1
|
Ge J, Liu B, Ma L, Su J, Ding Y. Daidzein and puerarin synergistically suppress gastric cancer proliferation via STAT3/FAK pathway Inhibition. Hereditas 2025; 162:58. [PMID: 40217305 PMCID: PMC11992880 DOI: 10.1186/s41065-025-00419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is the world's health is seriously threatened by a prevalent form of aggressive tumor with a dismal prognosis. The occurrence of gastric cancer poses a concern for public health since it is a malignant tumor with an enhanced incidence and fatality level. OBJECTIVE The purpose of this study was to determine if the natural drug Daidzein (DZN) and Puerarin (PRN) together effectively suppress the proliferation of GC cells by blocking the STAT3/FAK intervention signalling pathways in BGC-823 cells. MATERIALS AND METHODS Following a 24-hour treatment with the combination of DZN and PRN, the cells were examined for a number of assays. The MTT test was used to investigate the cytotoxicity of the DZN + PNR combination. Acridine orange/ethidium bromide (AO/EtBr) dual staining experiments were utilized to investigate apoptotic alterations, and Western blotting and flow cytometry were used to assess the protein expressions of the cell survival, cell cycle, proliferation, and apoptosis proteins. RESULTS Our findings showed that, DZN and PRN possessed anticancer properties by blocking the STAT3/FAK signaling cascade. Moreover, we discovered that the DZN and PRN combo reduced the protein levels of STAT3-FAK-dependent targeted genes, such as cyclin-D1, Bcl-2, Bax, MMP-2, prevented the phosphorylation and activation of STAT3, FAK. CONCLUSION The current study's findings suggest that the simultaneous administration of DZN and PNR can stop gastric cancer cells from proliferating, trigger apoptosis, and disrupt their cell cycle.
Collapse
Affiliation(s)
- Jun Ge
- Department of Gastroenterology, Shanghai Municipal Eighth People's Hospital, Shanghai, 200233, China
| | - Binguo Liu
- Department of Pharmacy, No. 983 Hospital of the Chinese People's Liberation Army, Tianjin, 300142, China
| | - Ling Ma
- Department of Gastroenterology, Yinchuan First People's Hospital, Yinchuan Ningxia, 750001, China
| | - Jianyong Su
- Department of Plastic Surgery, Shanghai Baoshan Hospital of Integrated Chinese and Western Medicine, Shanghai, 201900, China
| | - Ying Ding
- Department General Surgery, Shaanxi Provincial Rehabilitation Hospital, Xi'an Shaanxi, 710065, China.
| |
Collapse
|
2
|
Xuan T, Liu Y, Liu R, Liu S, Han J, Bai X, Wu J, Fan R. Advances in Extraction, Purification, and Analysis Techniques of the Main Components of Kudzu Root: A Comprehensive Review. Molecules 2023; 28:6577. [PMID: 37764353 PMCID: PMC10535729 DOI: 10.3390/molecules28186577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Kudzu root (Pueraria lobate (Willd.) Ohwi, KR) is an edible plant with rich nutritional and medicinal values. Over the past few decades, an ample variety of biological effects of Pueraria isoflavone have been evaluated. Evidence has shown that Pueraria isoflavone can play an active role in antioxidant, anti-inflammatory, anti-cancer, neuroprotection, and cardiovascular protection. Over 50 isoflavones in kudzu root have been identified, including puerarin, daidzein, daidzin, 3'-hydroxy puerarin, and genistein, each with unambiguous structures. However, the application of these isoflavones in the development of functional food and health food still depends on the extraction, purification and identification technology of Pueraria isoflavone. In recent years, many green and novel extraction, purification, and identification techniques have been developed for the preparation of Pueraria isoflavone. This review provides an updated overview of these techniques, specifically for isoflavones in KR since 2018, and also discusses and compares the advantages and disadvantages of these techniques in depth. The intention is to provide a research basis for the green and efficient extraction, purification, and identification of Pueraria isoflavone and offers investigators a valuable reference for future studies on the KR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Wu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China; (T.X.); (Y.L.); (R.L.); (S.L.); (J.H.); (X.B.)
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China; (T.X.); (Y.L.); (R.L.); (S.L.); (J.H.); (X.B.)
| |
Collapse
|
3
|
Xu B, Li J, Chen X, Kou M. Puerarin attenuates cisplatin-induced apoptosis of hair cells through the mitochondrial apoptotic pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119208. [PMID: 35032475 DOI: 10.1016/j.bbamcr.2021.119208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Puerarin, one of the main components of Pueraria lobata, has been reported to possess a wide range of pharmacological activities, including anti-inflammatory, antioxidative and anti-apoptotic effects. However, the role of puerarin in ototoxic drug-induced hair cell injury has not been well characterized. This study explored whether puerarin protects against cisplatin-induced hair cell damage and its potential mechanisms. The viability of puerarin-treated HEI-OC1 cells was assessed by CCK8 assay. Reactive oxygen species (ROS) was estimated with flow cytometric analysis using Cellrox Green fluorescent probe. Apoptosis-related protein levels were detected by western blot analysis. Immunostaining of the organ of Corti was performed to determine mice cochlear hair cell survival. Our results showed that puerarin improved cell viability and suppressed apoptosis in the cisplatin-damaged HEI-OC1 cells and cochlear hair cells. Mechanistic studies revealed that puerarin attenuated mitochondrial apoptosis pathway by regulating apoptotic related proteins, such as Bax and cleaved caspase-3, and attenuated ROS accumulation after cisplatin damage. Moreover, puerarin was involved in regulating the Akt pathway in HEI-OC1 cells in response to cisplatin. Our results demonstrated that puerarin administration decreased the sensitivity to apoptosis dependent on the mitochondrial apoptotic pathway by reducing ROS generation, which could be used as a new protective agent against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Bingqiang Xu
- Department of Radiology, Shaanxi Provincial People's Hospital, No.256, You Yi West Street, Xi'an 710068, PR China
| | - Juedan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, PR China; Department of General Dentistry and Emergency Room, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, PR China
| | - Xiaolong Chen
- Department of Radiology, Shaanxi Provincial People's Hospital, No.256, You Yi West Street, Xi'an 710068, PR China
| | - Mingqing Kou
- Department of Radiology, Shaanxi Provincial People's Hospital, No.256, You Yi West Street, Xi'an 710068, PR China.
| |
Collapse
|
4
|
Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. Front Endocrinol (Lausanne) 2021; 12:779638. [PMID: 34887836 PMCID: PMC8649804 DOI: 10.3389/fendo.2021.779638] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids are polyphenolic compounds spotted in various fruits, vegetables, barks, tea plants, and stems and many more natural commodities. They have a multitude of applications through their anti-inflammatory, anti-oxidative, anti-carcinogenic properties, along with the ability to assist in the stimulation of bone formation. Bone, a rigid connective body tissue made up of cells embedded in a mineralised matrix is maintained by an assemblage of pathways assisting osteoblastogenesis and osteoclastogenesis. These have a significant impact on a plethora of bone diseases. The homeostasis between osteoblast and osteoclast formation decides the integrity and structure of the bone. The flavonoids discussed here are quercetin, kaempferol, icariin, myricetin, naringin, daidzein, luteolin, genistein, hesperidin, apigenin and several other flavonoids. The effects these flavonoids have on the mitogen activated protein kinase (MAPK), nuclear factor kappa β (NF-kβ), Wnt/β-catenin and bone morphogenetic protein 2/SMAD (BMP2/SMAD) signalling pathways, and apoptotic pathways lead to impacts on bone remodelling. In addition, these polyphenols regulate angiogenesis, decrease the levels of inflammatory cytokines and play a crucial role in scavenging reactive oxygen species (ROS). Considering these important effects of flavonoids, they may be regarded as a promising agent in treating bone-related ailments in the future.
Collapse
Affiliation(s)
| | | | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | | |
Collapse
|
5
|
Butein Promotes Lineage Commitment of Bone Marrow-Derived Stem Cells into Osteoblasts via Modulating ERK1/2 Signaling Pathways. Molecules 2020; 25:molecules25081885. [PMID: 32325749 PMCID: PMC7221720 DOI: 10.3390/molecules25081885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 01/16/2023] Open
Abstract
Butein is a phytochemical that belongs to the chalcone family of flavonoids and has antitumor, anti-inflammatory, and anti-osteoclastic bone resorption activities. This study aims to investigate the effects of butein on the differentiation potential of mouse primary bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblast and adipocyte lineages. Primary cultures of mBMSCs are treated with different doses of butein during its differentiation. Osteoblast differentiation is assessed by alkaline phosphatase (ALP) activity quantification and Alizarin red staining for matrix mineralization, while adipogenesis is assessed by quantification of lipid accumulation using Oil Red O staining. Osteoblastic and adipocytic gene expression markers are determined by quantitative real-time PCR (qPCR). Western blot analysis is used to study the activation of extracellular signal-regulated kinase (ERK1/2). Interestingly, butein promotes the lineage commitment of mBMSCs into osteoblasts, while suppressing their differentiation into adipocytes in a dose-dependent manner. A similar effect of butein is confirmed in human (h) primary BMSCs. Occurring at the molecular level, butein significantly upregulates the mRNA expression of osteoblast-related genes, while downregulating the expression of adipocyte-related genes. The mechanism of butein-induced osteogenesis is found to be mediated by activating the ERK1/2 signaling pathway. To conclude, we identify butein as a novel nutraceutical compound with an osteo-anabolic activity to promote the lineage commitment of BMSCs into osteoblast versus adipocyte. Thus, butein can be a plausible therapeutic drug for enhancing bone formation in osteoporotic patients.
Collapse
|
6
|
Waqas M, Qamar H, Zhang J, Yao W, Li A, Wang Y, Iqbal M, Mehmood K, Jiang X, Li J. Puerarin enhance vascular proliferation and halt apoptosis in thiram-induced avian tibial dyschondroplasia by regulating HIF-1α, TIMP-3 and BCL-2 expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110126. [PMID: 31918251 DOI: 10.1016/j.ecoenv.2019.110126] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate pesticide used for crop protection and storage. But, it's widespread utilization is associated with deleterious growth plate cartilage disorder in broilers termed as avian tibial dyschondroplasia (TD). TD results in non-mineralized and less vascularized proximal tibial growth plate cartilage causing lameness and poor growth performance. This study investigated the therapeutic potential of puerarin against thiram toxicity in TD affected chickens. One-day-old broiler chickens (n = 240) were alienated into three equal groups i.e. control, TD and puerarin (n = 80) and were offered standard feed. Additionally, TD and puerarin groups were offered thiram at 50 mg/kg of feed from 4 to 7 days for TD induction followed by puerarin therapy at 120 mg/kg to puerarin group only from 8 to 18 days for TD treatment. Thiram feeding to TD and puerarin group chickens caused lameness, mortality, and increased the aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) levels and growth plate (GP) size and upregulated HIF-1α expression. Besides, the production parameters, alkaline phosphatase (ALP), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels and the expressions of TIMP-3 and BCL-2 were decreased (p < 0.05). Puerarin alleviated lameness, enhanced angiogenesis and growth performance and serum and antioxidant enzymes, decreased apoptosis and recuperated GP width by significantly downregulating HIF-1α and upregulating the TIMP-3 and BCL-2 mRNA and protein expressions in puerarin group chickens (p < 0.05). In conclusion, the toxic effects associated with thiram can be mitigated using puerarin.
Collapse
Affiliation(s)
- Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch, 12350, Azad Jammu & Kashmir, Pakistan
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
7
|
He J, Li X, Wang Z, Bennett S, Chen K, Xiao Z, Zhan J, Chen S, Hou Y, Chen J, Wang S, Xu J, Lin D. Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Front Pharmacol 2019; 10:1344. [PMID: 31824310 PMCID: PMC6886594 DOI: 10.3389/fphar.2019.01344] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a bone disease characterized by increasing osseous fragility and fracture due to the reduced bone mass and microstructural degradation. Primary pharmacological strategies for the treatment of osteoporosis, hormone replacement treatment (HRT), and alendronate therapies may produce adverse side-effects and may not be recommended for long-term usage. Some classic and bone-specific natural Chinese medicine are very popularly used to treat osteoporosis and bone fracture effectively in clinical with their potential value in bone growth and development, but with few adverse side-effects. Current evidence suggests that the treatments appear to improve bone metabolism and attenuate the osteoporotic imbalance between bone formation and bone resorption at a cellular level by promoting osteoblast activity and inhibiting the effects of osteoclasts. The valuable therapies might, therefore, provide an effective and safer alternative to primary pharmacological strategies. Therefore, the purpose of this article is to comprehensively review these classic and bone-specific drugs in natural Chinese medicines for the treatment of osteoporosis that had been deeply and definitely studied and reported with both bone formation and antiresorption effects, including Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer (syn. Morinda officinalis F.C.How), Curculigo orchioides Gaertn., Psoralea corylifolia (L.) Medik Eucommia ulmoides Oliv., Dipsacus inermis Wall. (syn. Dipsacus asperoides C.Y.Cheng & T.M.Ai), Cibotium barometz (L.) J. Sm., Velvet Antler, Cistanche deserticola Ma, Cuscuta chinensis Lam., Cnidium monnieri (L.) Cusson, Epimedium brevicornum Maxim, Pueraria montana (Lour.) Merr. and Salvia miltiorrhiza Bunge., thus providing evidence for the potential use of alternative Chinese medicine therapies to effectively treat osteoporosis.
Collapse
Affiliation(s)
- Jianbo He
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaojuan Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ziyi Wang
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Samuel Bennett
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Kai Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Zhifeng Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shudong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Junhao Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Shaofang Wang
- Centre for Legumes in Mediterranean Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Dingkun Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Li Y, Tong Z, Ling J. Effect of the three
Enterococcus faecalis
strains on apoptosis in
MC
3T3 cells. Oral Dis 2018; 25:309-318. [DOI: 10.1111/odi.12883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Yang Li
- Department of Operative Dentistry and EndodonticsGuanghua School of StomatologyHospital of StomatologySun Yat‐sen University Guangzhou China
- Guangdong Province Key Laboratory of Stomatology Guangzhou China
| | - Zhongchun Tong
- Department of Operative Dentistry and EndodonticsGuanghua School of StomatologyHospital of StomatologySun Yat‐sen University Guangzhou China
- Guangdong Province Key Laboratory of Stomatology Guangzhou China
| | - Junqi Ling
- Department of Operative Dentistry and EndodonticsGuanghua School of StomatologyHospital of StomatologySun Yat‐sen University Guangzhou China
- Guangdong Province Key Laboratory of Stomatology Guangzhou China
| |
Collapse
|
9
|
Li W, Wu J, Zhang J, Wang J, Xiang D, Luo S, Li J, Liu X. Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile. Drug Deliv 2018; 25:827-837. [PMID: 29587545 PMCID: PMC6058490 DOI: 10.1080/10717544.2018.1455763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Puerarin (PUE) is the most abundant isoflavonoid in kudzu root. It is widely used as a therapeutic agent for the treatment of cardiovascular diseases. However, the short elimination half-life, poor-bioavailability, and acute intravascular hemolysis of PUE are the main obstacles to its widespread clinical applications. Whereas PEG-PE micelles possess the ability to release medicine slowly, enhance the cellular uptake of drugs and improve their biocompatibility. Therefore, it was aim to fabricate puerarin-loaded PEG-PE (PUE@PEG-PE) micelles to improve the pharmaceutical properties of drugs. It can be observed from the TEM images that PUE@PEG-PE micelles appeared obvious core-shell structure and remained well-dispersed without aggregation and adhesion. PUE was successfully embedded in the core of PEG-PE micelles, which was confirmed by FT-IR and 1H NMR spectra. In vitro studies showed that PUE@PEG-PE micelles exhibited a sustained release behavior in pH 7.4 PBS buffer and decreased hemolysis rate of PUE. Compared with PUE, PUE@PEG-PE micelles showed a 3.2-fold increase in the half-life of PUE and a 1.58-fold increase in bioavailability. In addition, the PUE@PEG-PE micelles exerted enhanced protective effect against isoprenaline-induced H9c2 cells apoptosis compared with PUE, as evident by decreased percentage of Hoechst-positive cells, Caspase 3 activity, Bax expression, and increased Bcl-2 expression. Notably, the PEG-PE micelles exhibited favorable cellular uptake efficiency on H9c2 cells, and this may account for their enhanced anti-apoptotic effect of the incorporated drug. Altogether, the PUE@PEG-PE micelles were not only able to control the drug release but also offered promise to enhance the pharmacokinetic and pharmacodynamic potential of PUE.
Collapse
Affiliation(s)
- Wenqun Li
- a Department of Pharmacy , The Second Xiangya Hospital, Central South University , Changsha , China.,b Institute of Clinical Pharmacy , Central South University , Changsha , China
| | - Junyong Wu
- a Department of Pharmacy , The Second Xiangya Hospital, Central South University , Changsha , China.,b Institute of Clinical Pharmacy , Central South University , Changsha , China
| | - Jiang Zhang
- c College of Pharmacy , Changsha Medical College , Changsha , China
| | - Jingjing Wang
- d School of Pharmaceutical Sciences , Central South University , Changsha , China
| | - Daxiong Xiang
- a Department of Pharmacy , The Second Xiangya Hospital, Central South University , Changsha , China.,b Institute of Clinical Pharmacy , Central South University , Changsha , China
| | - Shilin Luo
- a Department of Pharmacy , The Second Xiangya Hospital, Central South University , Changsha , China.,b Institute of Clinical Pharmacy , Central South University , Changsha , China
| | - Jianhe Li
- a Department of Pharmacy , The Second Xiangya Hospital, Central South University , Changsha , China.,b Institute of Clinical Pharmacy , Central South University , Changsha , China
| | - Xinyi Liu
- a Department of Pharmacy , The Second Xiangya Hospital, Central South University , Changsha , China.,b Institute of Clinical Pharmacy , Central South University , Changsha , China
| |
Collapse
|
10
|
Yang C, Fan X, Fan S. Effects and mechanism of puerarin on the human retinoblastoma cells. J Cell Biochem 2018; 119:4506-4513. [PMID: 29345333 DOI: 10.1002/jcb.26565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
Puerarin is an isoflavonoid that is extracted from Kudzu root and is considered to have an anti-tumor effect. In the present study, the effects of puerarin on human retinoblastoma (RB) cells and the related pathways was determined. The retinoblastoma RB cell lines were used in this study. Cell viability and colony formation capacity were measured by MTT and colony formation assays. Cell cycle was determined by flow cytometry. Cell migration and invasion were examined by Transwell assay. The expression of cell cycle, EMT, and MAPK/ERK signal pathway-related proteins were detected by western blot following puerarin treatment. The results revealed that cell viability and proliferation of RB cells treated with puerarin were significantly lower in RB cells compared to the control group. Puerarin significantly decreased the proportion of cells during S phase which was accompanied with increase in cells at G0/1 and G2 phases. Moreover, puerarin suppressed cell migration, invasion and up-regulated E-Cadherin expression as well as down-regulated Vimentin and α-SMA expression. Furthermore, puerarin treatment suppressed the expression of p-MEK and p-ERK in RB cells. Our findings suggest that puerarin contributes to in the treatment of RB and other malignant tumors.
Collapse
Affiliation(s)
- Chao Yang
- Department of Ophthalmology, Binzhou People's Hospital, Binzhou, China
| | - Xiaohui Fan
- Department of Ophthalmology, Binzhou People's Hospital, Binzhou, China
| | - Shuxia Fan
- Department of Nursing, Binzhou People's Hospital, Binzhou, China
| |
Collapse
|
11
|
Jiang K, Chen H, Tang K, Guan W, Zhou H, Guo X, Chen Z, Ye Z, Xu H. Puerarin inhibits bladder cancer cell proliferation through the mTOR/p70S6K signaling pathway. Oncol Lett 2017; 15:167-174. [PMID: 29375709 PMCID: PMC5766064 DOI: 10.3892/ol.2017.7298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/22/2017] [Indexed: 12/23/2022] Open
Abstract
Puerarin, as a novel oncotherapeutic agent, may exert anticancer effects and inhibit the proliferation of cancer cells. To explore the effects of puerarin on human bladder cancer cells, and to elucidate the potential mechanism underlying these effects, a Cell Counting Kit-8 assay was used to examine the proliferation of T24 and EJ cells following puerarin treatment. The effects of puerarin treatment on the cell cycle were detected by flow cytometry (FCM), while puerarin-induced cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and FCM, and the cellular ultrastructural morphological changes were observed by transmission electron microscopy. Cell invasion was examined using a Transwell assay with Matrigel. The expression levels of mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, p70-S6 kinase (p70S6K) and p-p70S6K proteins in the mTOR signaling pathway were then assessed by western blotting. The results demonstrated that puerarin may inhibit bladder cancer cell viability, block the cell cycle in the G0/G1 phase and induce apoptosis in bladder cancer cells. The expression levels of p-mTOR and p-p70S6K proteins were downregulated, while no change was observed in the expression levels of mTOR and p70S6K proteins when T-24 and EJ cells were treated by puerarin. In the present study, puerarin was demonstrated to inhibit the viability of human bladder cancer cells. These effects may be due to the puerarin-induced downregulation of proteins in the mTOR/p70S6K signaling pathway, and the present study may provide the experimental basis for puerarin to be considered as a promising novel anti-tumor drug for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Hongbo Chen
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
12
|
Li W, Lu M, Zhang Y, Xia D, Chen Z, Wang L, Yin N, Wang Z. Puerarin attenuates the daunorubicin-induced apoptosis of H9c2 cells by activating the PI3K/Akt signaling pathway via the inhibition of Ca2+ influx. Int J Mol Med 2017; 40:1889-1894. [PMID: 29039532 DOI: 10.3892/ijmm.2017.3186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
Puerarin extracted from Radix Puerariae is well known for its pharmacological effects, including antioxidant, anti‑inflammatory, neuroprotective and cardioprotective properties. In this study, we aimed to investigate the effects of puerarin on the daunorubicin (DNR)-induced apoptosis of H9c2 cells and to elucidate the potential mechanisms involved. MTT assay and flow cytometry were performed to evaluate cell cytotoxicity and apoptosis, respectively. Western blot analysis was used to assess changes in the expression levels of proteins, including caspase-3, Akt and phosphorylated Akt (p-Akt). Ratiometric imaging of intracellular calcium (Ca2+) using cells loaded with Fura-2 was also carried out. Our results revealed that puerarin pre-treatment protected the H9c2 cells against DNR-induced cytotoxicity by inhibiting cell apoptosis, which was also confirmed by the decrease in the expression of cleaved caspase-3. Additionally, p-Akt activation was associated with the suppressive effects of puerarin. Following pre-treatment with puerarin, the extracellular Ca2+ influx was restrained and this resulted in a reduction in the intracellular Ca2+ levels; these effects were abrogated by LY294002 [an inhibitor of phosphatidylinositol 3-kinase (PI3K)]. The inhibition of Ca2+ influx suggested that the PI3K/Akt signaling pathway participated in the suppressive effects of puerarin against H9c2 cell apoptosis. Taken togher, our findings demonstrate that puerarin attenuates the DNR-induced apoptosis of H9c2 cells by activating the PI3K/Akt signaling pathway via the inhibition of Ca2+ influx, suggesting that puerarin may be a potential cardioprotective agent for use in the clinical treatment of cardiomyopathy triggered by DNR.
Collapse
Affiliation(s)
- Weihua Li
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Min Lu
- Department of Human Anatomy and Embryology, Medical College of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yanhong Zhang
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Danqin Xia
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Zebin Chen
- Acupuncture and Moxibustion College, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, Hubei 430065, P.R. China
| | - Linhua Wang
- Department of Traditional Chinese Medicine, Hubei Rongjun Hospital, Wuhan, Hubei 430079, P.R. China
| | - Nina Yin
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhigang Wang
- Department of Pathogen Biology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
13
|
Liang F, Xie S. Puerarin prevents tumor necrosis factor-α-induced apoptosis of PC12 cells via activation of the PI3K/Akt signaling pathway. Exp Ther Med 2017; 14:813-818. [PMID: 28673004 DOI: 10.3892/etm.2017.4545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α), a potential proinflammatory cytokine, is an important component involved in neuronal apoptosis associated with neuroinflammation in the central nervous system. It has been reported that puerarin possesses pharmacological effects, such as anti-apoptotic, antioxidant, anti-osteoporosis, anti-inflammatory, cardioprotective and neuroprotective actions. The aim of the present study was to explore the effect of puerarin on apoptosis induced by TNF-α (3×105 U/l) and its detailed mechanisms in PC12 cells. MTT and flow cytometric assays were performed to evaluate cell cytotoxicity and apoptosis, respectively. An enzymatic assay was used to detect the activity of caspase-3 and caspase-9. Western blot analysis was performed to assess changes in the levels of proteins, including B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, Akt and phosphorylated Akt. The results showed that puerarin (25 and 50 µM) significantly suppressed TNF-α-induced apoptosis in PC12 cells. The TNF-α-induced in crease in the Bax/Bcl-2 ratio was markedly inhibited by pre-treatment with puerarin for 2 h. In addition, puerarin decreased the level of TNF-α-induced cleaved caspase-3. Furthermore, puerarin inhibited the TNF-α-induced decrease in the phosphorylation of Akt, which was abolished by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, suggesting that the PI3K/Akt pathway participated in the suppressive effect of puerarin. Taken together, these findings indicated that puerarin prevented TNF-α-induced apoptosis in PC12 cells via activating of the PI3K/Akt signaling pathway, suggesting that puerarin may be a potential neuroprotective drug in the clinical treatment of neuroinflammation via anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Feng Liang
- Department of Clinical Biochemistry, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shenggao Xie
- Department of Clinical Biochemistry, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
14
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
15
|
Yang D, Okamura H, Teramachi J, Haneji T. Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:650-9. [PMID: 26795455 DOI: 10.1016/j.bbamcr.2016.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/24/2023]
Abstract
Posttranslational modifications including histone methylation regulate gene transcription through directly affecting the structure of chromatin. Trimethylation of histone H3K27 (H3K27me3) contributes to gene silencing and the histone demethylase Jumonji domain-containing 3 (Jmjd3) specifically removes the methylation of H3K27me3, followed by the activation of gene expression. In the present study, we explored the roles of Jmjd3 in regulating osteoblast apoptosis. Knockdown of Jmjd3 promoted osteoblast apoptosis induced by serum deprivation with decreased mitochondrial membrane potential and increased levels of caspase-3 activation, PARP cleavage, and DNA fragmentation. B cell lymphoma-2 (Bcl-2), an anti-apoptotic protein, was down-regulated by knockdown of Jmjd3 through retaining H3K27me3 on its promoter region. Knockdown of Jmjd3 increased the pro-apoptotic activity of Bim through inhibiting ERK-dependent phosphorylation of Bim. Protein kinase D1 (PKD1), which stimulates ERK phosphorylation, decreased in the Jmjd3-knockdown cells and introduction of PKD1 relieved osteoblast apoptosis in the Jmjd3-knockdown cells through increasing ERK-regulated Bim phosphorylation. These results suggest that Jmjd3 regulates osteoblast apoptosis through targeting Bcl-2 expression and Bim phosphorylation.
Collapse
Affiliation(s)
- Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China; Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan.
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan.
| |
Collapse
|
16
|
Yu D, Mu S, Zhao D, Wang G, Chen Z, Ren H, Fu Q. Puerarin attenuates glucocorticoid-induced apoptosis of hFOB1.19 cells through the JNK- and Akt-mediated mitochondrial apoptotic pathways. Int J Mol Med 2015; 36:345-54. [PMID: 26101183 PMCID: PMC4501663 DOI: 10.3892/ijmm.2015.2258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/21/2015] [Indexed: 12/13/2022] Open
Abstract
Puerarin is an active component of Pueraria lobata, which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aimed to evaluate the osteoprotective effect of puerarin on glucocorticoid (GC)-induced apoptosis of osteoblasts in vitro. The effects of puerarin on dexamethasone (DEX)-induced cell apoptosis were assessed using enzyme-linked immunosorbent assay and a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and found that the viability of hFOB1.19 cells was significantly increased following exposure to between 10−6 and 10−10 M puerarin, with a maximal anti-apoptotic effect at a concentration of 10−8 M. In addition, compared with the control group, puerarin upregulated the transcription and protein levels of B-cell lymphoma-2 and downregulated B-cell-associated X protein in the hFOB1.19 cells. Puerarin attenuated the DEX-induced release of cytochrome c and cleavage of caspase-3, and treatment with puerarin inhibited the c-Jun N-terminal kinase (JNK) pathway and activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in the hFOB1.19 cells. Furthermore, the Akt inhibitor, LY294002, partly eliminated the protective effect of puerarin on DEX-induced apoptosis, and puerarin combined with the JNK inhibitor, SP600125, suppressed DEX-induced apoptosis to a lesser extent than in the cells treated with SP600125 alone. These results suggested that the JNK and PI3K/Akt signaling pathways mediate the inhibitory effects of puerarin on apoptosis in the hFOB1.19 cells. In conclusion, puerarin prevented DEX-induced apoptosis of hFOB1.19 cells via inhibition of the JNK pathway and activation of the PI3K/Akt signaling pathway in the cells, dependent on the mitochondrial apoptotic pathway. These results support puerarin as a promising target in the treatment of GC-induced osteoporosis.
Collapse
Affiliation(s)
- Dongdong Yu
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Shuai Mu
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Danyang Zhao
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Guangbin Wang
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Zhiguang Chen
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Hongfei Ren
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Qin Fu
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| |
Collapse
|
17
|
Mollazadeh S, Fazly Bazzaz BS, Kerachian MA. Role of apoptosis in pathogenesis and treatment of bone-related diseases. J Orthop Surg Res 2015; 10:15. [PMID: 25627748 PMCID: PMC4327805 DOI: 10.1186/s13018-015-0152-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
In this article, bone cells and their intercellular communications have been reviewed. Gap junctions and hemichannels are the main routes of interactions in bone tissue. They play a substantial role in survival and cell death, since pro-apoptotic signals can propagate through them. Different adhesion molecules are required for apoptosis, particularly caspase family as well as noncaspase proteases. The disruption outcome of apoptosis could result in bone-related diseases such as osteonecrosis. Anti-apoptotic strategies include inhibition of caspase, poly [ADP-ribose] polymerase (PARP), and Bcl-2 proteins as well as induction of the PKB/Akt pathway and inhibitors of apoptosis (IAP) family of proteins. Thus, understanding the mechanism of apoptosis gives detailed insights of anti-apoptotic molecular targets. Based on these targets, different treatments were designed and produced such as estrogen replacement therapy, administration of different bisphosphonates, raloxifene, calcitonin, sodium fluoride, calcium, and vitamin D. As a result, new applicable drugs for treatment of related bone problems can be proposed for clinical approach especially in the early stage of diseases.
Collapse
|
18
|
Zhang WG, Liu XF, Meng KW, Hu SY. Puerarin inhibits growth and induces apoptosis in SMMC-7721 hepatocellular carcinoma cells. Mol Med Rep 2014; 10:2752-8. [PMID: 25175767 DOI: 10.3892/mmr.2014.2512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/06/2014] [Indexed: 11/06/2022] Open
Abstract
Puerarin, a predominant isoflavonoid compound extracted from the Chinese medicinal herb Radix Puerariae, is considered to exhibit an antitumor effect. In the present study, the effects of puerarin on SMMC-7721 human hepatocellular carcinoma cells were investigated. Cell viability was assessed by MTT assay. Apoptosis was detected by flow cytometry with Annexin V-fluorescein isothiocyante staining and morphological observation of nuclear changes by Hoechst staining. The mitochondrial membrane potential (MMP) was monitored using rhodamine 123. The generation of reactive oxygen species (ROS) was quantified using dichloro‑dihydro‑fluorescein diacetate. Polymerase chain reaction and western blot analysis were used to detect the expression levels of apoptosis‑associated genes. The results revealed that high concentrations of puerarin (500, 1,000 and 1,500 µg/ml) significantly inhibited the proliferation of SMMC-7721 cells in a time- and dose-dependent manner. Simultaneously, apoptotic rates were increased and cell morphology was changed following puerarin treatment. Furthermore, puerarin‑induced apoptosis of SMMC-7721 cells was associated with loss of MMP and generation of ROS. Puerarin treatment increased caspase‑3,8,9 and apoptosis‑inducing factor (AIF) mRNA expression levels in SMMC‑7721 cells, while the phosphorylation levels of P38, extracellular signal‑regulated kinase (ERK1) and c-Jun N‑terminal kinase were also increased. Furthermore, caspase-9 and AIF protein expression was upregulated. In conclusion, puerarin inhibited proliferation and induced apoptosis in SMMC‑7721 cells via the mitochondria‑dependent pathway; however, the specific mechanisms require further investigation.
Collapse
Affiliation(s)
- Wei-Guo Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiao-Fang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Ke-Wei Meng
- Department of Hepatobiliary and Pancreatic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - San-Yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|