% up to 140% compared to the non-ozone-treated groups and depending on the indication, the stress markers are simultaneously reduced, and the redox system regains its balance.
Collapse
|
3
|
Falagario UG, Sanguedolce F, Dovey Z, Carbonara U, Crocerossa F, Papastefanou G, Autorino R, Recchia M, Ninivaggi A, Busetto GM, Annese P, Carrieri G, Cormio L. Prostate cancer biomarkers: a practical review based on different clinical scenarios. Crit Rev Clin Lab Sci 2022; 59:297-308. [PMID: 35200064 DOI: 10.1080/10408363.2022.2033161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traditionally, diagnosis and staging of prostate cancer (PCa) have been based on prostate-specific antigen (PSA) level, digital rectal examination (DRE), and transrectal ultrasound (TRUS) guided prostate biopsy. Biomarkers have been introduced into clinical practice to reduce the overdiagnosis and overtreatment of low-grade PCa and increase the success of personalized therapies for high-grade and high-stage PCa. The purpose of this review was to describe available PCa biomarkers and examine their use in clinical practice. A nonsystematic literature review was performed using PubMed and Scopus to retrieve papers related to PCa biomarkers. In addition, we manually searched websites of major urological associations for PCa guidelines to evaluate available evidence and recommendations on the role of biomarkers and their potential contribution to PCa decision-making. In addition to PSA and its derivates, thirteen blood, urine, and tissue biomarkers are mentioned in various PCa guidelines. Retrospective studies have shown their utility in three main clinical scenarios: (1) deciding whether to perform a biopsy, (2) distinguishing patients who require active treatment from those who can benefit from active surveillance, and (3) defining a subset of high-risk PCa patients who can benefit from additional therapies after RP. Several validated PCa biomarkers have become commercially available in recent years. Guidelines now recommend offering these tests in situations in which the assay result, when considered in combination with routine clinical factors, is likely to affect management. However, the lack of direct comparisons and the unproven benefits, in terms of long-term survival and cost-effectiveness, prevent these biomarkers from being integrated into routine clinical use.
Collapse
Affiliation(s)
- Ugo Giovanni Falagario
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy.,Division of Urology, VCU Health System, Richmond, VA, USA.,Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Zach Dovey
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - George Papastefanou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marco Recchia
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Antonella Ninivaggi
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Pasquale Annese
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Giuseppe Carrieri
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Luigi Cormio
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| |
Collapse
|
4
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|
5
|
Singh LN, Ennis B, Loneragan B, Tsao NL, Lopez Sanchez MIG, Li J, Acheampong P, Tran O, Trounce IA, Zhu Y, Potluri P, Emanuel BS, Rader DJ, Arany Z, Damrauer SM, Resnick AC, Anderson SA, Wallace DC. MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data. PLoS Comput Biol 2021; 17:e1009594. [PMID: 34762648 PMCID: PMC8610268 DOI: 10.1371/journal.pcbi.1009594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/23/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
The growing number of next-generation sequencing (NGS) data presents a unique opportunity to study the combined impact of mitochondrial and nuclear-encoded genetic variation in complex disease. Mitochondrial DNA variants and in particular, heteroplasmic variants, are critical for determining human disease severity. While there are approaches for obtaining mitochondrial DNA variants from NGS data, these software do not account for the unique characteristics of mitochondrial genetics and can be inaccurate even for homoplasmic variants. We introduce MitoScape, a novel, big-data, software for extracting mitochondrial DNA sequences from NGS. MitoScape adopts a novel departure from other algorithms by using machine learning to model the unique characteristics of mitochondrial genetics. We also employ a novel approach of using rho-zero (mitochondrial DNA-depleted) data to model nuclear-encoded mitochondrial sequences. We showed that MitoScape produces accurate heteroplasmy estimates using gold-standard mitochondrial DNA data. We provide a comprehensive comparison of the most common tools for obtaining mtDNA variants from NGS and showed that MitoScape had superior performance to compared tools in every statistically category we compared, including false positives and false negatives. By applying MitoScape to common disease examples, we illustrate how MitoScape facilitates important heteroplasmy-disease association discoveries by expanding upon a reported association between hypertrophic cardiomyopathy and mitochondrial haplogroup T in men (adjusted p-value = 0.003). The improved accuracy of mitochondrial DNA variants produced by MitoScape will be instrumental in diagnosing disease in the context of personalized medicine and clinical diagnostics. Recent studies have highlighted the importance of mitochondrial DNA variation in both primary mitochondrial disease and complex, human pathology including COVID-19, and space-flight stress. The vast amount of existing, next-generation sequencing (NGS) data can be leveraged to interrogate both nuclear and mitochondrial DNA (mtDNA) sequence simultaneously, allowing for analysis of the interplay between mitochondrial and nuclear encoded genes in mitochondrial function. Identifying mtDNA sequence accurately is complicated by the presence of nuclear encoded mitochondrial sequences (NUMTs), which are homologous to mtDNA. Current software for analyzing mtDNA from NGS do not accurately model the unique characteristics of mitochondrial genetics. We introduce MitoScape, a novel, big-data, software which models mitochondrial genetics through machine learning to accurately identify mtDNA sequence from NGS data. MitoScape takes advantage of rho-zero cell data to model the characteristics of NUMTs. We show that MitoScape produces more accurate heteroplasmy estimates compared to published software. We provide an example of applying MitoScape in replicating an association between hypertrophic cardiomyopathy and mitochondrial haplogroup T in men. MitoScape is an important contribution to mitochondrial genomics allowing for accurate mtDNA variants, and the ability to tailor mtDNA analysis in different population and disease contexts, which is not available in other software.
Collapse
Affiliation(s)
- Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Brian Ennis
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Bryn Loneragan
- Center for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Noah L. Tsao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - M. Isabel G. Lopez Sanchez
- Center for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Jianping Li
- Department of Psychiatry, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Patrick Acheampong
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Oanh Tran
- 22q and You Center, Division of Human Genetics, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian A. Trounce
- Center for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | | | - Beverly S. Emanuel
- 22q and You Center, Division of Human Genetics, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott M. Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam C. Resnick
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Stewart A. Anderson
- Department of Psychiatry, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Shen W, Wang G, Cooper GR, Jiang Y, Zhou X. The Epithelial and Stromal Immune Microenvironment in Gastric Cancer: A Comprehensive Analysis Reveals Prognostic Factors with Digital Cytometry. Cancers (Basel) 2021; 13:cancers13215382. [PMID: 34771544 PMCID: PMC8582557 DOI: 10.3390/cancers13215382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Tumor heterogeneity continues to confound researchers' understanding of tumor growth and the development of an effective therapy. Digital cytometry allows interpretation of heterogeneous bulk tissue transcriptomes at the cellular level. We built a novel signature matrix to dissect epithelium and stroma signals using a scRNA-seq data set (GSE134520) for GC and then applied cell mixture deconvolution to estimate diverse epithelial, stromal, and immune cell proportions from bulk transcriptome data in four independent GC cohorts (GSE62254, GSE15459, GSE84437, and TCGA-STAD) from the GEO and TCGA databases. Robust computational methods were applied to identify strong prognostic factors for GC. We identified an EMEC population whose proportions were significantly higher in patients with stage I cancer than other stages, and it was predominantly present in tumor samples but not typically found in normal samples. We found that the ratio of EMECs to stromal cells and the ratio of adaptive T cells to monocytes were the most significant prognostic factors within the non-immune and immune factors, respectively. The STEM score, which unifies these two prognostic factors, was an independent prognostic factor of overall survival (HR = 0.92, 95% CI = 0.89-0.94, p=2.05×10-9). The entire GC cohort was stratified into three risk groups (high-, moderate-, and low-risk), which yielded incremental survival times (p<0.0001). For stage III disease, patients in the moderate- and low-risk groups experienced better survival benefits from radiation therapy ((HR = 0.16, 95% CI = 0.06-0.4, p<0.0001), whereas those in the high-risk group did not (HR = 0.49, 95% CI = 0.14-1.72, p=0.25). We concluded that the STEM score is a promising prognostic factor for gastric cancer.
Collapse
Affiliation(s)
- Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China;
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94035, USA
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515041, China
- Correspondence: (W.S.); (Y.J.)
| | - Guoyun Wang
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China;
| | - Georgia R. Cooper
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (G.R.C.); (X.Z.)
| | - Yuming Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Correspondence: (W.S.); (Y.J.)
| | - Xin Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (G.R.C.); (X.Z.)
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. DISEASE MARKERS 2021; 2021:7675269. [PMID: 34326906 PMCID: PMC8302403 DOI: 10.1155/2021/7675269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
Collapse
Affiliation(s)
- Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Abstract
Variation in the mitochondrial DNA (mtDNA) sequence is common in certain tumours. Two classes of cancer mtDNA variants can be identified: de novo mutations that act as 'inducers' of carcinogenesis and functional variants that act as 'adaptors', permitting cancer cells to thrive in different environments. These mtDNA variants have three origins: inherited variants, which run in families, somatic mutations arising within each cell or individual, and variants that are also associated with ancient mtDNA lineages (haplogroups) and are thought to permit adaptation to changing tissue or geographic environments. In addition to mtDNA sequence variation, mtDNA copy number and perhaps transfer of mtDNA sequences into the nucleus can contribute to certain cancers. Strong functional relevance of mtDNA variation has been demonstrated in oncocytoma and prostate cancer, while mtDNA variation has been reported in multiple other cancer types. Alterations in nuclear DNA-encoded mitochondrial genes have confirmed the importance of mitochondrial metabolism in cancer, affecting mitochondrial reactive oxygen species production, redox state and mitochondrial intermediates that act as substrates for chromatin-modifying enzymes. Hence, subtle changes in the mitochondrial genotype can have profound effects on the nucleus, as well as carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Piotr K Kopinski
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Wang S, Fu JL, Hao HF, Jiao YN, Li PP, Han SY. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. Pharmacol Res 2021; 170:105728. [PMID: 34119622 DOI: 10.1016/j.phrs.2021.105728] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming, characterized by alterations of cellular metabolic patterns, is fundamentally important in supporting the malignant behaviors of cancer cells. It is considered as a promising therapeutic target against cancer. Traditional Chinese medicine (TCM) and its bioactive components have been used in cancer therapy for an extended period, and they are well-known for their multi-target pharmacological functions and fewer side effects. However, the detailed and advanced mechanisms underlying the anticancer activities of TCM remain obscure. In this review, we summarized the critical processes of cancer cell metabolic reprogramming, including glycolysis, mitochondrial oxidative phosphorylation, glutaminolysis, and fatty acid biosynthesis. Moreover, we systemically reviewed the regulatory effects of TCM and its bioactive ingredients on metabolic enzymes and/or signal pathways that may impede cancer progress. A total of 46 kinds of TCMs was reported to exert antitumor effects and/or act as chemosensitizers via regulating metabolic processes of cancer cells, and multiple targets and signaling pathways were revealed to contribute to the metabolic-modulating functions of TCM. In conclusion, TCM has its advantages in ameliorating cancer cell metabolic reprogramming by its poly-pharmacological actions. This review may shed some new light on the explicit recognition of the mechanisms of anticancer actions of TCM, leading to the development of natural antitumor drugs based on reshaping cancer cell metabolism.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Jia-Lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| |
Collapse
|
10
|
Ricci F, Corbelli A, Affatato R, Chilà R, Chiappa M, Brunelli L, Fruscio R, Pastorelli R, Fiordaliso F, Damia G. Mitochondrial structural alterations in ovarian cancer patient-derived xenografts resistant to cisplatin. Am J Cancer Res 2021; 11:2303-2311. [PMID: 34094686 PMCID: PMC8167697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023] Open
Abstract
Mitochondria have attracted attention in cancer research as organelles associated with tumor development and response to therapy. We recently reported acquisition of resistance to cisplatin (DDP) associated with a metabolic rewiring in ovarian cancer patient-derived xenografts (PDXs) models. DDP-resistant PDXs models were obtained mimicking the clinical setting, treating mice bearing sensitive-DDP tumors with multiple cycles of DDP until the development of resistance. To further characterize the metabolic rewiring, the present study focused on tumor mitochondria. We analysed by transmission electron microscopy the mitochondria structure in two models of DDP-resistant and the corresponding DDP-sensitive PDXs and evaluated tumor mDNA content, the expression of genes and proteins involved in mitochondria functionality, and mitochondria fitness-related processes, such as autophagy. We observed a decrease in the number of mitochondria paralleled by an increased volume in DDP-resistant versus DDP-sensitive PDXs. DDP-resistant PDXs presented a higher percentage of damaged mitochondria, in particular of type 2 (concave-shape), and type 3 (cristolysis) damage. We found no difference in the mDNA content, and the expression of genes involved in mitochondrial biogenesis was similar between the sensitive and resistant PDXs. An upregulation of some genes involved in mitochondrial fitness in DDP-R versus DDP-S PDXs was observed. At protein level, no difference in the expression of proteins involved in mitochondrial function and biogenesis, and in autophagy/mitophagy was found. We here reported that the acquisition of DDP resistance is associated with morphological alterations in mitochondria, even if we couldn't find any dysregulation in the studied genes/proteins that could explain the observed differences.
Collapse
Affiliation(s)
- Francesca Ricci
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCSVia Mario Negri 2, Milan 20156, Italy
| | - Alessandro Corbelli
- Unit of Bio-Imaging, Istituto di Ricerche Farmacologiche Mario Negri-IRCCSVia Mario Negri 2, Milan 20156, Italy
| | - Roberta Affatato
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCSVia Mario Negri 2, Milan 20156, Italy
- Present address: Experimental Pharmacology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G. Pascale”-IRCCSVia M.Semmola, Naples 80132, Italy
| | - Rosaria Chilà
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCSVia Mario Negri 2, Milan 20156, Italy
- Present address: Laboratory of Genomics of Cancer and Targeted Therapies, IFOMvia Adamello 16, Milan 20156, Italy
| | - Michela Chiappa
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCSVia Mario Negri 2, Milan 20156, Italy
| | - Laura Brunelli
- Unit of Protein and Metabolite Biomarkers, Istituto di Ricerche Farmacologiche Mario Negri-IRCCSVia Mario Negri 2, Milan 20156, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Milan Bicocca, San Gerardo HospitalMonza 20900, Italy
| | - Roberta Pastorelli
- Unit of Protein and Metabolite Biomarkers, Istituto di Ricerche Farmacologiche Mario Negri-IRCCSVia Mario Negri 2, Milan 20156, Italy
| | - Fabio Fiordaliso
- Unit of Bio-Imaging, Istituto di Ricerche Farmacologiche Mario Negri-IRCCSVia Mario Negri 2, Milan 20156, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCSVia Mario Negri 2, Milan 20156, Italy
| |
Collapse
|
11
|
Bracken-Clarke D, Kapoor D, Baird AM, Buchanan PJ, Gately K, Cuffe S, Finn SP. Vaping and lung cancer - A review of current data and recommendations. Lung Cancer 2021; 153:11-20. [PMID: 33429159 DOI: 10.1016/j.lungcan.2020.12.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Lung cancer is the most common cause of cancer mortality worldwide and, while tobacco smoke remains the primary cause, there is increasing concern that vaping and E-cigarette use may also increase lung cancer risk. This review concentrates on the current data, scholarship and active foci of research regarding potential cancer risk and oncogenic mechanisms of vaping and lung cancer. MATERIALS AND METHODS We performed a literature review of current and historical publications on lung cancer oncogenesis, vaping device/e-liquid contents and daughter products, molecular oncogenic mechanisms and the fundamental, potentially oncogenic, effects of electronic cigarette smoke/e-liquid products. RESULTS E-cigarette devices and vaping fluids demonstrably contain a series of both definite and probable oncogens including nicotine derivatives (e.g. nitrosnornicotine, nitrosamine ketone), polycyclic aromatic hydrocarbons, heavy metals (including organometal compounds) and aldehydes/other complex organic compounds. These arise both as constituents of the e-liquid (with many aldehydes and other complex organics used as flavourings) and as a result of pyrolysis/complex organic reactions in the electronic cigarette device (including unequivocal carcinogens such as formaldehyde - formed from pyrolysis of glycerol). Various studies demonstrate in vitro transforming and cytotoxic activity of these derivatives. E-cigarette device use has been significantly increasing - particularly amongst the younger cohort and non-smokers; thus, this is an area of significant concern for the future. CONCLUSION Although research remains somewhat equivocal, there is clear reason for concern regarding the potential oncogenicity of E-Cigarettes/E-Liquids with a strong basic and molecular science basis. Given lag times (extrapolating from tobacco smoke data) of perhaps 20 years, this may have significant future public health implications. Thus, the authors feel further study in this field is strongly warranted and consideration should be made for tighter control and regulation of these products.
Collapse
Affiliation(s)
| | - Dhruv Kapoor
- Department of Medical Oncology, St James' Hospital, Dublin, Ireland
| | - Anne Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Paul James Buchanan
- DCU Cancer Research, Faculty of Science and Health, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Kathy Gately
- Department of Clinical Medicine, Trinity College School of Medicine and St James's Hospital, Dublin, Ireland
| | - Sinead Cuffe
- Department of Medical Oncology, St James' Hospital, Dublin, Ireland
| | - Stephen P Finn
- Department of Pathology, St James' Hospital and Trinity College School of Medicine, Dublin, Ireland
| |
Collapse
|
12
|
Seyfried TN, Mukherjee P, Iyikesici MS, Slocum A, Kalamian M, Spinosa JP, Chinopoulos C. Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Front Nutr 2020; 7:21. [PMID: 32219096 PMCID: PMC7078107 DOI: 10.3389/fnut.2020.00021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a significant cause of morbidity and mortality in women. Ultrastructural and biochemical evidence from breast biopsy tissue and cancer cells shows mitochondrial abnormalities that are incompatible with energy production through oxidative phosphorylation (OxPhos). Consequently, breast cancer, like most cancers, will become more reliant on substrate level phosphorylation (fermentation) than on oxidative phosphorylation (OxPhos) for growth consistent with the mitochondrial metabolic theory of cancer. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive breast cancer growth through substrate level phosphorylation (SLP) in both the cytoplasm (Warburg effect) and the mitochondria (Q-effect), respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability to tumor cells while simultaneously elevating ketone bodies, a non-fermentable metabolic fuel. It is suggested that KMT would be most effective when used together with glutamine targeting. Information is reviewed for suggesting how KMT could reduce systemic inflammation and target tumor cells without causing damage to normal cells. Implementation of KMT in the clinic could improve progression free and overall survival for patients with breast cancer.
Collapse
Affiliation(s)
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Mehmet S. Iyikesici
- Medical Oncology, Kemerburgaz University Bahcelievler Medical Park Hospital, Istanbul, Turkey
| | - Abdul Slocum
- Medical Oncology, Chemo Thermia Oncology Center, Istanbul, Turkey
| | | | | | | |
Collapse
|
13
|
Jin T, Wang C, Tian Y, Dai C, Zhu Y, Xu F. Mitochondrial metabolic reprogramming: An important player in liver cancer progression. Cancer Lett 2019; 470:197-203. [PMID: 31783085 DOI: 10.1016/j.canlet.2019.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Mitochondria are known as essential biosynthetic, bioenergetic and signaling organelles, and play a critical role in cell differentiation, proliferation, and death. Nowadays, cancer is emergingly considered as a mitochondrial metabolic disease. Mitochondria also play an essential role in liver carcinogenesis. Liver cells are highly regenerative and require high energy. For that reason, a large number of mitochondria are present and functional in liver cells. Abnormalities in mitochondrial metabolism in human liver are known to be one of the carcinogenic factors. Interestingly, immune checkpoints regulate mitochondrial metabolic energetics of the tumor, the tumor microenvironment, as well as the tumor-specific immune response. This regulation forms a positive loop between the metabolic reprogramming of both cancer cells and immune cells. In this review, we discuss the evidence and mechanisms that mitochondria interplay with immune checkpoints to influence different steps of oncogenesis, as well as the potential of mitochondria as therapeutic targets for liver cancer therapy.
Collapse
Affiliation(s)
- Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Surgery, Northeast International Hospital, Shenyang, 110623, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
14
|
Liu Z, Xu S, Li L, Zhong X, Chen C, Fan Y, Shen W, Zu L, Xue F, Wang M, Zhou Q. Comparative mitochondrial proteomic analysis of human large cell lung cancer cell lines with different metastasis potential. Thorac Cancer 2019; 10:1111-1128. [PMID: 30950202 PMCID: PMC6501018 DOI: 10.1111/1759-7714.13052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 02/05/2023] Open
Abstract
Background Lung cancer is a highly aggressive cancer with a poor prognosis and is associated with distant metastasis; however, there are no clinically recognized biomarkers for the early diagnosis and prediction of lung cancer metastasis. We sought to identify the differential mitochondrial protein profiles and understand the molecular mechanisms governing lung cancer metastasis. Methods Mitochondrial proteomic analysis was performed to screen and identify the differential mitochondrial protein profiles between human large cell lung cancer cell lines with high (L‐9981) and low (NL‐9980) metastatic potential by two‐dimensional differential gel electrophoresis. Western blot was used to validate the differential mitochondrial proteins from the two cells. Bioinformatic proteome analysis was performed using the Mascot search engine and messenger RNA expression of the 37 genes of the differential mitochondrial proteins were detected by real‐time PCR. Results Two hundred and seventeen mitochondrial proteins were differentially expressed between L‐9981 and NL‐9980 cells (P < 0.05). Sixty‐four analyzed proteins were identified by matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry coupled with database interrogation. Ontology analysis revealed that these proteins were mainly involved in the regulation of translation, amino acid metabolism, tricarboxylic acid cycle, cancer invasion and metastasis, oxidative phosphorylation, intracellular signaling pathway, cell cycle, and apoptosis. Conclusion Our results suggest that the incorporation of more samples and new datasets will permit the definition of a collection of proteins as potential biomarkers for the prediction and diagnosis of lung cancer metastasis.
Collapse
Affiliation(s)
- Zhenkun Liu
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Song Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Li
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaorong Zhong
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wang Shen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Xue
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
15
|
Sun HF, Yang XL, Zhao Y, Tian Q, Chen MT, Zhao YY, Jin W. Loss of TMEM126A promotes extracellular matrix remodeling, epithelial-to-mesenchymal transition, and breast cancer metastasis by regulating mitochondrial retrograde signaling. Cancer Lett 2019; 440-441:189-201. [DOI: 10.1016/j.canlet.2018.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
|
16
|
Shang Y, Zhang F, Li D, Li C, Li H, Jiang Y, Zhang D. Overexpression of UQCRC2 is correlated with tumor progression and poor prognosis in colorectal cancer. Pathol Res Pract 2018; 214:1613-1620. [DOI: 10.1016/j.prp.2018.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/31/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
|
17
|
Ruan S, Zhang Z, Tian X, Huang D, Liu W, Yang B, Shen M, Tao F. Compound Fuling Granule Suppresses Ovarian Cancer Development and Progression by disrupting mitochondrial function, galactose and fatty acid metabolism. J Cancer 2018; 9:3382-3393. [PMID: 30271500 PMCID: PMC6160678 DOI: 10.7150/jca.25136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Our previous studies have demonstrated that the compound fuling granule (CFG), a traditional Chinese medicine, suppresses ovarian cancer cell growth, migration and metastasis. However, the underlying mechanisms remain to be fully elucidated. In this study, we found that CFG could induce mitochondrial fragmentation, mitochondrial membrane potential reduction and cytochrome c release in ovarian SKOV3 cancer cells. In addition, both metabolomics and transcriptomics approaches were applied to illustrate the systemic mechanism of CFG on ovarian cancer formation and progression. To this end, we established two tumor-bearing mice models with subcutaneous injection or tail intravenous injection. Functionally, administration of CFG suppresses in situ tumor growth and distant lung metastasis. Subsequently, gas chromatography-mass spectrometry (GC-MS) was applied to determine the metabolic alterations among the plasma samples from these in vivo models. In the subcutaneous injection model, 26 distinguishable metabolites were identified and 12 metabolic pathways were reprogrammed. Meanwhile, 19 metabolites involved in 7 metabolic pathways showed significant differences in the tail intravenous injection model. Importantly, integrative metabolomics and transcriptomics analysis showed these metabolites were highly associated with galactose metabolism and fatty acid metabolism. This study suggests that CFG may suppress ovarian cancer cell proliferation and metastasis by regulating mitochondrion-related energy metabolisms.
Collapse
Affiliation(s)
- Shanming Ruan
- Department of Medical Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Zhiqian Zhang
- Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin 300457, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People's Republic of China
| | - Xinxin Tian
- Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin 300457, People's Republic of China.,Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, College Station, TX 77843-2128, USA
| | - Dawei Huang
- Department of Chinese Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Wenhong Liu
- Department of Immunology and Microbiology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bo Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Minhe Shen
- Department of Medical Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Fangfang Tao
- Department of Immunology and Microbiology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Klement RJ. Wilhelm Brünings' forgotten contribution to the metabolic treatment of cancer utilizing hypoglycemia and a very low carbohydrate (ketogenic) diet. J Tradit Complement Med 2018; 9:192-200. [PMID: 31193891 PMCID: PMC6544614 DOI: 10.1016/j.jtcme.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/17/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
The growing interest in the alterations of tumor cell metabolism and their possible therapeutic exploitation also spurred new complementary and integrative approaches such as treating patients with a ketogenic diet (KD). KDs aim at inhibiting glycolytic tumor metabolism and growth, and have therefore been proposed as adjuncts not only to standard-of-care, but also to other therapies targeting tumor metabolism. Here I describe the life and forgotten work of one of the earliest researchers who realized the importance of altered tumor cell metabolism and its possible exploitation through metabolic modifications: Wilhelm Brünings. Brünings was a German natural scientist and physician famous for his innovative contributions to the fields of physiology and otorhinolaryngology. Based on the findings of Otto Warburg and his physiological reasoning he started to experiment with insulin administration and KDs in his patients with head and neck cancers, aiming to maximally lower blood glucose concentrations. He obtained encouraging short-term results, although most tumors became refractory to treatment after several weeks. His pioneering work is worth revisiting, especially for an international readership that may be unaware of his efforts, as hypoglycemic treatments, including the use of insulin injections and KDs, are currently being re-investigated as complementary and integrative cancer treatments.
Collapse
Affiliation(s)
- Rainer Johannes Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Robert-Koch-Str. 10, 97422, Schweinfurt, Germany
| |
Collapse
|
19
|
Kishikawa T, Otsuka M, Suzuki T, Seimiya T, Sekiba K, Ishibashi R, Tanaka E, Ohno M, Yamagami M, Koike K. Satellite RNA Increases DNA Damage and Accelerates Tumor Formation in Mouse Models of Pancreatic Cancer. Mol Cancer Res 2018; 16:1255-1262. [PMID: 29748382 DOI: 10.1158/1541-7786.mcr-18-0139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
Highly repetitive tandem arrays such as satellite sequences in the centromeric and pericentromeric regions of chromosomes, which were previously considered to be silent, are actively transcribed in various biological processes, including cancers. In the pancreas, this aberrant expression occurs even in Kras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To determine the biological role of satellite RNAs in carcinogenesis in vivo, we constructed mouse major satellite (MajSAT) RNA-expressing transgenic mice. However, these transgenic mice did not show spontaneous malignant tumor formation under normal breeding. Importantly, however, DNA damage was increased in pancreatic tissues induced by caerulein treatment or high-fat diet, which may be due to impaired nuclear localization of Y-Box Binding Protein 1 (YBX1), a component of the DNA damage repair machinery. In addition, when crossed with pancreas-specific Kras-mutant mice, MajSAT RNA expression resulted in an earlier increase in PanIN formation. These results suggest that aberrant MajSAT RNA expression accelerates oncogenesis by increasing the probability of a second driver mutation, thus accelerating cells to exit from the breakthrough phase to the expansion phase.Implications: Aberrant expression of satellite RNAs accelerates oncogenesis through a mechanism involving increased DNA damage. Mol Cancer Res; 16(8); 1255-62. ©2018 AACR.
Collapse
Affiliation(s)
- Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Mohamed Yusoff AA, Zulfakhar FN, Mohd Khair SZN, Wan Abdullah WS, Abdullah JM, Idris Z. Mitochondrial 10398A>G NADH-Dehydrogenase Subunit 3 of Complex I Is Frequently Altered in Intra-Axial Brain Tumors in Malaysia. Brain Tumor Res Treat 2018; 6:31-38. [PMID: 29717568 PMCID: PMC5932297 DOI: 10.14791/btrt.2018.6.e5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/05/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondria are major cellular sources of reactive oxygen species (ROS) generation which can induce mitochondrial DNA damage and lead to carcinogenesis. The mitochondrial 10398A>G alteration in NADH-dehydrogenase subunit 3 (ND3) can severely impair complex I, a key component of ROS production in the mitochondrial electron transport chain. Alteration in ND3 10398A>G has been reported to be linked with diverse neurodegenerative disorders and cancers. The aim of this study was to find out the association of mitochondrial ND3 10398A>G alteration in brain tumor of Malaysian patients. Methods Brain tumor tissues and corresponding blood specimens were obtained from 45 patients. The ND3 10398A>G alteration at target codon 114 was detected using the PCR-RFLP analysis and later was confirmed by DNA sequencing. Results Twenty-six (57.8%) patients showed ND3 10398A>G mutation in their tumor specimens, in which 26.9% of these mutations were heterozygous mutations. ND3 10398A>G mutation was not significantly correlated with age, gender, and histological tumor grade, however was found more frequently in intra-axial than in extra-axial tumors (62.5% vs. 46.2%, p<0.01). Conclusion For the first time, we have been able to describe the occurrence of ND3 10398A>G mutations in a Malaysian brain tumor population. It can be concluded that mitochondrial ND3 10398A>G alteration is frequently present in brain tumors among Malaysian population and it shows an impact on the intra-axial tumors.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Fatin Najwa Zulfakhar
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | | | - Wan Salihah Wan Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| |
Collapse
|
21
|
Klement RJ. Fasting, Fats, and Physics: Combining Ketogenic and Radiation Therapy against Cancer. Complement Med Res 2017; 25:102-113. [DOI: 10.1159/000484045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiotherapy (RT) is a mainstay in the treatment of solid tumors and works by physicochemical reactions inducing oxidative stress in cells. Because in practice the efficacy of RT is limited by its toxicity to normal tissues, any strategy that selectively increases the radiosensitivity of tumor cells or boosts the radioresistance of normal cells is a valuable adjunct to RT. In this review, I summarize preclinical and clinical data supporting the hypothesis that ketogenic therapy through fasting and/or ketogenic diets can be utilized as such an adjunct in order to improve the outcome after RT, in terms of both higher tumor control and lower normal-tissue complication probability. The first effect relates to the metabolic shift from glycolysis towards mitochondrial metabolism, which selectively increases reactive oxygen species (ROS) production and impairs adenoside triphosphate (ATP) production in tumor cells. The second effect is based on the differential stress resistance phenomenon describing the reprogramming of normal cells, but not tumor cells, from proliferation towards maintenance and stress resistance when glucose and growth factor levels are decreased and ketone body levels are elevated. Underlying both effects are metabolic differences between normal and tumor cells. Ketogenic therapy is a non-toxic and cost-effective complementary treatment option that exploits these differences and deserves further clinical investigation.
Collapse
|
22
|
Abstract
PURPOSE Radiotherapy (RT) is a mainstay in the treatment of solid tumors and works by inducing free radical stress in tumor cells, leading to loss of reproductive integrity. The optimal treatment strategy has to consider damage to both tumor and normal cells and is determined by five factors known as the 5 R's of radiobiology: Reoxygenation, DNA repair, radiosensitivity, redistribution in the cell cycle and repopulation. The aim of this review is (i) to present evidence that these 5 R's are strongly influenced by cellular and whole-body metabolism that in turn can be modified through ketogenic therapy in form of ketogenic diets and short-term fasting and (ii) to stimulate new research into this field including some research questions deserving further study. CONCLUSIONS Preclinical and some preliminary clinical data support the hypothesis that ketogenic therapy could be utilized as a complementary treatment in order to improve the outcome after RT, both in terms of higher tumor control and in terms of lower normal tissue complication probability. The first effect relates to the metabolic shift from glycolysis toward mitochondrial metabolism that selectively increases ROS production and impairs ATP production in tumor cells. The second effect is based on the differential stress resistance phenomenon, which is achieved when glucose and growth factors are reduced and ketone bodies are elevated, reprogramming normal but not tumor cells from proliferation toward maintenance and stress resistance. Underlying both effects are metabolic differences between normal and tumor cells that ketogenic therapy seeks to exploit. Specifically, the recently discovered role of the ketone body β-hydroxybutyrate as an endogenous class-I histone deacetylase inhibitor suggests a dual role as a radioprotector of normal cells and a radiosensitzer of tumor cells that opens up exciting possibilities to employ ketogenic therapy as a cost-effective adjunct to radiotherapy against cancer.
Collapse
Affiliation(s)
- Rainer J Klement
- a Department of Radiotherapy and Radiation Oncology , Leopoldina Hospital , Schweinfurt , Germany
| |
Collapse
|
23
|
Mohamed Yusoff AA, Mohd Nasir KN, Haris K, Mohd Khair SZN, Abdul Ghani ARI, Idris Z, Abdullah JM. Detection of somatic mutations in the mitochondrial DNA control region D-loop in brain tumors: The first report in Malaysian patients. Oncol Lett 2017; 14:5179-5188. [PMID: 29098023 PMCID: PMC5652220 DOI: 10.3892/ol.2017.6851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 05/11/2017] [Indexed: 01/01/2023] Open
Abstract
Although the role of nuclear-encoded gene alterations has been well documented in brain tumor development, the involvement of the mitochondrial genome in brain tumorigenesis has not yet been fully elucidated and remains controversial. The present study aimed to identify mutations in the mitochondrial DNA (mtDNA) control region D-loop in patients with brain tumors in Malaysia. A mutation analysis was performed in which DNA was extracted from paired tumor tissue and blood samples obtained from 49 patients with brain tumors. The D-loop region DNA was amplified using the PCR technique, and genetic data from DNA sequencing analyses were compared with the published revised Cambridge sequence to identify somatic mutations. Among the 49 brain tumor tissue samples evaluated, 25 cases (51%) had somatic mutations of the mtDNA D-loop, with a total of 48 mutations. Novel mutations that had not previously been identified in the D-loop region (176 A-deletion, 476 C>A, 566 C>A and 16405 A-deletion) were also classified. No significant associations between the D-loop mutation status and the clinicopathological parameters were observed. To the best of our knowledge, the current study presents the first evidence of alterations in the mtDNA D-loop regions in the brain tumors of Malaysian patients. These results may provide an overview and data regarding the incidence of mitochondrial genome alterations in Malaysian patients with brain tumors. In addition to nuclear genome aberrations, these specific mitochondrial genome alterations may also be considered as potential cancer biomarkers for the diagnosis and staging of brain cancers.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khairol Naaim Mohd Nasir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khalilah Haris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Rahman Izaini Abdul Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
24
|
Tong H, Zhang L, Gao J, Wen S, Zhou H, Feng S. Methylation of mitochondrial DNA displacement loop region regulates mitochondrial copy number in colorectal cancer. Mol Med Rep 2017; 16:5347-5353. [PMID: 28849075 PMCID: PMC5647067 DOI: 10.3892/mmr.2017.7264] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/24/2017] [Indexed: 02/05/2023] Open
Abstract
It is not established whether de-methylation of the displacement loop (D-loop) region if mitochondrial DNA (mtDNA) directly influences mtDNA copy number and further alters the cell cycle, apoptosis and cell proliferation in colorectal cancer. The current study employed cell viability assays, cell cycle analysis, and mtDNA methylation analysis using 5 colorectal cancer cell lines. The present results demonstrated that 5-aza-2′-deoxycytidine (5-AZA), a DNA hypomethylating agent, significantly increased proliferation of Lovo and Colo-205 colorectal cancer cell lines. In Colo-205 cells, the proportion of G0/G1 phase cells was increased following 5-AZA treatment. Additionally, the apoptosis rate in Colo-205 cells was decreased by 5-AZA treatment. Compared with their controls, a significantly higher mtDNA copy number was observed in Colo-205 and Lovo cells following 5-AZA treatment. Notably, the Colo-205 and Lovo cells had relatively higher methylation levels at the 4 and 6th/7th CpG sites of D-loop region, respectively, compared with the levels at the corresponding sites following 5-AZA treatment. However, in HCT116, SW480, LS-174T, and HT-29 cells, 5-AZA treatment did not induce a significant change in proliferation, cell cycle, apoptosis and mtDNA copy number. Demethylation at the 4 and 6th/7th CpG sites of the D-loop region of HCT116, SW480, LS-174T and HT-29 cells was not observed following 5-AZA treatment. In conclusion, de-methylation of specific sites on CpG islands of D-loop promoter may lead to the elevation of mtDNA copy number in colorectal cancer, triggering alterations in biological behaviors, including increased cell proliferation, reduced apoptosis and a relative cell cycle arrest in G0/G1 phase.
Collapse
Affiliation(s)
- Huan Tong
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Linhao Zhang
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinhang Gao
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shilei Wen
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongying Zhou
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi Feng
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
25
|
Zhu X, Mao Y, Huang T, Yan C, Yu F, Du J, Dai J, Ma H, Jin G. High mitochondrial DNA copy number was associated with an increased gastric cancer risk in a Chinese population. Mol Carcinog 2017; 56:2593-2600. [DOI: 10.1002/mc.22703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/06/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Xun Zhu
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment; Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University; Nanjing China
- Wuxi Center for Disease Control and Prevention; Wuxi China
| | - Yingying Mao
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
- Department of Epidemiology and Biostatistics; School of Basic Medical Sciences; Zhejiang Chinese Medical University; Hangzhou China
| | - Tongtong Huang
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Fei Yu
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics; School of Public Health; Nanjing Medical University; Nanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment; Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University; Nanjing China
| |
Collapse
|
26
|
Increased AAA-TOB3 correlates with lymph node metastasis and advanced stage of lung adenocarcinoma. Int J Biol Markers 2017. [PMID: 28623644 DOI: 10.5301/ijbm.5000275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND This study was to investigate the differential mitochondrial protein expressions in human lung adenocarcinoma and provide preliminary data for further exploration of the carcinogenic mechanism. METHODS Total proteins of A549 and 16HBE mitochondria were extracted through 2D polyacrylamide gel electrophoresis (2-DE). The differential mitochondria proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and were further confirmed by Western blot, immunoelectron microscopy and immunohistochemistry (IHC) in A549 cells as well as lung adenocarcinoma tissues. RESULTS A total of 41 differentially expressed protein spots were found in A549 mitochondria. Of them, 15 proteins were highly expressed and 26 proteins were lowly expressed in the mitochondria of A549 (by more than 1.5 times). Among the 15 more highly expressed proteins, AAA-TOB3 (by more than 3 times) was highly expressed in the mitochondria of A549 compared with the 16HBE, by LC-MS/MS identification. High electron density and clear circular colloidal gold-marked AAA-TOB3 particles were observed in the A549 cells via immunoelectron microscopy. Besides, AAA-TOB3 was confirmed to be elevated in lung adenocarcinoma by Western blot and IHC. Moreover, increased AAA-TOB3 correlated with lymph node metastasis and advanced stage of lung adenocarcinoma (p<0.05). CONCLUSIONS AAA-TOB3 was highly expressed in lung adenocarcinoma, and the up-regulation of AAA-TOB3 correlated with lymph node metastasis and advanced stage of lung adenocarcinoma, which suggested that it could serve as a potential molecular marker for lung adenocarcinoma.
Collapse
|
27
|
Xia JH, Li HL, Zhang Y, Meng ZN, Lin HR. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:511-524. [PMID: 28423967 DOI: 10.1080/24701394.2017.1315567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.
Collapse
Affiliation(s)
- Jun Hong Xia
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Hong Lian Li
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Yong Zhang
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Zi Ning Meng
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Hao Ran Lin
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| |
Collapse
|
28
|
Soon BH, Abdul Murad NA, Then SM, Abu Bakar A, Fadzil F, Thanabalan J, Mohd Haspani MS, Toh CJ, Mohd Tamil A, Harun R, Wan Ngah WZ, Jamal R. Mitochondrial DNA Mutations in Grade II and III Glioma Cell Lines Are Associated with Significant Mitochondrial Dysfunction and Higher Oxidative Stress. Front Physiol 2017; 8:231. [PMID: 28484394 PMCID: PMC5399085 DOI: 10.3389/fphys.2017.00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023] Open
Abstract
The role of mitochondria in tumorigenesis has regained much attention as it could dysregulate cellular energetics, oxidative stress and apoptosis. However, the role of mitochondria in different grade gliomasis still unknown. This study aimed to identify mitochondrial DNA (mtDNA) sequence variations that could possibly affect the mitochondrial functions and also the oxidative stress status. Three different grades of human glioma cell lines and a normal human astrocyte cell line were cultured in-vitro and tested for oxidative stress biomarkers. Relative oxidative stress level, mitochondria activity, and mitochondrial mass were determined by live cell imaging with confocal laser scanning microscope using CM-H2DCFDA, MitoTracker Green, and MitoTracker Orange stains. The entire mitochondrial genome was sequenced using the AffymetrixGeneChip Human Mitochondrial Resequencing Array 2.0. The mitochondrial sequence variations were subjected to phylogenetic haplogroup assessment and pathogenicity of the mutations were predicted using pMUT and PolyPhen2. The Grade II astrocytoma cells showed increased oxidative stress wherea high level of 8-OHdG and oxidative stress indicator were observed. Simultaneously, Grade II and III glioma cells showed relatively poor mitochondria functions and increased number of mutations in the coding region of the mtDNA which could be due to high levels of oxidative stress in these cells. These non-synonymous mtDNA sequence variations were predicted to be pathogenic and could possibly lead to protein dysfunction, leading to oxidative phosphorylation (OXPHOS) impairment, mitochondria dysfunction and could create a vicious cycle of oxidative stress. The Grade IV cells had no missense mutation but preserved intact mitochondria and excellent antioxidant defense mechanisms thus ensuring better survival. In conclusion, Grade II and III glioma cells demonstrated coding region mtDNA mutations, leading to mitochondrial dysfunction and higher oxidative stress.
Collapse
Affiliation(s)
- Bee Hong Soon
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Sue-Mian Then
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,The University of Nottingham Malaysia CampusSemenyih, Malaysia
| | - Azizi Abu Bakar
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Farizal Fadzil
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Jegan Thanabalan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | | | - Charng Jeng Toh
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Azmi Mohd Tamil
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Roslan Harun
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Wan Z Wan Ngah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| |
Collapse
|
29
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 651] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
30
|
Seyfried TN, Yu G, Maroon JC, D'Agostino DP. Press-pulse: a novel therapeutic strategy for the metabolic management of cancer. Nutr Metab (Lond) 2017; 14:19. [PMID: 28250801 PMCID: PMC5324220 DOI: 10.1186/s12986-017-0178-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A shift from respiration to fermentation is a common metabolic hallmark of cancer cells. As a result, glucose and glutamine become the prime fuels for driving the dysregulated growth of tumors. The simultaneous occurrence of "Press-Pulse" disturbances was considered the mechanism responsible for reduction of organic populations during prior evolutionary epochs. Press disturbances produce chronic stress, while pulse disturbances produce acute stress on populations. It was only when both disturbances coincide that population reduction occurred. METHODS This general concept can be applied to the management of cancer by creating chronic metabolic stresses on tumor cell energy metabolism (press disturbance) that are coupled to a series of acute metabolic stressors that restrict glucose and glutamine availability while also stimulating cancer-specific oxidative stress (pulse disturbances). The elevation of non-fermentable ketone bodies protect normal cells from energy stress while further enhancing energy stress in tumor cells that lack the metabolic flexibility to use ketones as an efficient energy source. Mitochondrial abnormalities and genetic mutations make tumor cells vulnerable metabolic stress. RESULTS The press-pulse therapeutic strategy for cancer management is illustrated with calorie restricted ketogenic diets (KD-R) used together with drugs and procedures that create both chronic and intermittent acute stress on tumor cell energy metabolism, while protecting and enhancing the energy metabolism of normal cells. CONCLUSIONS Optimization of dosing, timing, and scheduling of the press-pulse therapeutic strategy will facilitate the eradication of tumor cells with minimal patient toxicity. This therapeutic strategy can be used as a framework for the design of clinical trials for the non-toxic management of most cancers.
Collapse
Affiliation(s)
| | - George Yu
- George Washington University Medical Center Washington DC, and Aegis Medical & Research Associates Annapolis, Maryland, USA
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St, Pittsburgh, PA USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida USA
| |
Collapse
|
31
|
Komiyama T, Ogura A, Hirokawa T, Zhijing M, Kamiguchi H, Asai S, Miyachi H, Kobayashi H. Analysis to Estimate Genetic Variations in the Idarubicin-Resistant Derivative MOLT-3. Int J Mol Sci 2016; 18:E12. [PMID: 28025493 PMCID: PMC5297647 DOI: 10.3390/ijms18010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023] Open
Abstract
Gene alterations are a well-established mechanism leading to drug resistance in acute leukemia cells. A full understanding of the mechanisms of drug resistance in these cells will facilitate more effective chemotherapy. In this study, we investigated the mechanism(s) of drug resistance in the human acute leukemia cell line MOLT-3 and its idarubicin-resistant derivative MOLT-3/IDR through complete mitochondrial and nuclear DNA analyses. We identified genetic differences between these two cell lines. The ND3 mutation site (p.Thr61Ile) in the mitochondrial DNA sequence was unique to MOLT-3/IDR cells. Moreover, we identified five candidate genes harboring genetic alterations, including GALNT2, via CGH array analysis. Sequencing of the GALNT2 exon revealed a G1716K mutation present within the stop codon in MOLT-3/IDR cells but absent from MOLT-3 cells. This mutation led to an additional 18 amino acids in the protein encoded by GALNT2. Using real-time PCR, we determined an expression value for this gene of 0.35. Protein structure predictions confirmed a structural change in GALNT2 in MOLT-3/IDR cells that corresponded to the site of the mutation. We speculate that this mutation may be related to idarubicin resistance.
Collapse
Affiliation(s)
- Tomoyoshi Komiyama
- Department of Clinical Pharmacology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Atsushi Ogura
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| | - Takatsugu Hirokawa
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Waterfront Bio-IT Research Building 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | - Miao Zhijing
- Department of Clinical Pharmacology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiroshi Kamiguchi
- Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Satomi Asai
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hayato Miyachi
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
32
|
Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Ijichi H, Koike K. Satellite RNAs promote pancreatic oncogenic processes via the dysfunction of YBX1. Nat Commun 2016; 7:13006. [PMID: 27667193 PMCID: PMC5052683 DOI: 10.1038/ncomms13006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Highly repetitive tandem arrays at the centromeric and pericentromeric regions in chromosomes, previously considered silent, are actively transcribed, particularly in cancer. This aberrant expression occurs even in K-ras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To examine the biological roles of the satellite RNAs in carcinogenesis, we construct mouse PanIN-derived cells expressing major satellite (MajSAT) RNA and show increased malignant properties. We find an increase in frequency of chromosomal instability and point mutations in both genomic and mitochondrial DNA. We identify Y-box binding protein 1 (YBX1) as a protein that binds to MajSAT RNA. MajSAT RNA inhibits the nuclear translocation of YBX1 under stress conditions, thus reducing its DNA-damage repair function. The forced expression of YBX1 significantly decreases the aberrant phenotypes. These findings indicate that during the early stage of cancer development, satellite transcripts may act as 'intrinsic mutagens' by inducing YBX1 dysfunction, which may be crucial in oncogenic processes.
Collapse
Affiliation(s)
- Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Yoshikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
33
|
Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J, Bazhin AV. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J Cell Physiol 2016; 231:2570-81. [PMID: 26895995 DOI: 10.1002/jcp.25349] [Citation(s) in RCA: 440] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Werner Hartwig
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Pavel P Philippov
- Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
34
|
Seydi E, Rasekh HR, Salimi A, Mohsenifar Z, Pourahmad J. Myricetin Selectively Induces Apoptosis on Cancerous Hepatocytes by Directly Targeting Their Mitochondria. Basic Clin Pharmacol Toxicol 2016; 119:249-58. [DOI: 10.1111/bcpt.12572] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Enayatollah Seydi
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Hamid Reza Rasekh
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Pharmacology and Toxicology; School of Pharmacy; Ardabil University of Medical Sciences; Ardabil Iran
| | - Zhaleh Mohsenifar
- Faculty of Medicine; Ayatollah Taleghani Educational Hospital; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
35
|
Abstract
BACKGROUND The use of biomarkers for prostate cancer screening, diagnosis and prognosis has the potential to improve the clinical management of the patients. Owing to inherent limitations of the biomarker prostate-specific antigen (PSA), intensive efforts are currently directed towards a search for alternative prostate cancer biomarkers, particularly those that can predict disease aggressiveness and drive better treatment decisions. METHODS A literature search of Medline articles focused on recent and emerging advances in prostate cancer biomarkers was performed. The most promising biomarkers that have the potential to meet the unmet clinical needs in prostate cancer patient management and/or that are clinically implemented were selected. CONCLUSIONS With the advent of advanced genomic and proteomic technologies, we have in recent years seen an enormous spurt in prostate cancer biomarker research with several promising alternative biomarkers being discovered that show an improved sensitivity and specificity over PSA. The new generation of biomarkers can be tested via serum, urine, or tissue-based assays that have either received regulatory approval by the US Food and Drug Administration or are available as Clinical Laboratory Improvement Amendments-based laboratory developed tests. Additional emerging novel biomarkers for prostate cancer, including circulating tumor cells, microRNAs and exosomes, are still in their infancy. Together, these biomarkers provide actionable guidance for prostate cancer risk assessment, and are expected to lead to an era of personalized medicine.
Collapse
Affiliation(s)
- Sharanjot Saini
- Department of Urology, Urology Research (112J), Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA.
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Santorsola M, Calabrese C, Girolimetti G, Diroma MA, Gasparre G, Attimonelli M. A multi-parametric workflow for the prioritization of mitochondrial DNA variants of clinical interest. Hum Genet 2015; 135:121-36. [PMID: 26621530 PMCID: PMC4698288 DOI: 10.1007/s00439-015-1615-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023]
Abstract
Assigning a pathogenic role to mitochondrial DNA (mtDNA) variants and unveiling the potential involvement of the mitochondrial genome in diseases are challenging tasks in human medicine. Assuming that rare variants are more likely to be damaging, we designed a phylogeny-based prioritization workflow to obtain a reliable pool of candidate variants for further investigations. The prioritization workflow relies on an exhaustive functional annotation through the mtDNA extraction pipeline MToolBox and includes Macro Haplogroup Consensus Sequences to filter out fixed evolutionary variants and report rare or private variants, the nucleotide variability as reported in HmtDB and the disease score based on several predictors of pathogenicity for non-synonymous variants. Cutoffs for both the disease score as well as for the nucleotide variability index were established with the aim to discriminate sequence variants contributing to defective phenotypes. The workflow was validated on mitochondrial sequences from Leber’s Hereditary Optic Neuropathy affected individuals, successfully identifying 23 variants including the majority of the known causative ones. The application of the prioritization workflow to cancer datasets allowed to trim down the number of candidate for subsequent functional analyses, unveiling among these a high percentage of somatic variants. Prioritization criteria were implemented in both standalone (http://sourceforge.net/projects/mtoolbox/) and web version (https://mseqdr.org/mtoolbox.php) of MToolBox.
Collapse
Affiliation(s)
- Mariangela Santorsola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E.Orabona 4, 70126, Bari, Italy.,Department of Science and Technologies, University of Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
| | - Claudia Calabrese
- Department of Medical and Surgical Sciences, Medical Genetics, University of Bologna Medical School, via Massarenti 9, 40138, Bologna, Italy
| | - Giulia Girolimetti
- Department of Medical and Surgical Sciences, Medical Genetics, University of Bologna Medical School, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Angela Diroma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E.Orabona 4, 70126, Bari, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, Medical Genetics, University of Bologna Medical School, via Massarenti 9, 40138, Bologna, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E.Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
37
|
|
38
|
Campbell A, Krupp B, Bushman J, Noble M, Pröschel C, Mayer-Pröschel M. A novel mouse model for ataxia-telangiectasia with a N-terminal mutation displays a behavioral defect and a low incidence of lymphoma but no increased oxidative burden. Hum Mol Genet 2015; 24:6331-49. [PMID: 26310626 DOI: 10.1093/hmg/ddv342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a rare multi-system disorder caused by mutations in the ATM gene. Significant heterogeneity exists in the underlying genetic mutations and clinical phenotypes. A number of mouse models have been generated that harbor mutations in the distal region of the gene, and a recent study suggests the presence of residual ATM protein in the brain of one such model. These mice recapitulate many of the characteristics of A-T seen in humans, with the notable exception of neurodegeneration. In order to study how an N-terminal mutation affects the disease phenotype, we generated an inducible Atm mutant mouse model (Atm(tm1Mmpl/tm1Mmpl), referred to as A-T [M]) predicted to express only the first 62 amino acids of Atm. Cells derived from A-T [M] mutant mice exhibited reduced cellular proliferation and an altered DNA damage response, but surprisingly, showed no evidence of an oxidative imbalance. Examination of the A-T [M] animals revealed an altered immunophenotype consistent with A-T. In contrast to mice harboring C-terminal Atm mutations that disproportionately develop thymic lymphomas, A-T [M] mice developed lymphoma at a similar rate as human A-T patients. Morphological analyses of A-T [M] cerebella revealed no substantial cellular defects, similar to other models of A-T, although mice display behavioral defects consistent with cerebellar dysfunction. Overall, these results suggest that loss of Atm is not necessarily associated with an oxidized phenotype as has been previously proposed and that loss of ATM protein is not sufficient to induce cerebellar degeneration in mice.
Collapse
Affiliation(s)
- Andrew Campbell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA, Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA and
| | - Brittany Krupp
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Jared Bushman
- Division of Pharmaceutical Sciences, University of Wyoming School of Pharmacy, 1000 East University Ave., Dept. 3375, Laramie, WY 82071, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA,
| |
Collapse
|
39
|
Hartung J. Cancer might be a failed response to renegade mitochondria. J Theor Biol 2015; 379:91-3. [PMID: 25981632 DOI: 10.1016/j.jtbi.2015.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/26/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Affiliation(s)
- John Hartung
- State University of New York, Department of Anesthesiology Box 6, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States.
| |
Collapse
|
40
|
Mohammed FMA, Rezaee Khorasany AR, Mosaieby E, Houshmand M. Mitochondrial A12308G alteration in tRNA(Leu(CUN)) in colorectal cancer samples. Diagn Pathol 2015; 10:115. [PMID: 26189042 PMCID: PMC4506765 DOI: 10.1186/s13000-015-0337-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 06/26/2015] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer is the third most common type of cancer in men and women and the second leading cause of cancer-related deaths in the United States and UK. Colorectal cancer is strongly related to age, with almost three-quarters of cases occurring in people aged 65 or over. Pre-symptomatic screening is one of the most powerful tools for preventing colorectal cancer. Recently, the use of mitochondrial tRNA genes mutation or polymorphism patterns as a biomarker is rapidly expanding in different cancers because tRNA genes perform several functions including processing and translation which are essential components of mitochondrial protein synthesis. The aim of the present study was to find out the association of mitochondrial A12308G alteration in tRNALeu(CUN) in colorectal cancer and its usage as a new biomarker screening test. Methods A tumor tissues from 30 patients who had colorectal cancer were selected randomly. The A12308G alteration in tRNALeu (CUN) was screened in the 30 colorectal tumor tissues. For comparison, 100 blood samples of healthy controls using PCR-sequencing methods were selected and the following results were found. Result The A12308G, a polymorphic mutation in V-loop tRNALeu(CUN), was found in 6 Colorectal tumor tissues and 3 healthy controls. A statistical significant difference was found between cases and control regarding the association of the A12308G mutation with the colorectal tumor (P < 0.05). Conclusions The A12308G, a polymorphic mutation in V-loop tRNALeu(CUN), could be considered as pathogenic mutation in combination with mitochondrial external conditions and other mitochondrial genes in developing different diseases especially cancers and could be used as one of the diagnostic tool. Also it seems that maybe there is relevance between A12308G mutation and other mutations that it can cause various phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13000-015-0337-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fawziah M A Mohammed
- Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait.
| | - Ali Reza Rezaee Khorasany
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Elaheh Mosaieby
- Department of cellular and molecular biology, Mazandaran university, Babolsar, Iran.
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
41
|
Abstract
Cancer is widely considered a genetic disease involving nuclear mutations in oncogenes and tumor suppressor genes. This view persists despite the numerous inconsistencies associated with the somatic mutation theory. In contrast to the somatic mutation theory, emerging evidence suggests that cancer is a mitochondrial metabolic disease, according to the original theory of Otto Warburg. The findings are reviewed from nuclear cytoplasm transfer experiments that relate to the origin of cancer. The evidence from these experiments is difficult to reconcile with the somatic mutation theory, but is consistent with the notion that cancer is primarily a mitochondrial metabolic disease.
Collapse
|
42
|
Tsai YT, Chuang MJ, Tang SH, Wu ST, Chen YC, Sun GH, Hsiao PW, Huang SM, Lee HJ, Yu CP, Ho JY, Lin HK, Chen MR, Lin CC, Chang SY, Lin VC, Yu DS, Cha TL. Novel Cancer Therapeutics with Allosteric Modulation of the Mitochondrial C-Raf-DAPK Complex by Raf Inhibitor Combination Therapy. Cancer Res 2015; 75:3568-82. [PMID: 26100670 DOI: 10.1158/0008-5472.can-14-3264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
Mitochondria are the powerhouses of cells. Mitochondrial C-Raf is a potential cancer therapeutic target, as it regulates mitochondrial function and is localized to the mitochondria by its N-terminal domain. However, Raf inhibitor monotherapy can induce S338 phosphorylation of C-Raf (pC-Raf(S338)) and impede therapy. This study identified the interaction of C-Raf with S308 phosphorylated DAPK (pDAPK(S308)), which together became colocalized in the mitochondria to facilitate mitochondrial remodeling. Combined use of the Raf inhibitors sorafenib and GW5074 had synergistic anticancer effects in vitro and in vivo, but targeted mitochondrial function, rather than the canonical Raf signaling pathway. C-Raf depletion in knockout MEF(C-Raf-/-) or siRNA knockdown ACHN renal cancer cells abrogated the cytotoxicity of combination therapy. Crystal structure simulation showed that GW5074 bound to C-Raf and induced a C-Raf conformational change that enhanced sorafenib-binding affinity. In the presence of pDAPK(S308), this drug-target interaction compromised the mitochondrial targeting effect of the N-terminal domain of C-Raf, which induced two-hit damages to cancer cells. First, combination therapy facilitated pC-Raf(S338) and pDAPK(S308) translocation from mitochondria to cytoplasm, leading to mitochondrial dysfunction and reactive oxygen species (ROS) generation. Second, ROS facilitated PP2A-mediated dephosphorylation of pDAPK(S308) to DAPK. PP2A then dissociated from the C-Raf-DAPK complex and induced profound cancer cell death. Increased pDAPK(S308) modification was also observed in renal cancer tissues, which correlated with poor disease-free survival and poor overall survival in renal cancer patients. Besides mediating the anticancer effect, pDAPK(S308) may serve as a predictive biomarker for Raf inhibitors combination therapy, suggesting an ideal preclinical model that is worthy of clinical translation.
Collapse
Affiliation(s)
- Yi-Ta Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Mei-Jen Chuang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shou-Hung Tang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Chi Chen
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan, Republic of China
| | - Guang-Huan Sun
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China. Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Cheng-Ping Yu
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Jar-Yi Ho
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hui-Kuan Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Ming-Rong Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China. Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chung-Chih Lin
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sun-Yran Chang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China. Taipei City Hospital, Taipei, Taiwan, Republic of China
| | - Victor C Lin
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan, Republic of China
| | - Dah-Shyong Yu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China. Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tai-Lung Cha
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China. Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
43
|
Mitochondrial biology, targets, and drug delivery. J Control Release 2015; 207:40-58. [PMID: 25841699 DOI: 10.1016/j.jconrel.2015.03.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application.
Collapse
|
44
|
Skin cancer and new treatment perspectives: A review. Cancer Lett 2015; 357:8-42. [DOI: 10.1016/j.canlet.2014.11.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022]
|
45
|
Abstract
PURPOSE OF REVIEW This review is intended to provide an overview of the current state of biomarkers for prostate cancer (PCa), with a focus on biomarkers approved by the US Food and Drug Administration (FDA) as well as biomarkers available from Clinical Laboratory Improvement Amendment (CLIA)-certified clinical laboratories within the last 1-2 years. RECENT FINDINGS During the past 2 years, two biomarkers have been approved by the US FDA. These include proPSA as part of the Prostate Health Index (phi) by Beckman Coulter, Inc and PCA3 as Progensa by Gen Probe, Inc. With the advances in genomic and proteomic technologies, several new CLIA-based laboratory-developed tests have become available. Examples are Oncotype DX from Genomics Health, Inc, and Prolaris from Myriad Genetics, Inc. In most cases, these new tests are based on a combination of multiple genomic or proteomic biomarkers. SUMMARY Several new tests, as discussed in this review, have become available during the last 2 years. Although the intended use of most of these tests is to distinguish PCa from benign prostatic conditions with better sensitivity and specificity than prostate-specific antigen, studies have shown that some of them may also be useful in the differentiation of aggressive from nonaggressive forms of PCa.
Collapse
|
46
|
Affiliation(s)
| | - Andrew J Tsung
- Departments of Cancer Biology & Pharmacology, Peoria, IL 61605, USA
- Neurosurgery, Peoria, IL 61605, USA
- University of Illinois College of Medicine at Peoria, Illinois Neurological Institute, Peoria, IL 61605, USA
| |
Collapse
|
47
|
Dang S, Qu Y, Wei J, Shao Y, Yang Q, Ji M, Shi B, Hou P. Low copy number of mitochondrial DNA (mtDNA) predicts worse prognosis in early-stage laryngeal cancer patients. Diagn Pathol 2014; 9:28. [PMID: 24499477 PMCID: PMC3916805 DOI: 10.1186/1746-1596-9-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/31/2013] [Indexed: 12/29/2022] Open
Abstract
Objectives Alterations in mitochondrial DNA (mtDNA) copy number have been widely reported in various human cancers, and been considered to be an important hallmark of cancers. However, little is known about the value of copy number variations of mtDNA in the prognostic evaluation of laryngeal cancer. Design and methods Using real-time quantitative PCR method, we investigated mtDNA copy number in a cohort of laryngeal cancers (n =204) and normal laryngeal tissues (n =40), and explored the association of variable mtDNA copy number with clinical outcomes of laryngeal cancer patients. Results Our data showed that the relative mean mtDNA content was higher in the laryngeal cancer patients (11.91 ± 4.35 copies) than the control subjects (4.72 ± 0.70 copies). Moreover, we found that mtDNA content was negatively associated with cigarette smoking (pack-years), tumor invasion, and TNM stage. Notably, variable mtDNA content did not affect overall survival of laryngeal cancer patients. However, when the patients were categorized into early-stage and late-stage tumor groups according to TNM stage, we found that low mtDNA content was strongly associated with poor survival in the former, but not in the latter. Conclusions The present study demonstrated that low mtDNA content was strongly correlated with some of clinicopathological characteristics, such as cigarette smoking, tumor invasion and TNM stage. In addition, we found a strong link between low mtDNA content and worse survival of the patients with early-stage tumors. Taken together, low copy number of mtDNA may be a useful poor prognostic factor for early-stage laryngeal cancer patients. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1841771572115955
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, 710061 Xi'an, the People's Republic of China.
| |
Collapse
|
48
|
Scott TL, Rangaswamy S, Wicker CA, Izumi T. Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal 2014; 20:708-26. [PMID: 23901781 PMCID: PMC3960848 DOI: 10.1089/ars.2013.5529] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are generated by exogenous and environmental genotoxins, but also arise from mitochondria as byproducts of respiration in the body. ROS generate DNA damage of which pathological consequence, including cancer is well established. Research efforts are intense to understand the mechanism of DNA base excision repair, the primary mechanism to protect cells from genotoxicity caused by ROS. RECENT ADVANCES In addition to the notion that oxidative DNA damage causes transformation of cells, recent studies have revealed how the mitochondrial deficiencies and ROS generation alter cell growth during the cancer transformation. CRITICAL ISSUES The emphasis of this review is to highlight the importance of the cellular response to oxidative DNA damage during carcinogenesis. Oxidative DNA damage, including 7,8-dihydro-8-oxoguanine, play an important role during the cellular transformation. It is also becoming apparent that the unusual activity and subcellular distribution of apurinic/apyrimidinic endonuclease 1, an essential DNA repair factor/redox sensor, affect cancer malignancy by increasing cellular resistance to oxidative stress and by positively influencing cell proliferation. FUTURE DIRECTIONS Technological advancement in cancer cell biology and genetics has enabled us to monitor the detailed DNA repair activities in the microenvironment. Precise understanding of the intracellular activities of DNA repair proteins for oxidative DNA damage should provide help in understanding how mitochondria, ROS, DNA damage, and repair influence cancer transformation.
Collapse
Affiliation(s)
- Timothy L Scott
- Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
49
|
Panis C. Unraveling Oxidation-Induced Modifications in Proteins by Proteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 94:19-38. [DOI: 10.1016/b978-0-12-800168-4.00002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Zhang G, Qu Y, Dang S, Yang Q, Shi B, Hou P. Variable copy number of mitochondrial DNA (mtDNA) predicts worse prognosis in advanced gastric cancer patients. Diagn Pathol 2013; 8:173. [PMID: 24144008 PMCID: PMC4015835 DOI: 10.1186/1746-1596-8-173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/11/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Change of mitochondrial DNA (mtDNA) copy number is widely reported in various human cancers, including gastric cancer, and is considered to be an important hallmark of cancers. However, there is remarkably little consensus on the value of variable mtDNA content in the prognostic evaluation of this cancer. METHODS Using real-time quantitative PCR approach, we examined mtDNA copy number in a cohort of gastric cancers and normal gastric tissues, and explored the association of variable mtDNA content with clinical outcomes of gastric cancer patients. RESULTS Our data showed that the majority of gastric cancer patients had low mtDNA content as compared to control subjects although the relative mean mtDNA content was higher in the former than the latter. Moreover, we found that variable mtDNA content was strongly associated with lymph node metastasis and cancer-related death of the patients with late-stage tumors. Notably, variable mtDNA content did not affect overall survival of gastric cancer patients, however, we found that increased mtDNA content was associated with poor survival in the patients with late-stage tumors. CONCLUSION In this study, we demonstrated that variable mtDNA content markedly increased the risk of lymph node metastasis and high mortality of the patients with late-stage tumors. Additionally, we found a strong link between increased mtDNA content and worse survival of the patients with late-stage tumors. Taken together, variable mtDNA content may be a valuable poor prognostic factor for advanced gastric cancer patients. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1344721463103353.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, the People's Republic of China.
| |
Collapse
|