1
|
Deval C, Sharma P, Sharma B, Singh B. Brivaracitam Ameliorates Increased Inflammation, Oxidative Stress, and Acetylcholinesterase Activity in Ischemic Mice. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:120-132. [PMID: 39820118 PMCID: PMC11747741 DOI: 10.9758/cpn.24.1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/09/2024] [Accepted: 11/09/2024] [Indexed: 01/19/2025]
Abstract
Objective Cerebral ischemia is a medical condition that occurs due to poor supply of blood in the brain. Reperfusion being savage further exaggerates the tissue injury causing cerebral ischemia/reperfusion injury (CI/R). CI/R is marked by an impairment in release of neurotransmitter, excitotoxicity, oxidative stress, inflammation, and neuronal apoptosis. The current study has utilized brivaracetam (BRV), a synaptic vesicle protein 2A modulator in experimental model of CI/R injury. Methods CI/R injury was induced in Swiss Albino mice by occlusion of common carotid arteries followed by reperfusion. Animals were assessed for learning and memory, motor coordination (Rota rod, lateral push, and inclined beam walking test), cerebral infarction, and histopathological alterations. Biochemical assessments were made for oxidative stress (thiobarbituric acid reactive species, reduced glutathione, catalase, superoxide dismutase), inflammation (tumor necrosis factor-α and interleukin-10), and acetylcholinesterase activity (AChE) in brain supernatants. Results CI/R animals showed impairment in learning, memory, and motor coordination, along with increase in cerebral infarction, and histopathological alterations. Furthermore, increase in brain oxidative stress, inflammation, and AChE activity were recorded in CI/R animals. Administration of BRV (10 mg/kg and 20 mg/kg; p.o.) was observed to recuperate CI/R induced impairments in behavioral, biochemical, and histopathological analysis. Conclusion It may be concluded that BRV mediates neuroprotection during CI/R via decreasing brain oxidative stress, inflammation, and AChE activity.
Collapse
Affiliation(s)
- Chhaya Deval
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University, Gurugram, India
| | - Bhagwat Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Hooshmand M, Sadeghi MR, Asoodeh A, Pourbadie HG, Mehni MK, Sayyah M. Administration of monophosphoryl lipid A shortly after traumatic brain injury blocks the following spatial and avoidance memory loss and neuroinflammation. Sci Rep 2024; 14:29408. [PMID: 39592660 PMCID: PMC11599587 DOI: 10.1038/s41598-024-80331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Traumatic brain injury (TBI) frequently leads to cognitive impairments. The toll-like receptor 4 (TLR4) ligand, Monophosphoryl lipid A (MPL), has shown promise in modulating neuroinflammatory responses after TBI. We investigated the effects of MPL on spatial memory, passive avoidance memory, neuronal survival, and inflammatory/anti-inflammatory cytokines in rat brain following mild-to-moderate TBI. Rats underwent a learning period in the Morris water maze and shuttle box, followed by TBI induction by controlled cortical impact. MPL was administered into the cerebral ventricle 20 min after TBI. Spatial memory was assessed 7 and 28 days later. Passive avoidance memory was assessed 2 and 6 days after TBI. MPL significantly improved the spatial memory deficit at 7 days but not 28 days after TBI. It also improved impairment of the avoidance memory at both 2 and 6 days after TBI. MPL prohibited the TBI-induced TNF-α increase and IL-10 decrease in the injured region at 7 days post-TBI period. MPL prevented the neuronal loss induced by TBI in the hippocampus. A single administration of MPL shortly after TBI alleviates short-term memory deficits, through anti-inflammatory and anti-cell loss activities. Repeated MPL administration may also inhibit the long-term memory deficits after TBI.
Collapse
Affiliation(s)
- Maryam Hooshmand
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biochemistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mahbobeh Kamrani Mehni
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Physiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mohamad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Shaw BC, Anders VR, Tinkey RA, Habean ML, Brock OD, Frostino BJ, Williams JL. Immunity impacts cognitive deficits across neurological disorders. J Neurochem 2024; 168:3512-3535. [PMID: 37899543 PMCID: PMC11056485 DOI: 10.1111/jnc.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Cognitive deficits are a common comorbidity with neurological disorders and normal aging. Inflammation is associated with multiple diseases including classical neurodegenerative dementias such as Alzheimer's disease (AD) and autoimmune disorders such as multiple sclerosis (MS), in which over half of all patients experience some form of cognitive deficits. Other degenerative diseases of the central nervous system (CNS) including frontotemporal lobe dementia (FTLD), and Parkinson's disease (PD) as well as traumatic brain injury (TBI) and psychological disorders like major depressive disorder (MDD), and even normal aging all have cytokine-associated reductions in cognitive function. Thus, there is likely commonality between these secondary cognitive deficits and inflammation. Neurological disorders are increasingly associated with substantial neuroinflammation, in which CNS-resident cells secrete cytokines and chemokines such as tumor necrosis factor (TNF)α and interleukins (ILs) including IL-1β and IL-6. CNS-resident cells also respond to a wide variety of cytokines and chemokines, which can have both direct effects on neurons by changing the expression of ion channels and perturbing electrical properties, as well as indirect effects through glia-glia and immune-glia cross-talk. There is significant overlap in these cytokine and chemokine expression profiles across diseases, with TNFα and IL-6 strongly associated with cognitive deficits in multiple disorders. Here, we review the involvement of various cytokines and chemokines in AD, MS, FTLD, PD, TBI, MDD, and normal aging in the absence of dementia. We propose that the neuropsychiatric phenotypes observed in these disorders may be at least partially attributable to a dysregulation of immunity resulting in pathological cytokine and chemokine expression from both CNS-resident and non-resident cells.
Collapse
Affiliation(s)
- Benjamin C. Shaw
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Victoria R. Anders
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Maria L. Habean
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
| | - Orion D. Brock
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Molecular Medicine, Lerner Research Institute, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin J. Frostino
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- College of Science, University of Notre Dame, South Bend, IN, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
- Molecular Medicine, Lerner Research Institute, Cleveland Clinic and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Wang LW, Chio CC, Chao CM, Chao PY, Lin MT, Chang CP, Lin HJ. Mesenchymal stem cells reduce long-term cognitive deficits and attenuate myelin disintegration and microglia activation following repetitive traumatic brain injury. Sci Prog 2024; 107:368504241231154. [PMID: 38425276 PMCID: PMC10908245 DOI: 10.1177/00368504241231154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The underlying mechanisms for the beneficial effects exerted by bone marrow-mesenchymal stem cells (BM-MSCs) in treating repetitive traumatic brain injury (rTBI)-induced long-term sensorimotor/cognitive impairments are not fully elucidated. Herein, we aimed to explore whether BM-MSCs therapy protects against rTBI-induced long-term neurobehavioral disorders in rats via normalizing white matter integrity and gray matter microglial response. Rats were subjected to repeated mild lateral fluid percussion on day 0 and day 3. On the fourth day post-surgery, MSCs groups received MSCs (4 × 106 cells/ml/kg, intravenously) and were assessed by the radial maze, Y maze, passive avoidance tests, and modified neurological severity scores. Hematoxylin & eosin, and Luxol fast blue stainings were used to examine the histopathology and white matter thickness. At the same time, immunofluorescence staining was used to investigate the numbers of tumor necrosis factor-alpha (TNF-α)-containing microglia in gray matter. Three to nine months after neurotrauma, rats displayed sensorimotor and cognitive impairments, reduced thickness in white matter, and over-accumulation of TNF-α-containing microglia and cellular damage in gray matter. Therapy with BM-MSCs significantly attenuated the rTBI-induced sensorimotor and cognitive impairments and all their complications. Mesenchymal stem cell therapy might accelerate the recovery of sensorimotor and cognitive impairments in rats with rTBI via normalizing myelin integrity and microglia response.
Collapse
Affiliation(s)
- Lan-Wan Wang
- Department of Pediatrics, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Chung-Ching Chio
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
- Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, 73657, Taiwan
| | - Pi-Yu Chao
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
5
|
Nady R, Ahmed RR, Moustafa N, Abdul-Hamid M. TNF-α blockage by etanercept restores spatial learning and reduces cellular degeneration in the hippocampus during liver cirrhosis. Tissue Cell 2023; 85:102249. [PMID: 37865039 DOI: 10.1016/j.tice.2023.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Hepatic encephalopathy (HE) is one of the most debilitating cerebral complications of liver cirrhosis. The one-year survival of patients with liver cirrhosis and severe encephalopathy is less than 50%. Recent studies have indicated that neuroinflammation is a new player in the pathogenesis of HE, which seems to be involved in the development of cognitive impairment. In this study, we demonstrated neurobehavioral and neuropathological consequences of liver cirrhosis and tested the therapeutic potential of the tumor necrosis factor-α (TNF-α) inhibitor, etanercept. Sixty male adult Wistar albino rats (120-190 g) were allocated into four groups, where groups I and IV served as controls. Thioacetamide (TAA; 300 mg/kg) was intraperitoneally injected twice a week for five months to induce liver cirrhosis in group II (n = 20). Both TAA and etanercept (2 mg/kg) were administered to group III (n = 20). At the end of the experiment, spatial learning was assessed using Morris water maze. TNF-α was detected in both serum and hippocampus. The excised brains were also immunohistochemically stained with glial fibrillary acidic protein (GFAP) to estimate both the number and integrity of hippocampal astrocytes. Ultrastructural changes in the hippocampus were characterized by transmission electron microscopy. The results showed that blocking TNF-α by etanercept was accompanied by a lower TNF-α expression and a higher number of GFAP-positive astrocytes in the hippocampus. Etanercept intervention alleviated the neuronal and glial degenerative changes and impeded the deterioration of spatial learning ability. In conclusion, TNF-α is strongly involved in the development of liver cirrhosis and the associated encephalopathy. TNF-α blockers may be a promising approach for management of hepatic cirrhosis and its cerebral complications.
Collapse
Affiliation(s)
- Rehab Nady
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Rasha R Ahmed
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Nadia Moustafa
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt.
| |
Collapse
|
6
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
7
|
Larson K, Damon M, Randhi R, Nixon-Lee N, J Dixon K. Selective inhibition of soluble TNF using XPro1595 improves hippocampal pathology to promote improved neurological recovery following traumatic brain injury in mice. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-124336. [PMID: 35692164 DOI: 10.2174/1871527321666220610104908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
AIMS To determine the efficacy of XPro1595 to improve pathophysiological and functional outcomes in a mouse model of traumatic brain injury (TBI). BACKGROUND Symptoms associated with TBI can be debilitating, and treatment without off-target side effects remains a challenge. This study aimed to investigate the efficacy of selectively inhibiting the soluble form of TNF (solTNF) using the biologic XPro1595 in a mouse model of TBI. OBJECTIVES Use XPro1595 to determine whether injury-induced solTNF promotes hippocampal inflammation and dendritic plasticity, and associated functional impairments. METHODS Mild-to-moderate traumatic brain injury (CCI model) was induced in adult male C57Bl/6J WT and Thy1-YFPH mice, with XPro1595 (10 mg/kg, S.C.) or vehicle being administered in a clinically relevant window (60 minutes post-injury). The animals were assessed for differences in neurological function, and hippocampal tissue was analyzed for inflammation and glial reactivity, as well as neuronal degeneration and plasticity. RESULTS We report that unilateral CCI over the right parietal cortex in mice promoted deficits in learning and memory, depressive-like behavior, and neuropathic pain. Using immunohistochemical and Western blotting techniques, we observed the cortical injury promoted a set of expected pathophysiology's within the hippocampus consistent with the observed neurological outcomes, including glial reactivity, enhanced neuronal dendritic degeneration (dendritic beading), and reduced synaptic plasticity (spine density and PSD-95 expression) within the DG and CA1 region of the hippocampus, that were prevented in mice treated with XPro1595. CONCLUSION Overall, we observed that selectively inhibiting solTNF using XPro1595 improved the pathophysiological and neurological sequelae of brain-injured mice, which provides support for its use in patients with TBI.
Collapse
Affiliation(s)
- Katelyn Larson
- Department of Surgery, Virginia Commonwealth University, United States
| | - Melissa Damon
- Department of Surgery, Virginia Commonwealth University, United States
| | - Rajasa Randhi
- Department of Surgery, Virginia Commonwealth University, United States
| | - Nancy Nixon-Lee
- Department of Surgery, Virginia Commonwealth University, United States
| | - Kirsty J Dixon
- Department of Surgery, Virginia Commonwealth University, United States
| |
Collapse
|
8
|
Coupe D, Bossing T. Insights into nervous system repair from the fruit fly. Neuronal Signal 2022; 6:NS20210051. [PMID: 35474685 PMCID: PMC9008705 DOI: 10.1042/ns20210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.
Collapse
Affiliation(s)
- David Coupe
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| |
Collapse
|
9
|
Korneva EA, Dmitrienko EV, Miyamura S, Noda M, Akimoto N. Protective effects of Derinat, a nucleotide-based drug, on experimental traumatic brain injury, and its cellular mechanisms. MEDICAL IMMUNOLOGY (RUSSIA) 2021; 23:1367-1382. [DOI: 10.15789/1563-0625-peo-2392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Traumatic brain injury is the most common cause of death and disability in young people including sport athletes and soldiers, people under 45 years of age in the industrialized countries, representing a growing health problem in developing countries, as well as in aging communities. Treatment of the latter is a serious challenge for modern medicine. This type of injury leads to many kinds of disorders and, quite often, to disability. These issue require development of new methods for brain trauma treatment. The new approach to brain trauma treatment was studied in murine experiments. In particular, sodium salt of deoxyribonucleic acid (DNA) was used. This preparation is a drug known as a mixture of peptides with immunomodulatory effect which is widely used for different kinds of therapy. Derinat, a sodium salt of DNA, isolated from the caviar of Russian sturgeon, is a proven immunomodulator for treatment of diseases associatd with reactive oxygen species (ROS), including brain ischemia-reperfusion (IR) injury. Here we show that treatment with Derinat exert neuroprotective, anti-oxidative, and anti-inflammatory effects in experimental model of traumatic brain injury (TBI) in rats. Intraperitoneal injection of Derinat several times over 3 days after TBI showed less pronounced damage of the injured brain area. Immunohistochemical study showed that the Derinat-induced morphological changes of microglia in cerebral cortex and hippocampus 7 days after TBI. TBI-induced accumulation of 8-oxoguanine (8-oxoG), the marker of oxidative damage, was significantly attenuated by Derinat administration, both on 7th and 14th day after TBI. To investigate cellular mechanism of anti-inflammatory effects, the primary cultures of murine microglia supplied with ATP (50 M and 1 mM), as a substance released at injured site, were used to mimic the in vitro inflammatory response. Derinate treatment caused an increase of glial levels of mRNAs encoding neurotrophic factor (GDNF) and nerve growth factor (NGF) in the presence of ATP, whereas tissue plasminogen activator (tPA) mRNA was inhibited by ATP with or without Derinat. Interleukin-6 (IL-6) mRNA expression was not affected by ATP but was increased by Derinat. Both mRNA and protein levels of ATP-induced TNFα production were significantly inhibited by Derinat. These results partially contribute to understanding mechanisms of immunomodulatory effects of DNA preparations in traumatic brain injury.
Collapse
Affiliation(s)
| | | | | | - M. Noda
- Graduate School of Pharmaceutical Sciences
| | - N. Akimoto
- Graduate School of Pharmaceutical Sciences
| |
Collapse
|
10
|
Marzano LAS, de Castro FLM, Machado CA, de Barros JLVM, Macedo E Cordeiro T, Simões E Silva AC, Teixeira AL, Silva de Miranda A. Potential Role of Adult Hippocampal Neurogenesis in Traumatic Brain Injury. Curr Med Chem 2021; 29:3392-3419. [PMID: 34561977 DOI: 10.2174/0929867328666210923143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI's long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.
Collapse
Affiliation(s)
- Lucas Alexandre Santos Marzano
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | | | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | | | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, United States
| | - Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
11
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
12
|
Nikam RM, Yue X, Kandula VV, Paudyal B, Langhans SA, Averill LW, Choudhary AK. Unravelling neuroinflammation in abusive head trauma with radiotracer imaging. Pediatr Radiol 2021; 51:966-970. [PMID: 33999238 DOI: 10.1007/s00247-021-04995-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023]
Abstract
Abusive head trauma (AHT) is a leading cause of mortality and morbidity in child abuse, with a mortality rate of approximately 25%. In survivors, the prognosis remains dismal, with high prevalence of cerebral palsy, epilepsy and neuropsychiatric disorders. Early and accurate diagnosis of AHT is challenging, both clinically and radiologically, with up to one-third of cases missed on initial examination. Moreover, most of the management in AHT is supportive, reflective of the lack of clear understanding of specific pathogenic mechanisms underlying secondary insult, with approaches targeted toward decreasing intracranial hypertension and reducing cerebral metabolism, cell death and excitotoxicity. Multiple studies have elucidated the role of pro- and anti-inflammatory cytokines and chemokines with upregulation/recruitment of microglia/macrophages, oligodendrocytes and astrocytes in severe traumatic brain injury (TBI). In addition, recent studies in animal models of AHT have demonstrated significant upregulation of microglia, with a potential role of inflammatory cascade contributing to secondary insult. Despite the histological and biochemical evidence, there is a significant dearth of specific imaging approaches to identify this neuroinflammation in AHT. The primary motivation for development of such imaging approaches stems from the need to therapeutically target neuroinflammation and establish its utility in monitoring and prognostication. In the present paper, we discuss the available data suggesting the potential role of neuroinflammation in AHT and role of radiotracer imaging in aiding diagnosis and patient management.
Collapse
Affiliation(s)
- Rahul M Nikam
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA. .,Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| | - Xuyi Yue
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Vinay V Kandula
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Bishnuhari Paudyal
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Sigrid A Langhans
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Lauren W Averill
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Arabinda K Choudhary
- Department of Radiology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| |
Collapse
|
13
|
APOE4 genetic polymorphism results in impaired recovery in a repeated mild traumatic brain injury model and treatment with Bryostatin-1 improves outcomes. Sci Rep 2020; 10:19919. [PMID: 33199792 PMCID: PMC7670450 DOI: 10.1038/s41598-020-76849-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022] Open
Abstract
After traumatic brain injury (TBI), some people have worse recovery than others. Single nucleotide polymorphisms (SNPs) in Apolipoprotein E (APOE) are known to increase risk for developing Alzheimer’s disease, however there is controversy from human and rodent studies as to whether ApoE4 is a risk factor for worse outcomes after brain trauma. To resolve these conflicting studies we have explored the effect of the human APOE4 gene in a reproducible mouse model that mimics common human injuries. We have investigated cellular and behavioral outcomes in genetically engineered human APOE targeted replacement (TR) mice following repeated mild TBI (rmTBI) using a lateral fluid percussion injury model. Relative to injured APOE3 TR mice, injured APOE4 TR mice had more inflammation, neurodegeneration, apoptosis, p-tau, and activated microglia and less total brain-derived neurotrophic factor (BDNF) in the cortex and/or hippocampus at 1 and/or 21 days post-injury. We utilized a novel personalized approach to treating APOE4 susceptible mice by administering Bryostatin-1, which improved cellular as well as motor and cognitive behavior outcomes at 1 DPI in the APOE4 injured mice. This study demonstrates that APOE4 is a risk factor for poor outcomes after rmTBI and highlights how personalized therapeutics can be a powerful treatment option.
Collapse
|
14
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
15
|
Lin XJ, Liu R, Li C, Yi X, Fu B, Walker MJ, Xu XM, Sun G, Lin CH. Melatonin ameliorates spatial memory and motor deficits via preserving the integrity of cortical and hippocampal dendritic spine morphology in mice with neurotrauma. Inflammopharmacology 2020; 28:1553-1566. [PMID: 32959092 DOI: 10.1007/s10787-020-00750-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/28/2020] [Indexed: 01/20/2023]
Abstract
We aimed to elucidate the role of cortical and hippocampal dendritic spines on neurological deficits associated with hippocampal microgliosis, hippocampal neurogenesis, and neuroinflammation in mice with cortical compact impact (CCI) injury. In the present study, we found that CCI reduced spatial memory mean latency (10 s. vs 50 s) and motor dysfunction (130 s. vs 150 s.) in mice, as determined by Morris water maze and rotarod test, respectively. Golgi staining of cortical pyramidal neurons revealed that, compared to the controls, the CCI group treated with vehicle solution had significantly lower values of dendritic order (or dendritic branch number) (4.0 vs 6.2), total spine length (400 μm vs 620 μm) and spine density (40 spines/μm vs 60 spines/μm), but had significantly higher values of dendritic beading (40 beadings/mm vs 20 beadings/mm). Additionally, Sholl analysis showed that, compared to controls, the CCI + NS group mice had significantly lower values of dendritic intersections (1.0 vs 2.0). Immunofluorescence assay also revealed that, compared to controls, the CCI + NS group mice had significantly higher values of the newly formed hippocampal cells (1250/mm2 vs 1000/mm2) but significantly lower values of dendritic order (2.0 branch # vs 4.2 branch #), total spine length (180 μm vs 320 μm) and intersection (1.0 vs 3.0). The CCI + NS group mice further showed significantly higher numbers of microglia in the dentate gyrus of the hippocampus and higher concentrations of pro-inflammatory cytokines in the cerebrospinal fluids. All the CCI-induced spatial memory (40 s) and motor (150 s) dysfunction, deranged dendritic and spine morphology of cortical pyramidal neurons or hippocampal newly formed cells, hippocampal microgliosis, and central neuroinflammation were all significantly reduced by melatonin administration during post-CCI. Simultaneously, melatonin therapy caused an enhancement in the compensatory hippocampal neurogenesis and neurotrophic growth factors (e.g., doublecortin-1) and compensatory central anti-inflammatory cytokines. Our results indicate that melatonin attenuates the spatial memory and motor deficits via the modification of cortical and hippocampal dendritic spine morphology, hippocampal microgliosis and neurogenesis, and neuroinflammation in mice with traumatic brain injury.
Collapse
Affiliation(s)
- Xiao-Jing Lin
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics Institute of Chinese PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Jinan, Shandong, People's Republic of China
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Ruoxu Liu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Chenyi Li
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics Institute of Chinese PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Jinan, Shandong, People's Republic of China
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Xueqing Yi
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Jinan, Shandong, People's Republic of China
| | - Bo Fu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - M J Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, USA
- Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, USA
- Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, USA
| | - Gang Sun
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Jinan, Shandong, People's Republic of China.
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
16
|
Guang C, Zhiwei Y, Liwen W, Yutaka M, Michiko S, Shiming L, Chi‐Tang H, Hui Z, Naiyao C. Formulated citrus peel extract gold lotion improves cognitive and functional recovery from traumatic brain injury (TBI) in rats. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Crupi R, Cordaro M, Cuzzocrea S, Impellizzeri D. Management of Traumatic Brain Injury: From Present to Future. Antioxidants (Basel) 2020; 9:antiox9040297. [PMID: 32252390 PMCID: PMC7222188 DOI: 10.3390/antiox9040297] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
TBI (traumatic brain injury) is a major cause of death among youth in industrialized societies. Brain damage following traumatic injury is a result of direct and indirect mechanisms; indirect or secondary injury involves the initiation of an acute inflammatory response, including the breakdown of the blood–brain barrier (BBB), brain edema, infiltration of peripheral blood cells, and activation of resident immunocompetent cells, as well as the release of numerous immune mediators such as interleukins and chemotactic factors. TBI can cause changes in molecular signaling and cellular functions and structures, in addition to tissue damage, such as hemorrhage, diffuse axonal damages, and contusions. TBI typically disturbs brain functions such as executive actions, cognitive grade, attention, memory data processing, and language abilities. Animal models have been developed to reproduce the different features of human TBI, better understand its pathophysiology, and discover potential new treatments. For many years, the first approach to manage TBI has been treatment of the injured tissue with interventions designed to reduce the complex secondary-injury cascade. Several studies in the literature have stressed the importance of more closely examining injuries, including endothelial, microglia, astroglia, oligodendroglia, and precursor cells. Significant effort has been invested in developing neuroprotective agents. The aim of this work is to review TBI pathophysiology and existing and potential new therapeutic strategies in the management of inflammatory events and behavioral deficits associated with TBI.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy;
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, Messina University, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, Messina University, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
18
|
Liu J, Wang J, Ning Y, Chen F. The inhibition of miR‑101a‑3p alleviates H/R injury in H9C2 cells by regulating the JAK2/STAT3 pathway. Mol Med Rep 2019; 21:89-96. [PMID: 31746349 PMCID: PMC6896302 DOI: 10.3892/mmr.2019.10793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) is used as an in vivo model of ischemia/reperfusion injury, and myocardial ischemia can lead to heart disease. Therefore, it is necessary to prevent myocardial H/R injury to avoid the risk of heart disease. The aim of the present study was to investigate whether inhibiting microRNA (miR)-101a-3p attenuated H9C2 cell H/R injury, apoptosis mechanisms and key target proteins. Cell viability and apoptosis were determined by Cell Counting Kit-8 assays and flow cytometry using a cell apoptosis kit, respectively. The contents of creatine kinase (CK) and lactate dehydrogenase (LDH) were detected using colorimetric assays. Dual luciferase assays were carried out to determine if miR-101a-3p inhibited Janus kinase (JAK)2. Western blot analysis and reverse transcription-quantitative PCR were used to determine proteins levels and mRNAs expression. It was found that the inhibition of miR-101a-3p increased the growth of H9C2 cells and decreased H9C2 cell apoptosis during H/R injury. The inhibition of miR-101a-3p reduced the amounts of CK and LDH in H/R model H9C2 cells. The inhibition of miR-101a-3p lowered the levels of Bax, interleukin-6 and tumor necrosis factor-α, but raised the levels of phosphorylated (p)-STAT3 and p-JAK2 in H9C2 cells subjected to H/R injury treatment. miR-101a-3p mimic was found to inhibit H9C2 cell viability, raise p-JAK2 level and slightly increase p-STAT3 during H/R injury. AG490 induced H9C2 cell apoptosis, and decreased the levels of p-JAK2 and p-STAT3 during H/R injury. The data indicated that inhibiting miR-101a-3p reduced H/R damage in H9C2 cells and decreased apoptosis via Bax/Bcl-2 signaling during H/R injury. In addition, it was suggested that the inhibition of miR-101a-3p decreased H/R injury in H9C2 cell by regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jingying Liu
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Juanjuan Wang
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yuzhen Ning
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Fengying Chen
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
19
|
Tse BC, Dvoriantchikova G, Tao W, Gallo RA, Lee JY, Pappas S, Brambilla R, Ivanov D, Tse DT, Pelaez D. Tumor Necrosis Factor Inhibition in the Acute Management of Traumatic Optic Neuropathy. Invest Ophthalmol Vis Sci 2019; 59:2905-2912. [PMID: 30025145 PMCID: PMC5989875 DOI: 10.1167/iovs.18-24431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To determine the effectiveness of etanercept, a tumor necrosis factor (TNF) inhibitor, in conferring neuroprotection to retinal ganglion cells (RGCs) and improving visual outcomes after optic nerve trauma with either optic nerve crush (ONC) or sonication-induced traumatic optic neuropathy (SI-TON) in mice. Methods Mouse optic nerves were unilaterally subjected to ONC (n = 20) or SI-TON (n = 20). TNF expression was evaluated by using immunohistochemistry and quantitative RT-PCR (qRT-PCR) in optic nerves harvested 6 and 24 hours post ONC (n = 10) and SI-TON (n = 10). Mice in each injury group received daily subcutaneous injections of either etanercept (10 mg/kg of body weight; five mice) or vehicle (five mice) for 7 days. Pattern electroretinograms were performed on all mice at 1 and 2 weeks after injury. ONC mice were killed at 2 weeks after injury, while SI-TON mice were euthanized at 4 weeks after injury. Whole retina flat-mounts were used for RGC quantification. Results Immunohistochemistry and qRT-PCR showed upregulation of TNF protein and gene expression within 24 hours after injury. In both models, etanercept use immediately following optic nerve injury led to higher RGC survival when compared to controls, which was comparable between the two models (24.23% in ONC versus 20.42% in SI-TON). In both models, 1 and 2 weeks post injury, mice treated with etanercept had significantly higher a-wave amplitudes than untreated injured controls. Conclusions Treatment with etanercept significantly reduced retinal damage and improved visual function in both animal models of TON. These findings suggest that reducing TNF activity in injured optic nerves constitutes an effective therapeutic approach in an acute setting.
Collapse
Affiliation(s)
- Brian C Tse
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Galina Dvoriantchikova
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Wensi Tao
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Ryan A Gallo
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - John Y Lee
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Steven Pappas
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Roberta Brambilla
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Dmitry Ivanov
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - David T Tse
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Daniel Pelaez
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States.,Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States
| |
Collapse
|
20
|
Lin W, Hsuan YCY, Lin MT, Kuo TW, Lin CH, Su YC, Niu KC, Chang CP, Lin HJ. Human Umbilical Cord Mesenchymal Stem Cells Preserve Adult Newborn Neurons and Reduce Neurological Injury after Cerebral Ischemia by Reducing the Number of Hypertrophic Microglia/Macrophages. Cell Transplant 2018; 26:1798-1810. [PMID: 29338384 PMCID: PMC5784525 DOI: 10.1177/0963689717728936] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microglia are the first source of a neuroinflammatory cascade, which seems to be involved in every phase of stroke-related neuronal damage. Two weeks after transient middle cerebral artery occlusion (MCAO), vehicle-treated rats displayed higher numbers of total ionized calcium-binding adaptor molecule 1 (Iba-1)-positive cells, greater cell body areas of Iba-1-positive cells, and higher numbers of hypertrophic Iba-1-positive cells (with a cell body area over 80 μm2) in the ipsilateral ischemic brain regions including the frontal cortex, striatum, and parietal cortex. In addition, MCAO decreased the number of migrating neuroblasts (or DCX- and 5-ethynyl-2′-deoxyuridine-positive cells) in the cortex, subventricular zone, and hippocampus of the ischemic brain, followed by neurological injury (including brain infarct and neurological deficits). Intravenous administration of human umbilical cord–derived mesenchymal stem cells (hUC-MSCs; 1 × 106 or 4 × 106) at 24 h after MCAO reduced neurological injury, decreased the number of hypertrophic microglia/macrophages, and increased the number of newborn neurons in rat brains. Thus, the accumulation of hypertrophic microglia/macrophages seems to be detrimental to neurogenesis after stroke. Treatment with hUC-MSCs preserved adult newborn neurons and reduced functional impairment after transient cerebral ischemia by reducing the number of hypertrophic microglia/macrophages.
Collapse
Affiliation(s)
- Willie Lin
- 1 Meridigen Biotech Co., Ltd., Neihu, Taipei City, Taiwan
| | | | - Mao-Tsun Lin
- 2 Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ting-Wei Kuo
- 3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan
| | | | - Yu-Chin Su
- 1 Meridigen Biotech Co., Ltd., Neihu, Taipei City, Taiwan
| | - Ko-Chi Niu
- 4 Department of Hyperbaric Oxygen, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ching-Ping Chang
- 2 Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan.,3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan.,5 The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hung-Jung Lin
- 3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan.,6 Department of Emergency Medicine, Chi Mei Medical Center, Tainan City, Taiwan
| |
Collapse
|
21
|
Wang W, Zinsmaier AK, Firestone E, Lin R, Yatskievych TA, Yang S, Zhang J, Bao S. Blocking Tumor Necrosis Factor-Alpha Expression Prevents Blast-Induced Excitatory/Inhibitory Synaptic Imbalance and Parvalbumin-Positive Interneuron Loss in the Hippocampus. J Neurotrauma 2018; 35:2306-2316. [PMID: 29649942 DOI: 10.1089/neu.2018.5688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of neurological disorder and death in civilian and military populations. It comprises two components-direct injury from the traumatic impact and secondary injury from ensuing neural inflammatory responses. Blocking tumor necrosis factor-alpha (TNF-α), a central regulator of neural inflammation, has been shown to improve functional recovery after TBI. However, the mechanisms underlying those therapeutic effects are still poorly understood. Here, we examined effects of 3,6'-dithiothalidomide (dTT), a potentially therapeutic TNF-α inhibitor, in mice with blast-induced TBI. We found that blast exposure resulted in elevated expression of TNF-α, activation of microglial cells, enhanced excitatory synaptic transmission, reduced inhibitory synaptic transmission, and a loss of parvalbumin-positive (PV+) inhibitory interneurons. Administration of dTT for 5 days after the blast exposure completely suppressed blast-induced increases in TNF-α transcription, largely reversed blasted-induced synaptic changes, and prevented PV+ neuron loss. However, blocking TNF-α expression by dTT failed to mitigate blast-induced microglial activation in the hippocampus, as evidenced by their non-ramified morphology. These results indicate that TNF-α plays a major role in modulating neuronal functions in blast-induced TBI and that it is a potential target for treatment of TBI-related brain disorders.
Collapse
Affiliation(s)
- Weihua Wang
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Alexander K Zinsmaier
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Ethan Firestone
- 2 Department of Otolaryngology-Head and Neck Surgery and Department of Communication Sciences and Disorders, School of Medicine, Wayne State University , Detroit, Michigan
| | - Ruizhu Lin
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona.,3 Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China
| | - Tatiana A Yatskievych
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Sungchil Yang
- 4 Department of Biomedical Sciences, City University of Hong Kong , Kowloon, Hong Kong, China
| | - Jinsheng Zhang
- 2 Department of Otolaryngology-Head and Neck Surgery and Department of Communication Sciences and Disorders, School of Medicine, Wayne State University , Detroit, Michigan
| | - Shaowen Bao
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
22
|
Hasturk AE, Gokce EC, Yilmaz ER, Horasanli B, Evirgen O, Hayirli N, Gokturk H, Erguder I, Can B. Therapeutic Evaluation of Tumor Necrosis Factor-alpha Antagonist Etanercept against Traumatic Brain Injury in Rats: Ultrastructural, Pathological, and Biochemical Analyses. Asian J Neurosurg 2018; 13:1018-1025. [PMID: 30459860 PMCID: PMC6208262 DOI: 10.4103/ajns.ajns_29_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose The aim of the present study was to investigate the effect of etanercept (ETA) on histopathological and biochemical changes after traumatic brain injury (TBI) in rats. Materials and Methods Thirty-six male Wistar albino rats were distributed into three groups (n = 12 each). Control group rats were not subjected to trauma. Trauma group rats were subjected to TBI only. ETA group rats were subjected to TBI plus ETA (5 mg/kg intraperitoneal [i.p.]). The groups were further subdivided into those sacrificed in the hyperacute stage (1 h after TBI) (control-1, trauma-1, and ETA-1 groups) and the acute stage (6 h after TBI) (control-6, trauma-6, and ETA-6 groups). Tissue levels of tumour necrosis factor-alpha, interleukin-1 beta, malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase were analyzed. Histopathological and ultrastructural evaluations were also performed. Results i.p. administration of ETA at 1 and 6 h significantly reduced inflammatory cytokine expression, attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in comparison to trauma group. Histopathological and ultrastructural abnormalities were significantly reduced in ETA-treated rats compared to closed head injury trauma groups. Conclusions ETA significantly improves neural function and prevents post-TBI histopathological damage in rats.
Collapse
Affiliation(s)
- Askin Esen Hasturk
- Department of Neurosurgery, Oncology Training and Research Hospital, Ankara, Turkey
| | - Emre Cemal Gokce
- Department of Neurosurgery, Oncology Training and Research Hospital, Ankara, Turkey
| | - Erdal Resit Yilmaz
- Department of Neurosurgery, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Bahriye Horasanli
- Department of Neurology, Baskent University Faculty of Medicine, Konya, Turkey
| | - Oya Evirgen
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Nazli Hayirli
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Hilal Gokturk
- Department of Histology and Embryology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Imge Erguder
- Department of Biochemistry, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Belgin Can
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
23
|
Donat CK, Scott G, Gentleman SM, Sastre M. Microglial Activation in Traumatic Brain Injury. Front Aging Neurosci 2017; 9:208. [PMID: 28701948 PMCID: PMC5487478 DOI: 10.3389/fnagi.2017.00208] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Microglia have a variety of functions in the brain, including synaptic pruning, CNS repair and mediating the immune response against peripheral infection. Microglia rapidly become activated in response to CNS damage. Depending on the nature of the stimulus, microglia can take a number of activation states, which correspond to altered microglia morphology, gene expression and function. It has been reported that early microglia activation following traumatic brain injury (TBI) may contribute to the restoration of homeostasis in the brain. On the other hand, if they remain chronically activated, such cells display a classically activated phenotype, releasing pro-inflammatory molecules, resulting in further tissue damage and contributing potentially to neurodegeneration. However, new evidence suggests that this classification is over-simplistic and the balance of activation states can vary at different points. In this article, we review the role of microglia in TBI, analyzing their distribution, morphology and functional phenotype over time in animal models and in humans. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. In addition, we describe investigations on the in vivo imaging of microglia using translocator protein (TSPO) PET and autoradiography, showing that microglial activation can occur in regions far remote from sites of focal injuries, in humans and animal models of TBI. Finally, we outline some novel potential therapeutic approaches that prime microglia/macrophages toward the beneficial restorative microglial phenotype after TBI.
Collapse
Affiliation(s)
| | | | | | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College LondonLondon, United Kingdom
| |
Collapse
|
24
|
The Polarization States of Microglia in TBI: A New Paradigm for Pharmacological Intervention. Neural Plast 2017; 2017:5405104. [PMID: 28255460 PMCID: PMC5309408 DOI: 10.1155/2017/5405104] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/17/2016] [Accepted: 01/11/2017] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious medical and social problem worldwide. Because of the complex pathophysiological mechanisms of TBI, effective pharmacotherapy is still lacking. The microglial cells are resident tissue macrophages located in the brain and have two major polarization states, M1 phenotype and M2 phenotype, when activated. The M1 phenotype is related to the release of proinflammatory cytokines and secondary brain injury, while the M2 phenotype has been proved to be responsible for the release of anti-inflammation cytokines and for central nervous system (CNS) repair. In animal models, pharmacological strategies inhibiting the M1 phenotype and promoting the M2 phenotype of microglial cells could alleviate cerebral damage and improve neurological function recovery after TBI. In this review, we aimed to summarize the current knowledge about the pathological significance of microglial M1/M2 polarization in the pathophysiology of TBI. In addition, we reviewed several drugs that have provided neuroprotective effects against brain injury following TBI by altering the polarization states of the microglia. We emphasized that future investigation of the regulation mechanisms of microglial M1/M2 polarization in TBI is anticipated, which could contribute to the development of new targets of pharmacological intervention in TBI.
Collapse
|
25
|
Chio CC, Lin MT, Chang CP, Lin HJ. A positive correlation exists between neurotrauma and TGF-β1-containing microglia in rats. Eur J Clin Invest 2016; 46:1063-1069. [PMID: 27759956 DOI: 10.1111/eci.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transforming growth factor-beta 1 (TGF-β1) regulates many processes after traumatic brain injury (TBI). Both Neuro AiD™ (MLC601) and astragaloside (AST) attenuate microglia activation in rats with TBI. The purpose of this study was to investigate whether MLC601 or AST improves output of TBI by affecting microglial expression of TGF-β1. MATERIALS AND METHODS Adult male Sprague-Dawley rats (120 in number) were used to investigate the contribution of TGF-β1-containing microglia in the MLC601-mediated or the AST-mediated neuroprotection in the brain trauma condition using lateral fluid percussion injury. RESULTS Pearson correlation analysis revealed that there was a positive correlation between brain injury (evidenced by both brain contused volume and neurological severity score) and the cortical numbers of TGF-β1-containing microglia for the rats (n = 12) 4 days post-TBI. MLC601 or AST significantly (P < 0·05) attenuated TBI-induced brain contused volume (119 ± 14 mm3 or 108 ± 11 mm3 vs. 160 ± 21 mm3 ), neurological severity score (7·8 ± 0·3 or 8·1 ± 0·4 vs. 10·2 ± 0·5) and numbers of TGF-β1-containing microglia (6% ± 2% or 11% ± 3% vs. 79% ± 7%) for the rats 4 days post-TBI. CONCLUSIONS There was a positive correlation between TBI and cortical numbers of TGF-β1-containing microglia which could be significantly attenuated by astragaloside or NeuroAiD™ (MLC601) in rats.
Collapse
Affiliation(s)
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
26
|
Tang WC, Hsu YC, Wang CC, Hu CY, Chio CC, Kuo JR. Early electroacupuncture treatment ameliorates neuroinflammation in rats with traumatic brain injury. Altern Ther Health Med 2016; 16:470. [PMID: 27852302 PMCID: PMC5112630 DOI: 10.1186/s12906-016-1457-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/31/2016] [Indexed: 02/21/2023]
Abstract
Background Neuroinflammation is the leading cause of neurological sequelae after traumatic brain injury (TBI). The aim of the present study was to investigate whether the neuroprotective effects of electroacupuncture (EA) are mediated by anti-neuroinflammatory effects in a rat model of TBI. Methods Male Sprague-Dawley rats were randomly divided into three groups: sham-operated, TBI control, and EA-treated. The animals in the sham-operated group underwent a sham operation, those in the TBI control group were subjected to TBI, but not EA, and those in the EA group were treated with EA for 60 min immediately after TBI, daily for 3 consecutive days. EA was applied at the acupuncture points GV20, GV26, LI4, and KI1, using a dense-dispersed wave, at frequencies of 0.2 and 1 Hz, and an amplitude of 1 mA. Cell infarction volume (TTC stain), neuronal apoptosis (markers: TUNEL and Caspase-3), activation of microglia (marker: Iba1) and astrocytes (marker: GFAP), and tumor necrosis factor (TNF)-α expression in the microglia and astrocytes were evaluated by immunofluorescence. Functional outcomes were assessed using the inclined plane test. All tests were performed 72 h after TBI. Results We found that TBI-induced loss of grasp strength, infarction volume, neuronal apoptosis, microglial and astrocyte activation, and TNF-α expression in activated microglia and astrocytes were significantly attenuated by EA treatment. Conclusions Treatment of TBI in the acute stage with EA for 60 min daily for 3 days could ameliorate neuroinflammation. This may thus represent a mechanism by which functional recovery can occur after TBI.
Collapse
|
27
|
Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, Schmitz K, Tegeder I, Schäfer MKE. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 2016; 65:278-292. [DOI: 10.1002/glia.23091] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Lutz Menzel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Lisa Kleber
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Carina Friedrich
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Regina Hummel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Larissa Dangel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg-University, Mainz; Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz; Germany
| | - Katja Schmitz
- Clinical Pharmacology; Goethe-University Hospital; Frankfurt Germany
| | - Irmgard Tegeder
- Clinical Pharmacology; Goethe-University Hospital; Frankfurt Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz; Germany
| |
Collapse
|
28
|
Wang X, Su J, Ding J, Han S, Ma W, Luo H, Hughes G, Meng Z, Yin Y, Wang Y, Li J. α-Aminoadipic acid protects against retinal disruption through attenuating Müller cell gliosis in a rat model of acute ocular hypertension. Drug Des Devel Ther 2016; 10:3449-3457. [PMID: 27799744 PMCID: PMC5076852 DOI: 10.2147/dddt.s105362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Ocular hypertension is an important risk factor for glaucoma. The purpose of this study was to investigate the gliotoxic effects of α-aminoadipic acid (AAA) in a rat model of AOH and its underlying mechanisms. MATERIALS AND METHODS In the rat model of acute ocular hypertension (AOH), intraocular pressure was increased to 110 mmHg for 60 minutes. Animals were divided into four groups: sham operation (Ctrl), AOH, AOH + phosphate-buffered saline (PBS), and AOH + AAA. Cell apoptosis in the ganglion cell layer was detected with the terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling (TUNEL) assay, and retinal ganglion cells (RGCs) immunostained with Thy-1 were counted. Müller cell activation was detected using immunostaining with glutamine synthetase and glial fibrillary acidic protein. Tumor necrosis factor-α (TNF-α) was examined using Western blot. RESULTS In the rat model of AOH, cell apoptosis was induced in the ganglion cell layer and the number of RGCs was decreased. Müller cell gliosis in the retinas of rats was induced, and retinal protein levels of TNF-α were increased. Intravitreal treatment of AAA versus PBS control attenuated these retinal abnormalities to show protective effects in the rat model of AOH. CONCLUSION In the retinas of the rat model of AOH, AAA treatment attenuated retinal apoptosis in the ganglion cell layer and preserved the number of RGCs, likely through the attenuation of Müller cell gliosis and suppression of TNF-α induction. Our observations suggest that AAA might be a potential therapeutic target in glaucoma.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Ophthalmology, Beijing Friendship Hospital
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| | - Jier Su
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
- Ningbo College of Health Sciences, Ningbo
| | - Jingwen Ding
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing
| | - Song Han
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| | - Wei Ma
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
- Beijing Stomatological Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hong Luo
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| | - Guy Hughes
- University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Zhaoyang Meng
- Department of Ophthalmology, Beijing Friendship Hospital
| | - Yi Yin
- Department of Ophthalmology, Beijing Friendship Hospital
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital
| | - Junfa Li
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| |
Collapse
|
29
|
Sordillo PP, Sordillo LA, Helson L. Bifunctional role of pro-inflammatory cytokines after traumatic brain injury. Brain Inj 2016; 30:1043-53. [DOI: 10.3109/02699052.2016.1163618] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Abstract
Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.
Collapse
Affiliation(s)
- Edward Lewis Tobinick
- Institute of Neurological Recovery, 2300 Glades Road, Suite 305E, Boca Raton, FL, 33431, USA.
| |
Collapse
|
31
|
Therapies negating neuroinflammation after brain trauma. Brain Res 2015; 1640:36-56. [PMID: 26740405 DOI: 10.1016/j.brainres.2015.12.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) elicits a complex secondary injury response, with neuroinflammation as a crucial central component. Long thought to be solely a deleterious factor, the neuroinflammatory response has recently been shown to be far more intricate, with both beneficial and detrimental consequences depending on the timing, magnitude and specific immune composition of the response post-injury. Despite extensive preclinical and clinical research into mechanisms of secondary injury after TBI, no effective neuroprotective therapy has been identified, with potential candidates repeatedly proving disappointing in the clinic. The neuroinflammatory response offers a promising avenue for therapeutic targeting, aiming to quell the deleterious consequences without influencing its function in providing a neurotrophic environment supportive of repair. The present review firstly describes the findings of recent clinical trials that aimed to modulate inflammation as a means of neuroprotection. Secondly, we discuss promising multifunctional and single-target anti-inflammatory candidates either currently in trial, or with ample experimental evidence supporting clinical application. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
32
|
Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol 2015; 275 Pt 3:367-380. [PMID: 26112314 DOI: 10.1016/j.expneurol.2015.05.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury rapidly induces inflammation. This inflammation is produced both by endogenous brain cells and circulating inflammatory cells that enter from the brain. Together they drive the inflammatory response through a wide variety of bioactive lipids, cytokines and chemokines. A large number of drugs with anti-inflammatory action have been tested in both preclinical studies and in clinical trials. These drugs either have known anti-inflammatory action or inhibit the inflammatory response through unknown mechanisms. The results of these preclinical studies and clinical trials are reviewed. Recommendations are suggested on how to improve preclinical testing of drugs to make them more relevant to evaluate for clinical trials.
Collapse
Affiliation(s)
- Peter J Bergold
- Robert F. Furchgott Center for Neural Science, Department of Physiology and Pharmacology, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States.
| |
Collapse
|
33
|
Hsing CH, Wang JJ. Clinical implication of perioperative inflammatory cytokine alteration. ACTA ACUST UNITED AC 2015; 53:23-8. [PMID: 25837846 DOI: 10.1016/j.aat.2015.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/06/2015] [Indexed: 12/22/2022]
Abstract
Cytokines are key modulators of inflammatory responses, and play an important role in the defense and repair mechanisms following trauma. After traumatic injury, an immuno-inflammatory response is initiated immediately, and cytokines rapidly appear and function as a regulator of immunity. In pathologic conditions, imbalanced cytokines may provide systemic inflammatory responses or immunosuppression. Expression of perioperative cytokines vary by different intensities of surgical trauma and types of anesthesia and anesthetic agents. Inflammatory cytokines play important roles in postoperative organ dysfunction including central nervous system, cardiovascular, lung, liver, and kidney injury. Inhibition of cytokines could protect against traumatic injury in some circumstances, therefore cytokine inhibitors or antagonists might have the potential for reducing postoperative tissue/organ dysfunction. Cytokines are also involved in wound healing and post-traumatic pain. Application of cytokines for the improvement of surgical wound healing has been reported. Anesthesia-related immune response adjustment might reduce perioperative morbidity because it reduces proinflammatory cytokine expression; however, the overall effects of anesthetics on postoperative immune-inflammatory responses needs to be further investigated.
Collapse
Affiliation(s)
- Chung-Hsi Hsing
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan; Department of Anesthesiology, Taipei Medical University, Taipei, Taiwan.
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
34
|
Yang ST, Lin JW, Chiu BY, Hsu YC, Chang CP, Chang CK. Astragaloside Improves Outcomes of Traumatic Brain Injury in Rats by Reducing Microglia Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1357-70. [DOI: 10.1142/s0192415x14500852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Astragaloside (AST) is traditionally prescribed for the prevention and treatment of cerebrovascular diseases. We directly tested the therapeutic effects of AST in a rat model of traumatic brain injury (TBI). One hour after the onset of TBI rats were given Saline (1 ml/kg) or AST (20–80 mg/kg) via i.p. injection. AST causes the attenuation of TBI-induced cerebral contusion, neuronal apoptosis, and neurological motor dysfunction. TBI-induced microglial activation evidenced by the morphological transformation of microglia (or ameboid microglia) and the microglial overexpression of tumor necrosis factor-alpha was reduced by AST. Our results indicate that AST may protect against brain contusion and neuronal apoptosis after TBI by attenuating microglia activation in male rats.
Collapse
Affiliation(s)
- Shun-Tai Yang
- Department of Neurosurgery, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jia-Wei Lin
- Department of Neurosurgery, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Bi-Ying Chiu
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yao-Chin Hsu
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Ping Chang
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan City 710, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Kuei Chang
- Department of Neurosurgery, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City 710, Taiwan
| |
Collapse
|
35
|
Clausen BH, Degn M, Martin NA, Couch Y, Karimi L, Ormhøj M, Mortensen MLB, Gredal HB, Gardiner C, Sargent IIL, Szymkowski DE, Petit GH, Deierborg T, Finsen B, Anthony DC, Lambertsen KL. Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia. J Neuroinflammation 2014; 11:203. [PMID: 25498129 PMCID: PMC4272527 DOI: 10.1186/s12974-014-0203-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/15/2014] [Indexed: 12/30/2022] Open
Abstract
Background The innate immune system contributes to the outcome after stroke, where neuroinflammation and post-stroke systemic immune depression are central features. Tumor necrosis factor (TNF), which exists in both a transmembrane (tm) and soluble (sol) form, is known to sustain complex inflammatory responses associated with stroke. We tested the effect of systemically blocking only solTNF versus blocking both tmTNF and solTNF on infarct volume, functional outcome and inflammation in focal cerebral ischemia. Methods We used XPro1595 (a dominant-negative inhibitor of solTNF) and etanercept (which blocks both solTNF and tmTNF) to test the effect of systemic administration on infarct volume, functional recovery and inflammation after focal cerebral ischemia in mice. Functional recovery was evaluated after one, three and five days, and infarct volumes at six hours, 24 hours and five days after ischemia. Brain inflammation, liver acute phase response (APR), spleen and blood leukocyte profiles, along with plasma microvesicle analysis, were evaluated. Results We found that both XPro1595 and etanercept significantly improved functional outcomes, altered microglial responses, and modified APR, spleen T cell and microvesicle numbers, but without affecting infarct volumes. Conclusions Our data suggest that XPro1595 and etanercept improve functional outcome after focal cerebral ischemia by altering the peripheral immune response, changing blood and spleen cell populations and decreasing granulocyte infiltration into the brain. Blocking solTNF, using XPro1595, was just as efficient as blocking both solTNF and tmTNF using etanercept. Our findings may have implications for future treatments with anti-TNF drugs in TNF-dependent diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0203-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark.
| | - Matilda Degn
- Department of Diagnostics, Molecular Sleep Laboratory, Glostrup Hospital, Nordre Ringvej 69, 2600, Glostrup, Denmark.
| | - Nellie Anne Martin
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark.
| | - Yvonne Couch
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark. .,Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, UK.
| | - Leena Karimi
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark.
| | - Maria Ormhøj
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark.
| | - Maria-Louise Bergholdt Mortensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark.
| | - Hanne Birgit Gredal
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark. .,Department of Veterinary Clinical and Animal Sciences, Facuty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870, Frederiksberg, Denmark.
| | - Chris Gardiner
- Nuffield Department of Obstetrics and Gynecology, University of Oxford, Headley Way, OX1 3QT, Oxford, UK.
| | - Ian I L Sargent
- Nuffield Department of Obstetrics and Gynecology, University of Oxford, Headley Way, OX1 3QT, Oxford, UK.
| | | | - Géraldine H Petit
- Department of Clinical Sciences, Laboratory for Experimental Medical Science, Neuronal Survival Unit, 22100 Lund University, BMC B11, Sölveg 19, Lund, Sweden.
| | - Tomas Deierborg
- Department of Clinical Sciences, Laboratory for Experimental Medical Science, Neuronal Survival Unit, 22100 Lund University, BMC B11, Sölveg 19, Lund, Sweden.
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark.
| | - Daniel Clive Anthony
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark. .,Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, UK.
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st., 5000, Odense, Denmark.
| |
Collapse
|
36
|
Ignatowski TA, Spengler RN, Tobinick E. Authors' reply to Whitlock: Perispinal etanercept for post-stroke neurological and cognitive dysfunction: scientific rationale and current evidence. CNS Drugs 2014; 28:1207-13. [PMID: 25373629 PMCID: PMC4246125 DOI: 10.1007/s40263-014-0212-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tracey A. Ignatowski
- Department of Pathology and Anatomical Sciences and Program for Neuroscience, School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY USA
| | | | - Edward Tobinick
- Institute of Neurological Recovery, 2300 Glades Road Suite 305E, Boca Raton, FL 33431 USA
| |
Collapse
|
37
|
Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des Devel Ther 2014; 8:2221-2238. [PMID: 25422582 PMCID: PMC4232043 DOI: 10.2147/dddt.s67655] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The brain is very actively involved in immune-inflammatory processes, and the response to several trigger factors such as trauma, hemorrhage, or ischemia causes the release of active inflammatory substances such as cytokines, which are the basis of second-level damage. During brain ischemia and after brain trauma, the intrinsic inflammatory mechanisms of the brain, as well as those of the blood, are mediated by leukocytes that communicate with each other through cytokines. A neuroinflammatory cascade has been reported to be activated after a traumatic brain injury (TBI) and this cascade is due to the release of pro- and anti-inflammatory cytokines and chemokines. Microglia are the first sources of this inflammatory cascade in the brain setting. Also in an ischemic stroke setting, an important mediator of this inflammatory reaction is tumor necrosis factor (TNF)-α, which seems to be involved in every phase of stroke-related neuronal damage such as inflammatory and prothrombotic events. TNF-α has been shown to have an important role within the central nervous system; its properties include activation of microglia and astrocytes, influence on blood-brain barrier permeability, and influences on glutamatergic transmission and synaptic plasticity. TNF-α increases the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor density on the cell surface and simultaneously decreases expression of γ-aminobutyric acid receptor cells, and these effects are related to a direct neurotoxic effect. Several endogenous mechanisms regulate TNF-α activity during inflammatory responses. Endogenous inhibitors of TNF include prostaglandins, cyclic adenosine monophosphate, and glucocorticoids. Etanercept, a biologic TNF antagonist, has a reported effect of decreasing microglia activation in experimental models, and it has been used therapeutically in animal models of ischemic and traumatic neuronal damage. In some studies using animal models, researchers have reported a limitation of TBI-induced cerebral ischemia due to etanercept action, amelioration of brain contusion signs, as well as motor and cognitive dysfunction. On this basis, it appears that etanercept may improve outcomes of TBI by penetrating into the cerebrospinal fluid in rats, although further studies in humans are needed to confirm these interesting and suggestive experimental findings.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Biomedical Department of Internal and Specialistic Medicine, University of Palermo, Palermo, Italy
| | - Rosaria Pecoraro
- Biomedical Department of Internal and Specialistic Medicine, University of Palermo, Palermo, Italy
| | - Antonio Pinto
- Biomedical Department of Internal and Specialistic Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
38
|
Newell EA, Exo JL, Verrier JD, Jackson TC, Gillespie DG, Janesko-Feldman K, Kochanek PM, Jackson EK. 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine inhibit TNF-α and CXCL10 production from activated primary murine microglia via A2A receptors. Brain Res 2014; 1594:27-35. [PMID: 25451117 DOI: 10.1016/j.brainres.2014.10.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Some cells, tissues and organs release 2',3'-cAMP (a positional isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'-AMP plus 3'-AMP and convert these AMPs to adenosine (called the extracellular 2',3'-cAMP-adenosine pathway). Recent studies show that microglia have an extracellular 2',3'-cAMP-adenosine pathway. The goal of the present study was to investigate whether the extracellular 2',3'-cAMP-adenosine pathway could have functional consequences on the production of cytokines/chemokines by activated microglia. METHODS Experiments were conducted in cultures of primary murine microglia. In the first experiment, the effect of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production was determined. In the next experiment, the first protocol was replicated but with the addition of 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX) (0.1 μM; antagonist of adenosine receptors). The last experiment compared the ability of 2-chloro-N(6)-cyclopentyladenosine (CCPA) (10 μM; selective A1 agonist), 5'-N-ethylcarboxamide adenosine (NECA) (10 μM; agonist for all adenosine receptor subtypes) and CGS21680 (10 μM; selective A2A agonist) to inhibit LPS-induced TNF-α and CXCL10 production. RESULTS (1) 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine similarly inhibited LPS-induced TNF-α and CXCL10 production; (2) DPSPX nearly eliminated the inhibitory effects of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production; (3) CCPA did not affect LPS-induced TNF-α and CXCL10; (4) NECA and CGS21680 similarly inhibited LPS-induced TNF-α and CXCL10 production. CONCLUSIONS 2',3'-cAMP and its metabolites (3'-AMP, 2'-AMP and adenosine) inhibit LPS-induced TNF-α and CXCL10 production via A2A-receptor activation. Adenosine and its precursors, via A2A receptors, likely suppress TNF-α and CXCL10 production by activated microglia in brain diseases.
Collapse
Affiliation(s)
- Elizabeth A Newell
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jennifer L Exo
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jonathan D Verrier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Travis C Jackson
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Keri Janesko-Feldman
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Therapeutic efficacy of Neuro AiD™ (MLC 601), a traditional Chinese medicine, in experimental traumatic brain injury. J Neuroimmune Pharmacol 2014; 10:45-54. [PMID: 25331680 DOI: 10.1007/s11481-014-9570-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
Traumatic brain injury (TBI) causes increased release of several mediators from injured and dead cells and elicits microglial activation. Activated microglia change their morphology, migrate to injury sites, and release tumor necrosis factor-alpha (TNF-α) and others. In this study we used a controlled fluid percussion injury model of TBI in the rat to determine whether early (4 h post-injury) or late (4 days post-injury) treatment with MLC 601, a Traditional Chinese Medicine, would affect microglial activation and improve recovery. MLC 601 was chosen for this study because its herbal component MLC 901 was beneficial in treating TBI in rats. Herein, rats with induced TBI were treated with MLC 601 (0.2-0.8 mg/kg) 1 h (early treatment) or 4 day post-injury (late treatment) and then injected once daily for consecutive 2 days. Acute neurological and motor deficits were assessed in all rats the day before and 4 days after early MLC 601 treatment. An immunofluorescence microscopy method was used to count the numbers of the cells colocalized with neuron- and apoptosis-specific markers, and the cells colocalized with microglia- and TNF-α-specific markers, in the contused brain regions 4 days post-injury. An immunohistochemistry method was used to evaluate both the number and the morphological transformation of microglia in the injured areas. It was found that early treatment with MLC 601 had better effects in reducing TBI-induced cerebral contusion than did the late therapy with MLC 601. Cerebral contusion caused by TBI was associated with neurological motor deficits, brain apoptosis, and activated microglia (e.g., microgliosis, amoeboid microglia, and microglial overexpression of TNF-α), which all were significantly attenuated by MLC 601 therapy. Our data suggest that MLC 601 is a promising agent for treatment of TBI in rats.
Collapse
|
40
|
Tobin RP, Mukherjee S, Kain JM, Rogers SK, Henderson SK, Motal HL, Rogers MKN, Shapiro LA. Traumatic brain injury causes selective, CD74-dependent peripheral lymphocyte activation that exacerbates neurodegeneration. Acta Neuropathol Commun 2014; 2:143. [PMID: 25329434 PMCID: PMC4203873 DOI: 10.1186/s40478-014-0143-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/11/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Traumatic brain injury (TBI), a significant cause of death and disability, causes, as in any injury, an acute, innate immune response. A key component in the transition between innate and adaptive immunity is the processing and presentation of antigen by professional antigen presenting cells (APCs). Whether an adaptive immune response to brain injury is beneficial or detrimental is not known. Current efforts to understand the contribution of the immune system after TBI have focused on neuroinflammation and brain-infiltrating immune cells. Here, we characterize and target TBI-induced expansion of peripheral immune cells that may act as potential APCs. Because MHC Class II-associated invariant peptide (CLIP) is important for antigen processing and presentation, we engineered a competitive antagonist (CAP) for CLIP, and tested the hypothesis that peptide competition could reverse or prevent neurodegeneration after TBI. Results We show that after fluid percussion injury (FPI), peripheral splenic lymphocytes, including CD4+ and CD8+ T cells, regulatory T cells (Tregs), and γδ T cells, are increased in number within 24 hours after FPI. These increases were reversed by CAP treatment and this antagonism of CLIP also reduced neuroinflammation and neurodegeneration after TBI. Using a mouse deficient for the precursor of CLIP, CD74, we observed decreased peripheral lymphocyte activation, decreased neurodegeneration, and a significantly smaller lesion size following TBI. Conclusion Taken together, the data support the hypothesis that neurodegeneration following TBI is dependent upon antigen processing and presentation that requires CD74. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0143-5) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Abstract
There is increasing recognition of the involvement of the immune signaling molecule, tumor necrosis factor (TNF), in the pathophysiology of stroke and chronic brain dysfunction. TNF plays an important role both in modulating synaptic function and in the pathogenesis of neuropathic pain. Etanercept is a recombinant therapeutic that neutralizes pathologic levels of TNF. Brain imaging has demonstrated chronic intracerebral microglial activation and neuroinflammation following stroke and other forms of acute brain injury. Activated microglia release TNF, which mediates neurotoxicity in the stroke penumbra. Recent observational studies have reported rapid and sustained improvement in chronic post-stroke neurological and cognitive dysfunction following perispinal administration of etanercept. The biological plausibility of these results is supported by independent evidence demonstrating reduction in cognitive dysfunction, neuropathic pain, and microglial activation following the use of etanercept, as well as multiple studies reporting improvement in stroke outcome and cognitive impairment following therapeutic strategies designed to inhibit TNF. The causal association between etanercept treatment and reduction in post-stroke disability satisfy all of the Bradford Hill Criteria: strength of the association; consistency; specificity; temporality; biological gradient; biological plausibility; coherence; experimental evidence; and analogy. Recognition that chronic microglial activation and pathologic TNF concentration are targets that may be therapeutically addressed for years following stroke and other forms of acute brain injury provides an exciting new direction for research and treatment.
Collapse
|