1
|
Fan W, Mao Y, Wu L, Feng P, Zhang X, Hu J, Jin Y, Yang X, Li H, Liu Q, Peng H. Association between CORIN promoter methylation and hypertensive disorders of pregnancy - A nested case-control study. Placenta 2024; 148:77-83. [PMID: 38417305 DOI: 10.1016/j.placenta.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
INTRODUCTION Corin protein and its coding gene variants have been associated with hypertensive disorders of pregnancy (HDP), but the underlying mechanisms are unclear. As a mediator linking fixed genome with the dynamic environment, DNA methylation at the CORIN gene may link corin with HDP but not has been studied. This study aimed to examine whether CORIN promoter methylation and HDP in Chinese pregnant women. METHODS Based on a cohort of Chinese pregnant women, we designed a nested case-control study including 196 cases with HDP and 200 healthy controls. DNA methylation levels in the CORIN promoter were quantified by pyrosequencing using peripheral blood before 20 gestational weeks. The association between DNA methylation in CORIN promoter and HDP was systemically examined by single CpG association analysis, followed by gene-based analysis. Multiple testing was controlled by the false discovery rate (FDR) method. RESULTS The single CpG association analysis found that, among the 5 CpG sites assayed, hypermethylation at one CpG site (Chr4:47839945) was significantly associated with HDP (OR = 1.94, raw P = 0.020), but the significance did not survive for multiple testing correction (FDR-P = 0.100). The gene-based association analysis found that DNA methylation of the 5 CpG sites was jointly associated with HDP (raw P = 0.003). In addition to HDP, CORIN promoter methylation was also significantly associated with dynamic blood pressure during pregnancy (raw P < 0.05). DISCUSSION Hypermethylation in CORIN promoter at early pregnancy was associated with the risk of HDP during late pregnancy in Chinese women. However, further evidence is required to establish the causality between CORIN promoter methylation and HDP.
Collapse
Affiliation(s)
- Wenxiu Fan
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Mao
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Obstetrics and Gynecology, The First People's Hospital of Kunshan, Suzhou, China
| | - Lei Wu
- Department of Maternal and Child Health, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - Pei Feng
- Department of Community Health Care, Maternal and Child Health Bureau of Kunshan, Suzhou, China
| | - Xueyang Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jianwei Hu
- Department of Community Health Care, Maternal and Child Health Bureau of Kunshan, Suzhou, China
| | - Yibing Jin
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiangdong Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongmei Li
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Qin Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Obstetrics and Gynecology, The First People's Hospital of Kunshan, Suzhou, China.
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Volpe M, Gallo G, Rubattu S. Endocrine functions of the heart: from bench to bedside. Eur Heart J 2023; 44:643-655. [PMID: 36582126 DOI: 10.1093/eurheartj/ehac759] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Heart has a recognized endocrine function as it produces several biologically active substances with hormonal properties. Among these hormones, the natriuretic peptide (NP) system has been extensively characterized and represents a prominent expression of the endocrine function of the heart. Over the years, knowledge about the mechanisms governing their synthesis, secretion, processing, and receptors interaction of NPs has been intensively investigated. Their main physiological endocrine and paracrine effects on cardiovascular and renal systems are mostly mediated through guanylate cyclase-A coupled receptors. The potential role of NPs in the pathophysiology of heart failure and particularly their counterbalancing action opposing the overactivation of renin-angiotensin-aldosterone and sympathetic nervous systems has been described. In addition, NPs are used today as key biomarkers in cardiovascular diseases with both diagnostic and prognostic significance. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors in the current management of heart failure, novel promising molecules, including M-atrial natriuretic peptide (a novel atrial NP-based compound), have been tested for the treatment of human hypertension. The development of new drugs is currently underway, and we are probably only at the dawn of novel NPs-based therapeutic strategies. The present article also provides an updated overview of the regulation of NPs synthesis and secretion by microRNAs and epigenetics as well as interactions of cardiac hormones with other endocrine systems.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS San Raffaele, Via della Pisana 235, 00163 Rome, Italy
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy
| |
Collapse
|
3
|
Li J, Zhu J, Zhang Q, Chen L, Ma S, Lu Y, Shen B, Zhang R, Zhang M, He Y, Wu L, Peng H. NPPA Promoter Hypomethylation Predicts Central Obesity Development: A Prospective Longitudinal Study in Chinese Adults. Obes Facts 2022; 15:257-270. [PMID: 34875662 PMCID: PMC9021652 DOI: 10.1159/000521295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 11/26/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Atrial natriuretic peptide plays a potential role in obesity with unclear molecular mechanisms. The objective of this study was to examine the association between its coding gene (natriuretic peptide A [NPPA]) methylation and obesity. METHODS Peripheral blood DNA methylation of NPPA promoter was quantified at baseline by targeted bisulfite sequencing for 2,497 community members (mean aged 53 years, 38% men) in the Gusu cohort. Obesity was repeatedly assessed by body mass index (BMI) and waist circumference (WC) at baseline and follow-up examinations. The cross-sectional, longitudinal, and prospective associations between NPPA promoter methylation and obesity were examined. RESULTS Of the 9 CpG loci assayed, DNA methylation levels at 6 CpGs were significantly lower in participants with central obesity than those without (all p < 0.05 for permutation test). These CpG methylation levels at baseline were also inversely associated with dynamic changes in BMI or WC during follow-up (all p < 0.05 for permutation test). After an average 4 years of follow-up, hypermethylation at the 6 CpGs (CpG2 located at Chr1:11908348, CpG3 located at Chr1:11908299, CpG4 located at Chr1:11908200, CpG5 located at Chr1:11908182, CpG6 located at Chr1:11908178, and CpG8 located at Chr1:11908165) was significantly associated with a lower risk of incident central obesity (all p < 0.05 for permutation test). CONCLUSIONS Hypomethylation at NPPA promoter was associated with increased future risk of central obesity in Chinese adults. Aberrant DNA methylation of the NPPA gene may participate in the mechanisms of central obesity.
Collapse
Affiliation(s)
- Jing Li
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jinhua Zhu
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Qiu Zhang
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Gusu District, Suzhou, China
| | - Linan Chen
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shengqi Ma
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ying Lu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Bin Shen
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Rongyan Zhang
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yan He
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Lei Wu
- Department of Maternal and Child Health, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
- *Lei Wu,
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
- ** Hao Peng,
| |
Collapse
|
4
|
Galamb O, Kalmár A, Sebestyén A, Dankó T, Kriston C, Fűri I, Hollósi P, Csabai I, Wichmann B, Krenács T, Barták BK, Nagy ZB, Zsigrai S, Barna G, Tulassay Z, Igaz P, Molnár B. Promoter Hypomethylation and Increased Expression of the Long Non-coding RNA LINC00152 Support Colorectal Carcinogenesis. Pathol Oncol Res 2020; 26:2209-2223. [PMID: 32307642 PMCID: PMC7471146 DOI: 10.1007/s12253-020-00800-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
Up-regulation of the long non-coding RNA LINC00152 can contribute to cancer development, proliferation and invasion, including colorectal cancer, however, its mechanism of action in colorectal carcinogenesis and progression is only insufficiently understood. In this work we correlated LINC00152 expression with promoter DNA methylation changes in colorectal tissues along the normal-adenoma-carcinoma sequence and studied the effects of LINC00152 silencing on the cell cycle regulation and on the whole transcriptome in colon carcinoma cells using cell and molecular biology techniques. LINC00152 was significantly up-regulated in adenoma and colorectal cancer (p < 0.001) compared to normal samples, which was confirmed by real-time PCR and in situ hybridization. LINC00152 promoter hypomethylation detected in colorectal cancer (p < 0.01) was strongly correlated with increased LINC00152 expression (r=-0.90). Silencing of LINC00152 significantly suppressed cell growth, induced apoptosis and decreased cyclin D1 expression (p < 0.05). Whole transcriptome analysis of LINC00152-silenced cells revealed significant down-regulation of oncogenic and metastasis promoting genes (e.g. YES proto-oncogene 1, PORCN porcupine O-acyltransferase), and up-regulation of tumour suppressor genes (e.g. DKK1 dickkopf WNT signalling pathway inhibitor 1, PERP p53 apoptosis effector) (adjusted p < 0.05). Pathway analysis confirmed the LINC00152-related activation of oncogenic molecular pathways including those driven by PI3K/Akt, Ras, WNT, TP53, Notch and ErbB. Our results suggest that promoter hypomethylation related overexpression of LINC00152 can contribute to the pathogenesis of colorectal cancer by facilitating cell progression through the up-regulation of several oncogenic and metastasis promoting pathway elements.
Collapse
Affiliation(s)
- Orsolya Galamb
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary.
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| | - Alexandra Kalmár
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csilla Kriston
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - István Fűri
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
| | - Péter Hollósi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Wichmann
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Barbara Kinga Barták
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
| | - Zsófia Brigitta Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
| | - Sára Zsigrai
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
| | - Gábor Barna
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Tulassay
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Igaz
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Béla Molnár
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, 1088, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Shen L, Lin D, Cheng L, Tu S, Wu H, Xu W, Pan Y, Wang X, Zhang J, Shao A. Is DNA Methylation a Ray of Sunshine in Predicting Meningioma Prognosis? Front Oncol 2020; 10:1323. [PMID: 33014773 PMCID: PMC7498674 DOI: 10.3389/fonc.2020.01323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Meningioma is the most common intracranial tumor, and recent studies have drawn attention to the importance of further research on malignant meningioma. According to the World Health Organization (WHO) grading, meningioma is classified into 15 subtypes with three grades of malignancy. However, due to a lack of descriptions of molecular subtypes, genetic mutations, or other features, there were deficiencies in the WHO classification. The DNA methylation-based meningioma classification published in 2017 used DNA copy number analysis, mutation profiling, and RNA sequencing to distinguish six clinically relevant methylation classes, which contributed to a better prediction of tumor recurrence and prognosis. Further studies indicated that gene variation and gene mutations, such as those in neurofibromin 2 (NF2) and BRCA1, were related to the high WHO grade, malignant invasion, and recurrence. Among the mutant genes described above, some have been associated with differential DNA methylation. Herein, we searched for articles published in PubMed and Web of Science from January 2000 to May 2020 by entering the keywords “meningioma,” “methylation,” and “gene mutation,” and found a number of published studies that analyzed DNA methylation in meningiomas. In this review, we summarize the key findings of recent studies on methylation status and genetic mutations of meningioma and discuss the current deficits of the WHO grading. We also propose that a methylation-based meningioma classification could provide clues in the assessment of individual risk of meningioma recurrence, which is associated with clinical benefits for patients.
Collapse
Affiliation(s)
- Lu Shen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Cheng
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Li J, Zhu J, Ren L, Ma S, Shen B, Yu J, Zhang R, Zhang M, He Y, Peng H. Association between NPPA promoter methylation and hypertension: results from Gusu cohort and replication in an independent sample. Clin Epigenetics 2020; 12:133. [PMID: 32883357 PMCID: PMC7469321 DOI: 10.1186/s13148-020-00927-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Background Atrial natriuretic peptide (ANP), one of the main members of the natriuretic peptides system, has been associated with hypertension and related complications, but the underlying molecular mechanisms are not very clear. Here, we aimed to examine whether DNA methylation, a molecular modification to the genome, of the natriuretic peptide A gene (NPPA), the coding gene of ANP, was associated with hypertension. Methods Peripheral blood DNA methylation of NPPA promoter was quantified by target bisulfite sequencing in 2498 community members (mean aged 53 years, 38% men) as a discovery sample and 1771 independent participants (mean aged 62 years, 54% men) as a replication sample. In both samples, we conducted a single CpG association analysis, followed by a gene-based association analysis, to examine the association between NPPA promoter methylation and hypertension, adjusting for age, sex, education level, cigarette smoking, alcohol consumption, obesity, fasting glucose, and lipids. Multiple testing was controlled by the false discovery rate approach. Results Of the 9 CpG loci assayed, hypermethylation at 5 CpGs (CpG1, CpG3, CpG6, CpG8, and CpG9) was significantly associated with a lower odds of prevalent hypertension in the discovery sample, and one CpG methylation (CpG1 located at Chr1:11908353) was successfully replicated in the replication sample (OR = 0.82, 95%CI 0.74–0.91, q = 0.002) after adjusting for covariates and multiple testing. The gene-based analysis found that DNA methylation of the 9 CpGs at NPPA promoter as a whole was significantly associated with blood pressure and prevalent hypertension in both samples (all P < 0.05). Conclusions DNA methylation levels at NPPA promoter were decreased in Chinese adults with hypertension. Aberrant DNA methylation of the NPPA gene may participate in the mechanisms of hypertension.
Collapse
Affiliation(s)
- Jing Li
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Jinhua Zhu
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Liyun Ren
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Shengqi Ma
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Bin Shen
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Jia Yu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Rongyan Zhang
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Yan He
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Song F, Li L, Zhang B, Zhao Y, Zheng H, Yang M, Li X, Tian J, Huang C, Liu L, Wang Q, Zhang W, Chen K. Tumor specific methylome in Chinese high-grade serous ovarian cancer characterized by gene expression profile and tumor genotype. Gynecol Oncol 2020; 158:178-187. [PMID: 32362568 DOI: 10.1016/j.ygyno.2020.04.688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/11/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Extensive genetic and limited epigenetics have been characterized by the Cancer Genome Atlas (TCGA) among Western High-grade serous ovarian cancer (HGSOC). The present study aimed to characterize Chinese HGSOC at genome scale. METHODS We used reduced representation bisulfite sequencing to investigate whole-genome and tumor-specific DNA methylation in 21 HGSOC tumors paired with their normal tissues, followed by a replication study involving additional 41 HGSOC patients. Altered methylation patterns in HGSOC were further characterized by gene expression profiles and whole-exome sequencing data. RESULTS Comparing HGSOC tumors with normal tissues we observed global hypomethylation but with more specific hypermethylation in gene promoter. Totally, we revealed 159,881 differentially methylated regions (DMRs) and 4060 differentially expressed genes (DEGs). By integrating DNA methylation and mRNA expression data, we identified 153 negative (mainly in the upstream region) and 115 positive (mainly in the CDS regions) DMRs-DEGs correlated pairs, respectively. The negatively correlated DMRs-DEGs underlined Wnt and cell adhesion molecule binding as critical canonical pathways disrupted by DNA methylation. Eleven DMRs (in CAPS, FZD7, CDKN2A, PON3, KLF4, etc.), accompanied with a global DNA methylation marker, were validated in the replication samples. Whole-exome sequencing presented a relatively less dominated TP53 mutation in Chinese HGSOC compared to TCGA dataset. Unsupervised analysis of the three-level omics data identified differential methylation and expression subgroups based on tumor genetics, one of which presented increased DNA methylation and significantly associated with TP53 mutation. CONCLUSIONS Our individual and integrated analyses contribute details about the tissue-specific genetic and DNA methylation landscape of Chinese HGSOC.
Collapse
Affiliation(s)
- Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | | | - Yanrui Zhao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Meng Yang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xiangchun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jing Tian
- Department of Gynecological Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Caiyun Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qinghua Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, USA; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
8
|
Bujko M, Kober P, Rusetska N, Wakuła M, Goryca K, Grecka E, Matyja E, Neska J, Mandat T, Bonicki W, Siedlecki JA. Aberrant DNA methylation of alternative promoter of DLC1 isoform 1 in meningiomas. J Neurooncol 2016; 130:473-484. [PMID: 27614886 PMCID: PMC5118400 DOI: 10.1007/s11060-016-2261-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/27/2016] [Indexed: 01/17/2023]
Abstract
DLC1 encodes GTPase-activating protein with a well-documented tumor suppressor activity. This gene is downregulated in various tumors through aberrant promoter hypermethylation. Five different DLC1 isoforms can be transcribed from alternative promoters. Tumor-related DNA methylation of the DLC1 isoform 1 alternative promoter was identified as being hypermethylated in meningiomas in genome-wide DNA methylation profiling. We determined the methylation pattern of this region in 50 meningioma FFPE samples and sections of 6 normal meninges, with targeted bisulfite sequencing. All histopathological subtypes of meningiomas showed similar and significant increase of DNA methylation levels. High DNA methylation was associated with lack of DLC1 protein expression in meningiomas as determined by immunohistochemistry. mRNA expression levels of 5 isoforms of DLC1 transcript were measured in an additional series of meningiomas and normal meninges. The DLC1 isoform 1 was found as the most expressed in normal control tissue and was significantly downregulated in meningiomas. Transfection of KT21 meningioma cell line with shRNA targeting DLC1 isoform 1 resulted in increased activation of RHO-GTPases assessed with pull-down assay, enhanced cell migration observed in scratch assay as well as slight increase of cell metabolism determind by MTT test. Results indicate that isoform 1 represents the main pool of DLC1 protein in meninges and its downregulation in meningiomas is associated with hypermethylation of CpG dinucleotides within the corresponding promoter region. This isoform is functional GAP protein and tumor suppressor and targeting of its expression results in the increase of DLC1 related cell processes: RHO activation and cell migration.
Collapse
Affiliation(s)
- M Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5, W.K. Roentgena, 02-781, Warsaw, Poland.
| | - P Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5, W.K. Roentgena, 02-781, Warsaw, Poland
| | - N Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5, W.K. Roentgena, 02-781, Warsaw, Poland
| | - M Wakuła
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5, W.K. Roentgena, 02-781, Warsaw, Poland
| | - K Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - E Grecka
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5, W.K. Roentgena, 02-781, Warsaw, Poland
| | - E Matyja
- Department of Experimental and Clinical Neuropathology, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - J Neska
- Department of Immunology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - T Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - W Bonicki
- Department of Neurosurgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - J A Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5, W.K. Roentgena, 02-781, Warsaw, Poland
| |
Collapse
|
9
|
Mamrut S, Avidan N, Staun-Ram E, Ginzburg E, Truffault F, Berrih-Aknin S, Miller A. Integrative analysis of methylome and transcriptome in human blood identifies extensive sex- and immune cell-specific differentially methylated regions. Epigenetics 2016; 10:943-57. [PMID: 26291385 DOI: 10.1080/15592294.2015.1084462] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between DNA methylation and gene expression is complex and elusive. To further elucidate these relations, we performed an integrative analysis of the methylome and transcriptome of 4 circulating immune cell subsets (B cells, monocytes, CD4(+), and CD8(+) T cells) from healthy females. Additionally, in light of the known sex bias in the prevalence of several immune-mediated diseases, the female datasets were compared with similar public available male data sets. Immune cell-specific differentially methylated regions (DMRs) were found to be highly similar between sexes, with an average correlation coefficient of 0.82; however, numerous sex-specific DMRs, shared by the cell subsets, were identified, mainly on autosomal chromosomes. This provides a list of highly interesting candidate genes to be studied in disorders with sexual dimorphism, such as autoimmune diseases. Immune cell-specific DMRs were mainly located in the gene body and intergenic region, distant from CpG islands but overlapping with enhancer elements, indicating that distal regulatory elements are important in immune cell specificity. In contrast, sex-specific DMRs were overrepresented in CpG islands, suggesting that the epigenetic regulatory mechanisms of sex and immune cell specificity may differ. Both positive and, more frequently, negative correlations between subset-specific expression and methylation were observed, and cell-specific DMRs of both interactions were associated with similar biological pathways, while sex-specific DMRs were linked to networks of early development or estrogen receptor and immune-related molecules. Our findings of immune cell- and sex-specific methylome and transcriptome profiles provide novel insight on their complex regulatory interactions and may particularly contribute to research of immune-mediated diseases.
Collapse
Affiliation(s)
- Shimrat Mamrut
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Nili Avidan
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Elsebeth Staun-Ram
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Elizabeta Ginzburg
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Frederique Truffault
- b INSERM - U974/CNRS UMR7215//UPMC UM76/AIM; Institute of Myology Pitie-Salpetriere ; Paris , France
| | - Sonia Berrih-Aknin
- b INSERM - U974/CNRS UMR7215//UPMC UM76/AIM; Institute of Myology Pitie-Salpetriere ; Paris , France
| | - Ariel Miller
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel.,c Division of Neuroimmunology; Lady Davis Carmel Medical Center ; Haifa , Israel
| |
Collapse
|
10
|
Cui C, Lu Z, Yang L, Gao Y, Liu W, Gu L, Yang C, Wilson J, Zhang Z, Xing B, Deng D, Sun ZS. Genome-wide identification of differential methylation between primary and recurrent hepatocellular carcinomas. Mol Carcinog 2015; 55:1163-74. [PMID: 26138747 DOI: 10.1002/mc.22359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/19/2015] [Accepted: 06/15/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Chenghua Cui
- Division of Cancer Etiology; Key Laboratory of Carcinogenesis and Translational Research Ministry of Education; Peking University Cancer Hospital Institute; Beijing China
| | - Zheming Lu
- Division of Cancer Etiology; Key Laboratory of Carcinogenesis and Translational Research Ministry of Education; Peking University Cancer Hospital Institute; Beijing China
| | - Liu Yang
- Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing China
| | - Yanhong Gao
- Division of Cancer Etiology; Key Laboratory of Carcinogenesis and Translational Research Ministry of Education; Peking University Cancer Hospital Institute; Beijing China
| | - Wei Liu
- Department of Surgery; Peking University Cancer Hospital and Institute; Beijing China
| | - Liankun Gu
- Division of Cancer Etiology; Key Laboratory of Carcinogenesis and Translational Research Ministry of Education; Peking University Cancer Hospital Institute; Beijing China
| | - Chen Yang
- Division of Cancer Etiology; Key Laboratory of Carcinogenesis and Translational Research Ministry of Education; Peking University Cancer Hospital Institute; Beijing China
| | - James Wilson
- GRU Cancer Center; Georgia Regents University; Augusta Georgia
| | - Zhiqian Zhang
- GRU Cancer Center; Georgia Regents University; Augusta Georgia
| | - Baocai Xing
- Department of Surgery; Peking University Cancer Hospital and Institute; Beijing China
| | - Dajun Deng
- Division of Cancer Etiology; Key Laboratory of Carcinogenesis and Translational Research Ministry of Education; Peking University Cancer Hospital Institute; Beijing China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
11
|
Patil V, Ward RL, Hesson LB. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 2014; 9:823-8. [PMID: 24717538 DOI: 10.4161/epi.28741] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In mammalian genomes, the methylation of cytosine residues within CpG dinucleotides is crucial to normal development and cell differentiation. However, methylation of cytosines in the contexts of CpA, CpT, and CpC (non-CpG methylation) has been reported for decades, yet remains poorly understood. In recent years, whole genome bisulphite sequencing (WGBS) has confirmed significant levels of non-CpG methylation in specific tissues and cell types. Non-CpG methylation has several properties that distinguish it from CpG methylation. Here we review the literature describing non-CpG methylation in mammalian cells, describe the important characteristics that distinguish it from CpG methylation, and discuss its functional importance.
Collapse
Affiliation(s)
- Vibha Patil
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; University of New South Wales; Sydney, NSW Australia
| | - Robyn L Ward
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; University of New South Wales; Sydney, NSW Australia
| | - Luke B Hesson
- Adult Cancer Program; Lowy Cancer Research Centre and Prince of Wales Clinical School; University of New South Wales; Sydney, NSW Australia
| |
Collapse
|