1
|
Pan D, Sun Y, Shi B, Wang R, Ng PKL, Guinot D, Cumberlidge N, Sun H. Phylogenomic analysis of brachyuran crabs using transcriptome data reveals possible sources of conflicting phylogenetic relationships within the group. Mol Phylogenet Evol 2024; 201:108201. [PMID: 39278384 DOI: 10.1016/j.ympev.2024.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Despite extensive morphological and molecular studies, the phylogenetic interrelationships within the infraorder Brachyura and the phylogenetic positions of many taxa remain uncertain. Studies that used a limited number of molecular markers have often failed to provide sufficient resolution, and may be susceptible to stochastic errors and incomplete lineage sorting (ILS). Here we reconstructed the phylogenetic relationships within the Brachyura using transcriptome data of 56 brachyuran species, including 14 newly sequenced taxa. Five supermatrices were constructed in order to exclude different sources of systematic error. The results of the phylogenetic analyses indicate that Heterotremata is non-monophyletic, and that the two Old World primary freshwater crabs (Potamidae and Gecarcinucidae) and the Hymenosomatoidea form a clade that is sister to the Thoracotremata, and outside the Heterotremata. We also found that ILS is the main cause of the gene-tree discordance of these freshwater crabs. Divergence time estimations indicate that the Brachyura has an ancient origin, probably either in the Triassic or Jurassic, and that the majority of extant families and superfamilies first appeared during the Cretaceous, with a constant increase of diversity in Post-Cretaceous-Palaeogene times. The results support the hypothesis that the two Old World freshwater crab families included in this study (Potamidae and Gecarcinucidae) diverged from their marine ancestors around 120 Ma, in the Cretaceous. In addition, this work provides new insights that may aid in the reclassification of some of the more problematic brachyuran groups.
Collapse
Affiliation(s)
- Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China.
| | - Yunlong Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Boyang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ruxiao Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Danièle Guinot
- Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Institut de Systématique, Évolution, Biodiversité (ISYEB), Case Postale 53, 57 rue Cuvier, F-75231 Paris cedex 05, France
| | - Neil Cumberlidge
- Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA
| | - Hongying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Garcia EL, Cushing PE. Historical biogeography and the evolution of habitat preference in the North American camel spider family, Eremobatidae (Arachnida:Solifugae). Mol Phylogenet Evol 2024; 201:108193. [PMID: 39303972 DOI: 10.1016/j.ympev.2024.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Abiotic variables can influence species distributions, often restricting taxa to an acquired climatic signature or conversely, related species are conserved in the same ecological space over millions of years. An investigation into how abiotic change has shaped geographic distributions of taxa may be key to understanding diversification of lineages, and in the absence of reliable morphological characteristics, such information may support taxonomic units at multiple scales. Here, we examine the historical biogeography and patterns of habitat preference within the North American solifuge family, Eremobatidae. A previous study demonstrated that a major taxonomic revision of Eremobatidae is warranted, however recent studies demonstrate high levels of morphological convergence within the group, thus a re-classification of generic boundaries using additional information must be prioritized before we can formally begin solid revisionary efforts. In this study, we aimed to reconstruct a well-resolved phylogenetic hypothesis of Eremobatidae by filtering UCE loci based on informativeness, by mitigating the effect of cogenic UCE on phylogenetic estimation, and by supplementing our curated UCE loci with mitochondrial information. Using our preferred topology, in conjunction with published estimated divergence dates for Eremobatidae, we inferred a time-calibrated phylogenetic hypothesis to inform the historical biogeography and patterns of habitat preference. The two major habitat types that were observed for Eremobatidae were warm deserts for early diverging taxa and a subsequent evolution to cold deserts and Mediterranean California ecoregions for later diverging taxa. Eremobatid niche space, determined by temperature and precipitation, has been conserved for at least 25 million years in North America, supporting a warm desert origin, and thus supporting high species richness in the Sonoran and Mexican Plateau. Overall, our study provides support for new generic level designations within Eremobatidae.
Collapse
Affiliation(s)
- Erika L Garcia
- Denver Museum of Nature & Science, 2001 Colorado Blvd., Denver, CO 80205, USA; University of Colorado Denver, 1201 Larimer St, Denver, CO 80204, USA.
| | - Paula E Cushing
- Denver Museum of Nature & Science, 2001 Colorado Blvd., Denver, CO 80205, USA; University of Colorado Denver, 1201 Larimer St, Denver, CO 80204, USA
| |
Collapse
|
3
|
Atta CJ, Yuan H, Li C, Arcila D, Betancur-R R, Hughes LC, Ortí G, Tornabene L. Exon-capture data and locus screening provide new insights into the phylogeny of flatfishes (Pleuronectoidei). Mol Phylogenet Evol 2021; 166:107315. [PMID: 34537325 DOI: 10.1016/j.ympev.2021.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/12/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
There is an extensive collection of literature on the taxonomy and phylogenetics of flatfishes (Pleuronectiformes) that extends over two centuries, but consensus on many of their evolutionary relationships remains elusive. Phylogenetic uncertainty stems from highly divergent results derived from morphological and genetic characters, and between various molecular datasets. Deciphering relationships is complicated by rapid diversification early in the Pleuronectiformes tree and an abundance of studies that incompletely and inconsistently sample taxa and genetic markers. We present phylogenies based on a genome-wide dataset (4,434 nuclear markers via exon-capture) and wide taxon sampling (86 species spanning 12 of 16 families) of the largest flatfish suborder (Pleuronectoidei). Nine different subsets of the data and two tree construction approaches (eighteen phylogenies in total) are remarkably consistent with other recent molecular phylogenies, and show strong support for the monophyly of all families included except Pleuronectidae. Analyses resolved a novel phylogenetic hypothesis for the family Rhombosoleidae as being within the Pleuronectoidea rather than the Soleoidea, and failed to support the subfamily Hippoglossinae as a monophyletic group. Our results were corroborated with evidence from previous phylogenetic studies to outline regions of persistent phylogenetic uncertainty and identify groups in need of further phylogenetic inference.
Collapse
Affiliation(s)
- Calder J Atta
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, USA; Burke Museum of Natural History and Culture, Seattle, USA.
| | - Hao Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Chenhong Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Dahiana Arcila
- Sam Noble Oklahoma Museum of Natural History, The University of Oklahoma, Norman, OK 73072, USA; Department of Biology, The University of Oklahoma, Norman, OK 73072, USA
| | - Ricardo Betancur-R
- Sam Noble Oklahoma Museum of Natural History, The University of Oklahoma, Norman, OK 73072, USA; Department of Biology, The University of Oklahoma, Norman, OK 73072, USA
| | - Lily C Hughes
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA; National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Guillermo Ortí
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, USA; Burke Museum of Natural History and Culture, Seattle, USA
| |
Collapse
|
4
|
Takezaki N. Resolving the Early Divergence Pattern of Teleost Fish Using Genome-Scale Data. Genome Biol Evol 2021; 13:6178791. [PMID: 33739405 PMCID: PMC8103497 DOI: 10.1093/gbe/evab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Regarding the phylogenetic relationship of the three primary groups of teleost fishes, Osteoglossomorpha (bonytongues and others), Elopomorpha (eels and relatives), Clupeocephala (the remaining teleost fish), early morphological studies hypothesized the first divergence of Osteoglossomorpha, whereas the recent prevailing view is the first divergence of Elopomorpha. Molecular studies supported all the possible relationships of the three primary groups. This study analyzed genome-scale data from four previous studies: 1) 412 genes from 12 species, 2) 772 genes from 15 species, 3) 1,062 genes from 30 species, and 4) 491 UCE loci from 27 species. The effects of the species, loci, and models used on the constructed tree topologies were investigated. In the analyses of the data sets (1)–(3), although the first divergence of Clupeocephala that left the other two groups in a sister relationship was supported by concatenated sequences and gene trees of all the species and genes, the first divergence of Elopomorpha among the three groups was supported using species and/or genes with low divergence of sequence and amino-acid frequencies. This result corresponded to that of the UCE data set (4), whose sequence divergence was low, which supported the first divergence of Elopomorpha with high statistical significance. The increase in accuracy of the phylogenetic construction by using species and genes with low sequence divergence was predicted by a phylogenetic informativeness approach and confirmed by computer simulation. These results supported that Elopomorpha was the first basal group of teleost fish to have diverged, consistent with the prevailing view of recent morphological studies.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Mikicho, Kitagun, Kagawa, Japan
| |
Collapse
|
5
|
Monjaraz-Ruedas R, Francke OF, Prendini L. Integrative systematics untangles the evolutionary history of Stenochrus (Schizomida: Hubbardiidae), a neglected junkyard genus of North American short-tailed whipscorpions. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Until recently, the Nearctic short-tailed whipscorpion genus, StenochrusChamberlin, 1922, included 27 species distributed primarily in Mexico, the USA and Central America. Morphological disparity among its species, associated with their adaptation to diverse habitats, raised the question as to whether Stenochrus was monophyletic. The phylogenetic relationships among short-tailed whipscorpions have only recently begun to be explored, and the monophyly of Stenochrus had never been tested. The present contribution provides the first phylogeny of Stenochrus and related genera, based on 61 morphological characters and 2991 aligned DNA nucleotides from two nuclear and two mitochondrial gene markers, for 73 terminal taxa. Separate and simultaneous analyses of the morphological and molecular data sets were conducted with Bayesian Inference, Maximum Likelihood, and parsimony with equal and implied weighting. Terminals represented only by morphological data (‘orphans’) were included in some analyses for evaluation of their phylogenetic positions. As previously defined, Stenochrus sensuReddell & Cokendolpher (1991, 1995) was consistently polyphyletic and comprised eight monophyletic clades, justifying its reclassification into eight genera including Heteroschizomus Rowland, 1973, revalidated from synonymy with Stenochrus by Monjaraz-Ruedas et al. (2019). Rowland & Reddell’s (1980)mexicanus and pecki species groups were consistently paraphyletic. Orphans grouped with the most morphologically similar taxa.
Collapse
Affiliation(s)
- Rodrigo Monjaraz-Ruedas
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P., Coyoacán, Ciudad de México, México
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 3er. Circuito exterior s/n. Apartado Postal, C.P., Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Oscar F Francke
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 3er. Circuito exterior s/n. Apartado Postal, C.P., Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Lorenzo Prendini
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
6
|
Kannan A, Rama Rao S, Ratnayeke S, Yow YY. The efficiency of universal mitochondrial DNA barcodes for species discrimination of Pomacea canaliculata and Pomacea maculata. PeerJ 2020; 8:e8755. [PMID: 32274263 PMCID: PMC7127494 DOI: 10.7717/peerj.8755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/16/2020] [Indexed: 12/05/2022] Open
Abstract
Invasive apple snails, Pomacea canaliculata and P. maculata, have a widespread distribution globally and are regarded as devastating pests of agricultural wetlands. The two species are morphologically similar, which hinders species identification via morphological approaches and species-specific management efforts. Advances in molecular genetics may contribute effective diagnostic tools to potentially resolve morphological ambiguity. DNA barcoding has revolutionized the field of taxonomy by providing an alternative, simple approach for species discrimination, where short sections of DNA, the cytochrome c oxidase subunit I (COI) gene in particular, are used as ‘barcodes’ to delineate species boundaries. In our study, we aimed to assess the effectiveness of two mitochondrial markers, the COI and 16S ribosomal deoxyribonucleic acid (16S rDNA) markers for DNA barcoding of P. canaliculata and P. maculata. The COI and 16S rDNA sequences of 40 Pomacea specimens collected from six localities in Peninsular Malaysia were analyzed to assess their barcoding performance using phylogenetic methods and distance-based assessments. The results confirmed both markers were suitable for barcoding P. canaliculata and P. maculata. The phylogenies of the COI and 16S rDNA markers demonstrated species-specific monophyly and were largely congruent with the exception of one individual. The COI marker exhibited a larger barcoding gap (6.06–6.58%) than the 16S rDNA marker (1.54%); however, the magnitude of barcoding gap generated within the barcoding region of the 16S rDNA marker (12-fold) was bigger than the COI counterpart (approximately 9-fold). Both markers were generally successful in identifying P. canaliculata and P. maculata in the similarity-based DNA identifications. The COI + 16S rDNA concatenated dataset successfully recovered monophylies of P. canaliculata and P. maculata but concatenation did not improve individual datasets in distance-based analyses. Overall, although both markers were successful for the identification of apple snails, the COI molecular marker is a better barcoding marker and could be utilized in various population genetic studies of P. canaliculata and P. maculata.
Collapse
Affiliation(s)
- Adrian Kannan
- Department of Biological Sciences, School of Science & Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Suganiya Rama Rao
- Department of Biological Sciences, School of Science & Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Shyamala Ratnayeke
- Department of Biological Sciences, School of Science & Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Science & Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Pérez-Escobar OA, Bogarín D, Schley R, Bateman RM, Gerlach G, Harpke D, Brassac J, Fernández-Mazuecos M, Dodsworth S, Hagsater E, Blanco MA, Gottschling M, Blattner FR. Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-by-sequencing data. Mol Phylogenet Evol 2020; 144:106672. [DOI: 10.1016/j.ympev.2019.106672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023]
|
8
|
Burbrink FT, Grazziotin FG, Pyron RA, Cundall D, Donnellan S, Irish F, Keogh JS, Kraus F, Murphy RW, Noonan B, Raxworthy CJ, Ruane S, Lemmon AR, Lemmon EM, Zaher H. Interrogating Genomic-Scale Data for Squamata (Lizards, Snakes, and Amphisbaenians) Shows no Support for Key Traditional Morphological Relationships. Syst Biol 2019; 69:502-520. [DOI: 10.1093/sysbio/syz062] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Genomics is narrowing uncertainty in the phylogenetic structure for many amniote groups. For one of the most diverse and species-rich groups, the squamate reptiles (lizards, snakes, and amphisbaenians), an inverse correlation between the number of taxa and loci sampled still persists across all publications using DNA sequence data and reaching a consensus on the relationships among them has been highly problematic. In this study, we use high-throughput sequence data from 289 samples covering 75 families of squamates to address phylogenetic affinities, estimate divergence times, and characterize residual topological uncertainty in the presence of genome-scale data. Importantly, we address genomic support for the traditional taxonomic groupings Scleroglossa and Macrostomata using novel machine-learning techniques. We interrogate genes using various metrics inherent to these loci, including parsimony-informative sites (PIS), phylogenetic informativeness, length, gaps, number of substitutions, and site concordance to understand why certain loci fail to find previously well-supported molecular clades and how they fail to support species-tree estimates. We show that both incomplete lineage sorting and poor gene-tree estimation (due to a few undesirable gene properties, such as an insufficient number of PIS), may account for most gene and species-tree discordance. We find overwhelming signal for Toxicofera, and also show that none of the loci included in this study supports Scleroglossa or Macrostomata. We comment on the origins and diversification of Squamata throughout the Mesozoic and underscore remaining uncertainties that persist in both deeper parts of the tree (e.g., relationships between Dibamia, Gekkota, and remaining squamates; among the three toxicoferan clades Iguania, Serpentes, and Anguiformes) and within specific clades (e.g., affinities among gekkotan, pleurodont iguanians, and colubroid families).
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Av. Vital Brasil, 1500—Butantã, São Paulo—SP 05503-900, Brazil
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - David Cundall
- Department of Biological Sciences, 1 W. Packer Avenue, Lehigh University, Bethlehem, PA 18015, USA
| | - Steve Donnellan
- South Australian Museum, North Terrace, Adelaide SA 5000, Australia
- School of Biological Sciences, University of Adelaide, SA 5005 Australia
| | - Frances Irish
- Department of Biological Sciences, Moravian College, 1200 Main St, Bethlehem, PA 18018, US
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Fred Kraus
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert W Murphy
- Department of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, ON M5S 2C6, Canada
| | - Brice Noonan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Christopher J Raxworthy
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| | - Sara Ruane
- Department of Biological Sciences, 206 Boyden Hall, Rutgers University, 195 University Avenue, Newark, NJ 07102, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4102, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil CEP 04263-000, Brazil
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P), UMR 7207 CNRS/MNHN/Sorbonne Université, Muséum national d’Histoire naturelle, 8 rue Buffon, CP 38, 75005 Paris, France
| |
Collapse
|
9
|
Kuang T, Tornabene L, Li J, Jiang J, Chakrabarty P, Sparks JS, Naylor GJP, Li C. Phylogenomic analysis on the exceptionally diverse fish clade Gobioidei (Actinopterygii: Gobiiformes) and data-filtering based on molecular clocklikeness. Mol Phylogenet Evol 2018; 128:192-202. [PMID: 30036699 DOI: 10.1016/j.ympev.2018.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022]
Abstract
The use of genome-scale data to infer phylogenetic relationships has gained in popularity in recent years due to the progress made in target-gene capture and sequencing techniques. Data filtering, the approach of excluding data inconsistent with the model from analyses, presumably could alleviate problems caused by systematic errors in phylogenetic inference. Different data filtering criteria, such as those based on evolutionary rate and molecular clocklikeness as well as others have been proposed for selecting useful phylogenetic markers, yet few studies have tested these criteria using phylogenomic data. We developed a novel set of single-copy nuclear coding markers to capture thousands of target genes in gobioid fishes, a species-rich lineages of vertebrates, and tested the effects of data-filtering methods based on substitution rate and molecular clocklikeness while attempting to control for the compounding effects of missing data and variation in locus length. We found that molecular clocklikeness was a better predictor than overall substitution rate for phylogenetic usefulness of molecular markers in our study. In addition, when the 100 best ranked loci for our predictors were concatenated and analyzed using maximum likelihood, or combined in a coalescent-based species-tree analysis, the resulting trees showed a well-resolved topology of Gobioidei that mostly agrees with previous studies. However, trees generated from the 100 least clocklike frequently recovered conflicting, and in some cases clearly erroneous topologies with strong support, thus indicating strong systematic biases in those datasets. Collectively these results suggest that data filtering has the potential improve the performance of phylogenetic inference when using both a concatenation approach as well as methods that rely on input from individual gene trees (i.e. coalescent species-tree approaches), which may be preferred in scenarios where incomplete lineage sorting is likely to be an issue.
Collapse
Affiliation(s)
- Ting Kuang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Jingyan Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Jiamei Jiang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Prosanta Chakrabarty
- Louisiana State University, Museum of Natural Science, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | - John S Sparks
- American Museum of Natural History, Central Park West at 79th Street, NY, NY 10024, USA
| | | | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China.
| |
Collapse
|
10
|
Genomic Mining of Phylogenetically Informative Nuclear Markers in Bark and Ambrosia Beetles. PLoS One 2016; 11:e0163529. [PMID: 27668729 PMCID: PMC5036811 DOI: 10.1371/journal.pone.0163529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/10/2016] [Indexed: 11/19/2022] Open
Abstract
Deep level insect relationships are generally difficult to resolve, especially within taxa of the most diverse and species rich holometabolous orders. In beetles, the major diversity occurs in the Phytophaga, including charismatic groups such as leaf beetles, longhorn beetles and weevils. Bark and ambrosia beetles are wood boring weevils that contribute 12 percent of the diversity encountered in Curculionidae, one of the largest families of beetles with more than 50000 described species. Phylogenetic resolution in groups of Cretaceous age has proven particularly difficult and requires large quantity of data. In this study, we investigated 100 nuclear genes in order to select a number of markers with low evolutionary rates and high phylogenetic signal. A PCR screening using degenerate primers was applied to 26 different weevil species. We obtained sequences from 57 of the 100 targeted genes. Sequences from each nuclear marker were aligned and examined for detecting multiple copies, pseudogenes and introns. Phylogenetic informativeness (PI) and the capacity for reconstruction of previously established phylogenetic relationships were used as proxies for selecting a subset of the 57 amplified genes. Finally, we selected 16 markers suitable for large-scale phylogenetics of Scolytinae and related weevil taxa.
Collapse
|
11
|
Shen XX, Salichos L, Rokas A. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference. Genome Biol Evol 2016; 8:2565-80. [PMID: 27492233 PMCID: PMC5010910 DOI: 10.1093/gbe/evw179] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 12/13/2022] Open
Abstract
Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University
| | - Leonidas Salichos
- Department of Biological Sciences, Vanderbilt University Department of Molecular Biophysics and Biochemistry, Yale University
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University
| |
Collapse
|
12
|
Fernández R, Edgecombe GD, Giribet G. Exploring Phylogenetic Relationships within Myriapoda and the Effects of Matrix Composition and Occupancy on Phylogenomic Reconstruction. Syst Biol 2016; 65:871-89. [PMID: 27162151 PMCID: PMC4997009 DOI: 10.1093/sysbio/syw041] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/28/2016] [Indexed: 11/14/2022] Open
Abstract
Myriapods, including the diverse and familiar centipedes and millipedes, are one of the dominant terrestrial arthropod groups. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes from many species) or on maximizing matrix size (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed 40 Illumina transcriptomes representing 3 of the 4 myriapod classes (Diplopoda, Chilopoda, and Symphyla); 25 transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda. Ten supermatrices were constructed to explore the effect of several potential phylogenetic biases (e.g., rate of evolution, heterotachy) at 3 levels of gene occupancy per taxon (50%, 75%, and 90%). Analyses based on maximum likelihood and Bayesian mixture models retrieved monophyly of each myriapod class, and resulted in 2 alternative phylogenetic positions for Symphyla, as sister group to Diplopoda + Chilopoda, or closer to Diplopoda, the latter hypothesis having been traditionally supported by morphology. Within centipedes, all orders were well supported, but 2 deep nodes remained in conflict in the different analyses despite dense taxon sampling at the family level. Relationships among centipede orders in all analyses conducted with the most complete matrix (90% occupancy) are at odds not only with the sparser but more gene-rich supermatrices (75% and 50% supermatrices) and with the matrices optimizing phylogenetic informativeness or most conserved genes, but also with previous hypotheses based on morphology, development, or other molecular data sets. Our results indicate that a high percentage of ribosomal proteins in the most complete matrices, in conjunction with distance from the root, can act in concert to compromise the estimated relationships within the ingroup. We discuss the implications of these findings in the context of the ever more prevalent quest for completeness in phylogenomic studies.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Balasundaram SV, Engh IB, Skrede I, Kauserud H. How many DNA markers are needed to reveal cryptic fungal species? Fungal Biol 2015; 119:940-945. [DOI: 10.1016/j.funbio.2015.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/17/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
|
14
|
New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0236-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Gilbert PS, Chang J, Pan C, Sobel EM, Sinsheimer JS, Faircloth BC, Alfaro ME. Genome-wide ultraconserved elements exhibit higher phylogenetic informativeness than traditional gene markers in percomorph fishes. Mol Phylogenet Evol 2015; 92:140-6. [PMID: 26079130 DOI: 10.1016/j.ympev.2015.05.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 02/04/2023]
Abstract
Ultraconserved elements (UCEs) have become popular markers in phylogenomic studies because of their cost effectiveness and their potential to resolve problematic phylogenetic relationships. Although UCE datasets typically contain a much larger number of loci and sites than more traditional datasets of PCR-amplified, single-copy, protein coding genes, a fraction of UCE sites are expected to be part of a nearly invariant core, and the relative performance of UCE datasets versus protein coding gene datasets is poorly understood. Here we use phylogenetic informativeness (PI) to compare the resolving power of multi-locus and UCE datasets in a sample of percomorph fishes with sequenced genomes (genome-enabled). We compare three data sets: UCE core regions, flanking sequence adjacent to the UCE core and a set of ten protein coding genes commonly used in fish systematics. We found the net informativeness of UCE core and flank regions to be roughly ten-fold and 100-fold more informative than that of the protein coding genes. On a per locus basis UCEs and protein coding genes exhibited similar levels of phylogenetic informativeness. Our results suggest that UCEs offer enormous potential for resolving relationships across the percomorph tree of life.
Collapse
Affiliation(s)
- Princess S Gilbert
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA.
| | - Jonathan Chang
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Eric M Sobel
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Janet S Sinsheimer
- Department of Biomathematics, University of California, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, CA, USA; Department of Biostatistics, University of California, Los Angeles, CA, USA
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Michael E Alfaro
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Dentinger BTM, Gaya E, O'Brien H, Suz LM, Lachlan R, Díaz-Valderrama JR, Koch RA, Aime MC. Tales from the crypt: genome mining from fungarium specimens improves resolution of the mushroom tree of life. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12553] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Bryn T. M. Dentinger
- Jodrell Laboratory; Royal Botanic Gardens; Kew TW9 3DS UK
- Institute of Biological, Environmental and Rural Sciences; Aberystwyth University; Cledwyn Building Penglais Aberystwyth SY23 3DD UK
| | - Ester Gaya
- Jodrell Laboratory; Royal Botanic Gardens; Kew TW9 3DS UK
| | - Heath O'Brien
- School of Biological Sciences; University of Bristol; Life Sciences Building 24 Tyndall Avenue Bristol BS8 1TQ UK
| | - Laura M. Suz
- Jodrell Laboratory; Royal Botanic Gardens; Kew TW9 3DS UK
| | - Robert Lachlan
- Department of Psychology; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Jorge R. Díaz-Valderrama
- Department of Botany and Plant Pathology; Purdue University; 915 W. State St. West Lafayette IN 47907 USA
| | - Rachel A. Koch
- Department of Botany and Plant Pathology; Purdue University; 915 W. State St. West Lafayette IN 47907 USA
| | - M. Catherine Aime
- Department of Botany and Plant Pathology; Purdue University; 915 W. State St. West Lafayette IN 47907 USA
| |
Collapse
|
17
|
Su Z, Wang Z, López-Giráldez F, Townsend JP. The impact of incorporating molecular evolutionary model into predictions of phylogenetic signal and noise. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|