1
|
Ghavimi R, Mahmoudi S, Mohammadi M, Khodamoradi E, Jahanian-Najafabadi A. Exploring the potential of anticancer peptides as therapeutic agents for cancer treatment. Res Pharm Sci 2025; 20:165-187. [PMID: 40444161 PMCID: PMC12118774 DOI: 10.4103/rps.rps_75_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 06/02/2025] Open
Abstract
Despite great advances in cancer identification and treatment, malignancies remain the primary cause of high morbidity and mortality worldwide. The drawbacks of conventional chemotherapy, such as severe toxicity, lack of specificity related to actively dividing cells, and resistance, can warrant the urgent need to develop an alternative approach to treat this disease. To overcome the drawbacks, researchers are attempting to deliver drugs to the site of action (targeted delivery) or to identify drugs that specifically target tumor cells. In this regard, highly cationic and amphipathic antimicrobial peptides are attracting the attention of researchers due to their potent anticancer activity, low cost of manufacture, and, most critically, tumor-targeting activity. A growing number of documents have shown that some of the mentioned peptides exhibited a broad spectrum of cytotoxic activity against cancer cells but not normal mammalian cells entitled as anticancer peptides. Due to their solubility, low toxicity, strong tumor penetration, high selectivity, and ability to be used alone or in conjunction with other conventional medications, anticancer peptides have the potential to become very successful cancer treatments in the future. This review provided an overview of the studies concerning anticancer peptide classification, modes of action, and selectivity, and also summarized some of the anticancer peptides developed for targeting different types of malignancies. The role of in silico methods or artificial intelligence in the design and discovery of anticancer peptides was briefly explained. Additionally, the current review addressed challenges in utilizing anticancer peptides for cancer therapy and highlighted peptides currently undergoing clinical trials.
Collapse
Affiliation(s)
- Reza Ghavimi
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Baton Rouge, LA, United States
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, I.R. Iran
- CinnaGen Research and Production Co, Alborz, I.R. Iran
| | - Samira Mahmoudi
- Department of Biochemistry and Molecular Biology, LSU Health-Shreveport, Shreveport, Louisiana 71104, USA
| | - Mohsen Mohammadi
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Elahe Khodamoradi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Bioinformatics Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
2
|
Hirata M, Nomura T, Inoue YH. Anti-Tumor Effects of Cecropin A and Drosocin Incorporated into Macrophage-like Cells Against Hematopoietic Tumors in Drosophila mxc Mutants. Cells 2025; 14:389. [PMID: 40136638 PMCID: PMC11940895 DOI: 10.3390/cells14060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Five major antimicrobial peptides (AMPs) in Drosophila are induced in multiple sex combs (mxc) mutant larvae harboring lymph gland (LG) tumors, and they exhibit anti-tumor effects. The effects of other well-known AMPs, Cecropin A and Drosocin, remain unexplored. We investigated the tumor-elimination mechanism of these AMPs. A half-dose reduction in either the Toll or Imd gene reduced the induction of these AMPs and enhanced tumor growth in mxcmbn1 mutant larvae, indicating that their anti-tumor effects depend on the innate immune pathway. Overexpression of these AMPs in the fat body suppressed tumor growth without affecting cell proliferation. Apoptosis was promoted in the mutant but not in normal LGs. Conversely, knockdown of them inhibited apoptosis and enhanced tumor growth; therefore, they inhibit LG tumor growth by inducing apoptosis. The AMPs from the fat body were incorporated into the hemocytes of mutant but not normal larvae. Another AMP, Drosomycin, was taken up via phagocytosis factors. Enhanced phosphatidylserine signals were observed on the tumor surface. Inhibition of the signals exposed on the cell surface enhanced tumor growth. AMPs may target phosphatidylserine in tumors to induce apoptosis and execute their tumor-specific effects. AMPs could be beneficial anti-cancer drugs with minimal side effects for clinical development.
Collapse
Affiliation(s)
- Marina Hirata
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Tadashi Nomura
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
| |
Collapse
|
3
|
Sood A, Jothiswaran V, Singh A, Sharma A. Anticancer peptides as novel immunomodulatory therapeutic candidates for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1074-1099. [PMID: 39351437 PMCID: PMC11438574 DOI: 10.37349/etat.2024.00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer remains a concern after years of research in this field. Conventional therapies such as chemotherapy, radiation, and surgery are available for cancer treatment, but they are characterized by various side effects. There are several immunological challenges that make it difficult for the immune system and conventional therapies to treat cancer. Some of these challenges include heterogeneity, resistance to medicines, and cancer relapse. Even advanced treatments like immune checkpoint inhibitors (ICIs), which revolutionized cancer treatment, have associated toxicity and resistance further necessitate the exploration of alternative therapies. Anticancer peptides (ACPs) offer promising potential as cancer-fighting agents and address challenges such as treatment resistance, tumor heterogeneity, and metastasis. Although these peptides exist as components of the defense system in various plants, animals, fungi, etc., but can also be created synthetically and used as a new treatment measure. These peptides possess properties that make them appealing for cancer therapy, such as apoptosis induction, inhibition of angiogenesis, and cell membrane breakdown with low toxicity. Their capacity to specifically target cancer cells selectively holds promise for enhancing treatment environments as well as improving patients' quality of life. This review provides detailed insights into the different prospects of ACPs, including their characterization, use as immunomodulatory agents in cancer treatment, and their mechanistic details after addressing various immunological challenges in existing cancer treatment strategies. In conclusion, ACPs have promising potential as novel cancer therapeutics due to their target specificity and fewer side effects than conventional therapies.
Collapse
Affiliation(s)
- Apurva Sood
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - V.V. Jothiswaran
- Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769005, India
| | - Amrita Singh
- Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769005, India
| | - Anuradha Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| |
Collapse
|
4
|
Martynowycz MW, Andreev K, Mor A, Gidalevitz D. Cancer-Associated Gangliosides as a Therapeutic Target for Host Defense Peptide Mimics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12541-12549. [PMID: 37647566 DOI: 10.1021/acs.langmuir.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Aberrant levels of glycolipids expressed on cellular surfaces are characteristic of different types of cancers. The oligomer of acylated lysine (OAK) mimicking antimicrobial peptides displays in vitro activity against human and murine melanoma cell lines with upregulated GD3 and GM3 gangliosides. Herein, we demonstrate the capability of OAK to intercalate into the sialo-oligosaccharides of DPPC/GD3 and DPPC/GM3 lipid monolayers using X-ray scattering. The lack of insertion into monolayers containing phosphatidylserine suggests that the mechanism of action by OAKs against glycosylated lipid membranes is not merely driven by charge effects. The fluorescence microscopy data demonstrates the membrane-lytic activity of OAK. Understanding the molecular basis for selectivity toward GD3 and GM3 gangliosides by antimicrobial lipopeptides will contribute to the development of novel therapies to cure melanoma and other malignancies.
Collapse
Affiliation(s)
- Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Amram Mor
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| |
Collapse
|
5
|
Amarasekara Y, Perera IC, Katuwavila NP, Jayakody RS, Amaratunga GA, Weerasinghe L. Evaluation of novel nanocomposites for enhanced anticancer activity of XLAsp-P2 peptide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022; 12:819563. [PMID: 35280755 PMCID: PMC8904739 DOI: 10.3389/fonc.2022.819563] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multifaceted global health issue and one of the leading causes of death worldwide. In recent years, medical science has achieved great advances in the diagnosis and treatment of cancer. Despite the numerous advantages of conventional cancer therapies, there are major drawbacks including severe side effects, toxicities, and drug resistance. Therefore, the urgency of developing new drugs with low cytotoxicity and treatment resistance is increasing. Antimicrobial peptides (AMPs) have attracted attention as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells with less toxicity to normal tissues. In this review, we present the structure, biological function, and underlying mechanisms of AMPs. The recent experimental studies and clinical trials on anticancer peptides in different cancer types as well as the challenges of their clinical application have also been discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amirhesam Babajani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Manrique-Moreno M, Santa-González G, Gallego V. Bioactive cationic peptides as potential agents for breast cancer treatment. Biosci Rep 2021; 41:BSR20211218C. [PMID: 34874400 PMCID: PMC8655503 DOI: 10.1042/bsr20211218c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer continues to affect millions of women worldwide, and the number of new cases dramatically increases every year. The physiological causes behind the disease are still not fully understood. One in every 100 cases can occur in men, and although the frequency is lower than among women, men tend to have a worse prognosis of the disease. Various therapeutic alternatives to combat the disease are available. These depend on the type and progress of the disease, and include chemotherapy, radiotherapy, surgery, and cancer immunotherapy. However, there are several well-reported side effects of these treatments that have a significant impact on life quality, and patients either relapse or are refractory to treatment. This makes it necessary to develop new therapeutic strategies. One promising initiative are bioactive peptides, which have emerged in recent years as a family of compounds with an enormous number of clinical applications due to their broad spectrum of activity. They are widely distributed in several organisms as part of their immune system. The antitumoral activity of these peptides lies in a nonspecific mechanism of action associated with their interaction with cancer cell membranes, inducing, through several routes, bilayer destabilization and cell death. This review provides an overview of the literature on the evaluation of cationic peptides as potential agents against breast cancer under different study phases. First, physicochemical characteristics such as the primary structure and charge are presented. Secondly, information about dosage, the experimental model used, and the mechanism of action proposed for the peptides are discussed.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| | - Gloria A. Santa-González
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnólogico Metropolitano, A.A. 54959, Medellin, Colombia
| | - Vanessa Gallego
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| |
Collapse
|
8
|
Colella F, Scillitani G, Pierri CL. Sweet as honey, bitter as bile: Mitochondriotoxic peptides and other therapeutic proteins isolated from animal tissues, for dealing with mitochondrial apoptosis. Toxicology 2020; 447:152612. [PMID: 33171268 DOI: 10.1016/j.tox.2020.152612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are subcellular organelles involved in cell metabolism and cell life-cycle. Their role in apoptosis regulation makes them an interesting target of new drugs for dealing with cancer or rare diseases. Several peptides and proteins isolated from animal and plant sources are known for their therapeutic properties and have been tested on cancer cell-lines and xenograft murine models, highlighting their ability in inducing cell-death by triggering mitochondrial apoptosis. Some of those molecules have been even approved as drugs. Conversely, many other bioactive compounds are still under investigation for their proapoptotic properties. In this review we report about a group of peptides, isolated from animal venoms, with potential therapeutic properties related to their ability in triggering mitochondrial apoptosis. This class of compounds is known with different names, such as mitochondriotoxins or mitocans.
Collapse
Affiliation(s)
- Francesco Colella
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
9
|
Brady D, Grapputo A, Romoli O, Sandrelli F. Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications. Int J Mol Sci 2019; 20:E5862. [PMID: 31766730 PMCID: PMC6929098 DOI: 10.3390/ijms20235862] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
The alarming escalation of infectious diseases resistant to conventional antibiotics requires urgent global actions, including the development of new therapeutics. Antimicrobial peptides (AMPs) represent potential alternatives in the treatment of multi-drug resistant (MDR) infections. Here, we focus on Cecropins (Cecs), a group of naturally occurring AMPs in insects, and on synthetic Cec-analogs. We describe their action mechanisms and antimicrobial activity against MDR bacteria and other pathogens. We report several data suggesting that Cec and Cec-analog peptides are promising antibacterial therapeutic candidates, including their low toxicity against mammalian cells, and anti-inflammatory activity. We highlight limitations linked to the use of peptides as therapeutics and discuss methods overcoming these constraints, particularly regarding the introduction of nanotechnologies. New formulations based on natural Cecs would allow the development of drugs active against Gram-negative bacteria, and those based on Cec-analogs would give rise to therapeutics effective against both Gram-positive and Gram-negative pathogens. Cecs and Cec-analogs might be also employed to coat biomaterials for medical devices as an approach to prevent biomaterial-associated infections. The cost of large-scale production is discussed in comparison with the economic and social burden resulting from the progressive diffusion of MDR infectious diseases.
Collapse
Affiliation(s)
- Daniel Brady
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
| | - Alessandro Grapputo
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
| | - Ottavia Romoli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
- Institut Pasteur de la Guyane, 23 Avenue Pasteur, 97306 Cayenne, French Guiana, France
| | - Federica Sandrelli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
| |
Collapse
|
10
|
Dart A, Bhave M, Kingshott P. Antimicrobial Peptide‐Based Electrospun Fibers for Wound Healing Applications. Macromol Biosci 2019; 19:e1800488. [DOI: 10.1002/mabi.201800488] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alexander Dart
- Department of Chemistry and BiotechnologySchool of ScienceFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn 3122 VIC Australia
| | - Mrinal Bhave
- Department of Chemistry and BiotechnologySchool of ScienceFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn 3122 VIC Australia
| | - Peter Kingshott
- Department of Chemistry and BiotechnologySchool of ScienceFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn 3122 VIC Australia
| |
Collapse
|
11
|
Xia F, Gao F, Yao H, Zhang G, Gao B, Lu Y, Wang X, Qian Y. Identification of angiogenesis-inhibiting peptides from Chan Su. Protein Expr Purif 2019; 163:105445. [PMID: 31252070 DOI: 10.1016/j.pep.2019.105445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023]
Abstract
Chan Su is a traditional medicine prepared from toxic secretions from the auricular and skin glands of Chinese toads. Previous studies show that active components in Chan Su can inhibit the proliferation of tumor cells. To study the effect of Chan Su peptides on angiogenesis, fresh Chan Su was collected and its component peptides were isolated by an extraction and precipitation method. A high-performance liquid chromatography (HPLC) fingerprint of the Chan Su component peptides revealed that there were more than 18 peptide component peaks. We demonstrate that Chan Su peptides inhibit angiogenesis in vitro by inhibiting human umbilical vein endothelial cell (HUVEC) proliferation and tube formation in a dose-dependent manner. Western blots indicated that Chan Su peptides inhibited the protein expression of VEGF165 and Ras, leading us to conclude that Chan Su peptide components exert anti-angiogenic effects by suppressing the VEGF165-VEGFR2-Ras signalling pathway. Finally, we identified the partial amino acid sequences of seven Chan Su peptides using the shotgun proteomics method.
Collapse
Affiliation(s)
- Fengyan Xia
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Fei Gao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Huili Yao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Guobing Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Bo Gao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ying Lu
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiangjun Wang
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yongchang Qian
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
12
|
Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Moret F, Gobbo M, Reddi E. Conjugation of photosensitisers to antimicrobial peptides increases the efficiency of photodynamic therapy in cancer cells. Photochem Photobiol Sci 2016; 14:1238-50. [PMID: 26014915 DOI: 10.1039/c5pp00038f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Some antimicrobial peptides (AMPs) have the ability to penetrate and kill not only pathogenic microorganisms but also cancer cells, while they are less active toward normal eukaryotic cells. Here we have investigated the potential of three AMPs, namely apidaecin 1b (Api), magainin 2 (Mag) and buforin II (Buf), as carriers of drugs for cancer cells by using the hydrophobic photosensitiser 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (cTPP) as the drug model, conjugated to the N-terminus of the peptides. Flow cytometry measurements demonstrated that conjugation of cTPP increased its rate and efficiency of uptake in A549 human lung adenocarcinoma cells in the order Mag > Buf > Api. In vitro photodynamic therapy (PDT) experiments showed that the increased uptake of the conjugated cTPP determined 100% cell killing at concentrations in the nanomolar range while micromolar concentrations were required for the same killing effect with unconjugated cTPP. Serum proteins interacted with cTPP conjugated to Buf and Api and slightly interfered with the cellular uptake of these conjugates but not with that of Mag. The data suggest electrostatic interactions of the conjugates with sialic acid and ganglioside rich domains, as lipid rafts of the plasma membrane, followed by cell internalization via non-caveolar dynamin-dependent endocytosis as indicated by the effects of inhibitors of specific endocytic pathways. Our study demonstrated that the three AMPs investigated, Mag in particular, have the ability to carry a hydrophobic cargo inside cancer cells and may therefore represent useful carriers of anticancer drugs, especially those with a poor capacity to penetrate inside the target cells.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B, 35121 Padova, Italy.
| | | | | |
Collapse
|
14
|
Abdel-Hameed ESS, Bazaid SA, Hagag HA. Chemical characterization ofRosa damascena Miller var. trigintipetala Dieck essential oil and itsin vitrogenotoxic and cytotoxic properties. JOURNAL OF ESSENTIAL OIL RESEARCH 2015. [DOI: 10.1080/10412905.2015.1099120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|