1
|
Lu H, Zhang J, Wang Y. Identification of the Pharmacological Components and Its Targets of Sanghuang by Integration of Nontarget Metabolomics and Network Pharmacology Analysis. Biomed Chromatogr 2025; 39:e6066. [PMID: 39748251 DOI: 10.1002/bmc.6066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
The objective of this study is to comprehensively to identify the core pharmacological components and their respective targets of three medicinal fungi Sanghuangs including Sanghuangporus vaninii (SV), Sanghuangporus lonicericola (SL), and Inonotus hispidus (IH). Metabolomics analysis indicated that a total of 495 and 660 differential metabolites were obtained in mycelium and fermentation broth samples among three Sanghuangs, respectively. The network pharmacology analysis showed that 6-[1]-ladderane hexanol, R-nostrenol, candidone, ellagic acid, and quercetin were the overlapping active ingredients of three Sanghuang species for diabetes mellitus, immune system disease, and neoplasm. Certonardosterol A, dalamid, and ethylene brassylate are unique active ingredients in SV, and certonardosterol K, kaempferide, and esculetin are unique active ingredients in SL. Asbestinine, neoandrographolide, isosakuranetin, and daucosterin are unique active ingredients in IH. Accordingly, the common core targets of active ingredients of the three Sanghuangs were ESR1, PIK3CA, and LYN. PRKCA, EGFR, and STAT3 were the unique targets of SV, SL, and IH, respectively. The primary active components and their respective targets, in addition to the component-target interaction of Sanghuangs that have been identified in the present study, provide a foundation for future research on the prevention and treatment of disease using Sanghuangs.
Collapse
Affiliation(s)
- Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Wuhu Dongyuan New Rural Co. Ltd., Wuhu, China
| | - Jintao Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Province Joint Construction Discipline key Laboratory of Nanobody Technology, Hefei, China
| |
Collapse
|
2
|
Ng JY, Cramer H, Lee MS, Moher D. Traditional, complementary, and integrative medicine and artificial intelligence: Novel opportunities in healthcare. Integr Med Res 2024; 13:101024. [PMID: 38384497 PMCID: PMC10879672 DOI: 10.1016/j.imr.2024.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
The convergence of traditional, complementary, and integrative medicine (TCIM) with artificial intelligence (AI) is a promising frontier in healthcare. TCIM is a patient-centric approach that combines conventional medicine with complementary therapies, emphasizing holistic well-being. AI can revolutionize healthcare through data-driven decision-making and personalized treatment plans. This article explores how AI technologies can complement and enhance TCIM, aligning with the shared objectives of researchers from both fields in improving patient outcomes, enhancing care quality, and promoting holistic wellness. This integration of TCIM and AI introduces exciting opportunities but also noteworthy challenges. AI may augment TCIM by assisting in early disease detection, providing personalized treatment plans, predicting health trends, and enhancing patient engagement. Challenges at the intersection of AI and TCIM include data privacy and security, regulatory complexities, maintaining the human touch in patient-provider relationships, and mitigating bias in AI algorithms. Patients' trust, informed consent, and legal accountability are all essential considerations. Future directions in AI-enhanced TCIM include advanced personalized medicine, understanding the efficacy of herbal remedies, and studying patient-provider interactions. Research on bias mitigation, patient acceptance, and trust in AI-driven TCIM healthcare is crucial. In this article, we outlined that the merging of TCIM and AI holds great promise in enhancing healthcare delivery, personalizing treatment plans, preventive care, and patient engagement. Addressing challenges and fostering collaboration between AI experts, TCIM practitioners, and policymakers, however, is vital to harnessing the full potential of this integration.
Collapse
Affiliation(s)
- Jeremy Y. Ng
- Centre for Journalology, Ottawa Hospital Research Institute, Ottawa, Canada
- Institute of General Practice and Interprofessional Care, University Hospital Tübingen, Tübingen, Germany
- Robert Bosch Center for Integrative Medicine and Health, Bosch Health Campus, Stuttgart, Germany
| | - Holger Cramer
- Institute of General Practice and Interprofessional Care, University Hospital Tübingen, Tübingen, Germany
- Robert Bosch Center for Integrative Medicine and Health, Bosch Health Campus, Stuttgart, Germany
| | - Myeong Soo Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - David Moher
- Centre for Journalology, Ottawa Hospital Research Institute, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Fu B, Shang Z, Song S, Xu Y, Wei L, Li G, Yang H. Adverse reactions of Niaoduqing granules: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154535. [PMID: 36610168 DOI: 10.1016/j.phymed.2022.154535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The therapeutic benefits of Niaoduqing granules (NDQG) in kidney diseases has been comprehensively studied, but its adverse drug reactions remain unexplored. OBJECTIVE To evaluate the safety of NDQG in kidney disease treatment. METHODS The literature was searched in Embase, Medline via PubMed, Cochrane Library database, Wanfang database, Chinese National Knowledge Infrastructure, SinoMed, and Chinese VIP Database from inception to January 15, 2022, for randomized controlled trials (RCTs) and observational studies. The ClinicalTrials.gov website was searched for ongoing trials. The frequency and characteristics of adverse drug reactions (ADRs) were the primary and secondary outcomes, respectively. Subgroup analysis were conducted to explore the effects of clinical trial types, different kidney diseases, drug combinations and dosage on the safety of NDQG. RESULTS This review included 132 trials comprising 115 RCTs and 17 cohort studies. Additionally, 118 studies reported ADR rates with complete data, including 10381 participants. Regarding ADR frequency, no significant difference was observed between NDQG (7.26%) and control (8.39%) groups (RR = 0.890, 95% confidence interval (CI): 0.788-1.007); with no heterogeneity among the studies (I2 = 0.0%, P = 0.958). ADR frequency in patients with chronic kidney disease (65 trials, n = 5823) was significantly lower in the NDQG treatment group than in the control group (RR = 0.810, 95% CI: 0.67-0.969, I2 = 0.0%, P = 0.993); however, for patients with diabetic nephropathy there was no difference between both groups (26 trials, n = 2166, RR = 1.077, 95% CI: 0.802-1.446, I2 = 0.0%, P = 0.611). Similarly, the incidence of ADR in patients on dialysis and patients with pyelonephritis and nephrotic syndrome was the same for both groups, with 95% CI overlapping the line. For different interventions, including NDQG monotherapy or its combination with other commonly used drugs (including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, statin drugs, and compound α-keto acid) or dialysis, the incidence of ADR showed no significant difference between the experimental and control arms. The ADR in the NDQG group primarily affected the gastrointestinal system (64.74%), central and peripheral nervous system (9.07%), whole body (5.79%), and skin and appendages (4.53%). The most common clinical manifestations were diarrhea, nausea, and vomiting. CONCLUSIONS Our meta-analysis showed that compared with supportive therapy, the incidence of ADR was similar when NDQG was added. However, current evidence is not definitive and more well-designed and conducted RCTs are warranted to definitively establish the reliable evidence. PROTOCOL REGISTRATION NUMBER PROSPERO CRD 42018104227.
Collapse
Affiliation(s)
- Baohui Fu
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zongjie Shang
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simian Song
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Xu
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Wei
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ge Li
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Hongtao Yang
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
Tran MN, Kim S, Nguyen QHN, Lee S. Molecular Mechanisms Underlying Qi-Invigorating Effects in Traditional Medicine: Network Pharmacology-Based Study on the Unique Functions of Qi-Invigorating Herb Group. PLANTS 2022; 11:plants11192470. [PMID: 36235337 PMCID: PMC9573487 DOI: 10.3390/plants11192470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Qi-invigorating herbs (QIHs) are a group of herbs that invigorate Qi, the most vital force for maintaining the physiological functions of the human body in traditional medicine. However, the mechanism underlying the Qi-invigorating effects remains unclear. This study aimed to elucidate the unique mechanisms of QIHs based on unique compounds, using a network pharmacology approach. QIHs and their compounds were identified using existing literature and the TCMSP database, respectively. Subsequently, a method was proposed to screen for unique compounds that are common in QIHs but rare in other traditional herbs. Unique compounds’ targets were predicted using the TCMSP, BATMAN-TCM, and SwissTargetPrediction databases. Finally, enriched GO and KEGG pathways were obtained using DAVID to uncover the biomolecular functions and mechanisms. Thirteen unique compounds, mainly including amino acids and vitamins that participate in energy metabolism and improve Qi deficiency syndrome, were identified among the eight QIHs. GO and KEGG pathway analyses revealed that these compounds commonly participate in neuroactive ligand–receptor interaction and the metabolism of amino acids, and are related to the components of mitochondria and neuronal cells. Our results appropriately reflect the characteristics of traditional Qi-invigorating effects; therefore, this study facilitates the scientific interpretation of Qi functions and provides evidence regarding the treatment effectiveness of QIHs.
Collapse
Affiliation(s)
- Minh Nhat Tran
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34113, Korea
- Faculty of Traditional Medicine, Hue University of Medicine and Pharmacy, Hue University, Hue 49120, Vietnam
| | - Soyoung Kim
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34113, Korea
| | - Quynh Hoang Ngan Nguyen
- Center for Artificial Intelligence, Korea Institute of Science and Technology, Seoul 02792, Korea
- AI Robotics, University of Science and Technology, Daejeon 34113, Korea
| | - Sanghun Lee
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-42-868-9461
| |
Collapse
|
5
|
Chu H, Moon S, Park J, Bak S, Ko Y, Youn BY. The Use of Artificial Intelligence in Complementary and Alternative Medicine: A Systematic Scoping Review. Front Pharmacol 2022; 13:826044. [PMID: 35431917 PMCID: PMC9011141 DOI: 10.3389/fphar.2022.826044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 01/04/2023] Open
Abstract
Background: The development of artificial intelligence (AI) in the medical field has been growing rapidly. As AI models have been introduced in complementary and alternative medicine (CAM), a systematized review must be performed to understand its current status. Objective: To categorize and seek the current usage of AI in CAM. Method: A systematic scoping review was conducted based on the method proposed by the Joanna Briggs Institute. The three databases, PubMed, Embase, and Cochrane Library, were used to find studies regarding AI and CAM. Only English studies from 2000 were included. Studies without mentioning either AI techniques or CAM modalities were excluded along with the non-peer-reviewed studies. A broad-range search strategy was applied to locate all relevant studies. Results: A total of 32 studies were identified, and three main categories were revealed: 1) acupuncture treatment, 2) tongue and lip diagnoses, and 3) herbal medicine. Other CAM modalities were music therapy, meditation, pulse diagnosis, and TCM syndromes. The majority of the studies utilized AI models to predict certain patterns and find reliable computerized models to assist physicians. Conclusion: Although the results from this review have shown the potential use of AI models in CAM, future research ought to focus on verifying and validating the models by performing a large-scale clinical trial to better promote AI in CAM in the era of digital health.
Collapse
Affiliation(s)
- Hongmin Chu
- Daecheong Public Health Subcenter, Incheon, South Korea
| | - Seunghwan Moon
- Department of Global Public Health and Korean Medicine Management, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jeongsu Park
- Department of College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Seongjun Bak
- Department of College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Youme Ko
- National Institute for Korean Medicine Development (NIKOM), Seoul, South Korea
| | - Bo-Young Youn
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
6
|
Tang L, Wang F, Xiao L, Shen M, Xia S, Zhang Z, Zhang F, Zheng S, Tan S. Yi-Qi-Jian-Pi formula modulates the PI3K/AKT signaling pathway to attenuate acute-on-chronic liver failure by suppressing hypoxic injury and apoptosis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114411. [PMID: 34265380 DOI: 10.1016/j.jep.2021.114411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute-on-chronic liver failure (ACLF) is a key complication of chronic hepatitis, with a relatively high mortality rate and limited treatment options, which dramatically threatens human lives. Yi-Qi-Jian-Pi formula (YQJPF) is a herbal compound commonly used to treat liver failure. AIM OF THE STUDY The purpose of this research is to discuss the potential molecular biological effect and mechanism of YQJPF in ACLF. MATERIALS AND METHODS In this study, we created a rat model of ACLF by CCl4-, LPS- and D-Galactosamine (D-Gal) and an in vitro model of LPS-induced hepatocyte damage. The specific components of YQJPF and potential mechanism were explored based on bioinformatics analyses. Furthermore, we verified the effect of YQJPF on ACLF using immunohistochemistry, RT-qPCR, western blotting, and flow cytometry. RESULTS Our research demonstrated that, after YQJPF treatment, hepatocyte injury in rats was relieved. Bioinformatics analysis showed that PI3K/AKT, HIF-1, mitochondrial apoptosis pathways played prominent roles. YQJPF promoted HIF-1α protein expression and exerted protective effects against hypoxic injury, simultaneously reducing mitochondrial ROS production, suppressing hepatocyte apoptosis. Furthermore, we showed that YQJPF accelerates PI3K/AKT pathway activation, a known broad-spectrum inhibitor of PI3K. LY294002, which was used for reverse verification, suppressed the effect of YQJPF on hypoxic injury and ROS-mediated hepatocyte apoptosis. CONCLUSIONS YQJPF ameliorates liver injury by suppressing hypoxic injury and ROS-mediated hepatocyte apoptosis by modulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Li Tang
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China; Department of Gastroenterology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| | - Feixia Wang
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingyan Xiao
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
7
|
Lopresti AL, Smith SJ, Drummond PD. An investigation into an evening intake of a saffron extract (affron®) on sleep quality, cortisol, and melatonin concentrations in adults with poor sleep: a randomised, double-blind, placebo-controlled, multi-dose study. Sleep Med 2021; 86:7-18. [PMID: 34438361 DOI: 10.1016/j.sleep.2021.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE/BACKGROUND To validate and extend on previous positive findings of the sleep-enhancing effects of saffron supplementation in adults with unsatisfactory sleep. PATIENTS/METHODS In this 28-day, 3-arm, parallel-group, double-blind, randomised controlled trial, 120 adults with unsatisfactory sleep received either a placebo, 14 mg, or 28 mg of a standardised saffron extract (affron®), 1 h before bed. Outcome measures included the Pittsburgh Sleep Diary (with sleep quality ratings as the primary outcome measure), Insomnia Symptom Questionnaire (ISQ), Profile of Mood States, Restorative Sleep Questionnaire, the Functional Outcomes of Sleep Questionnaire, and evening salivary melatonin and cortisol concentrations. RESULTS Compared to the placebo, saffron supplementation was associated with greater improvements in sleep quality ratings (primary outcome measure), mood ratings after awakening, the ISQ total score, and ISQ-insomnia classifications. However, there were no significant differences between the saffron and placebo groups in other questionnaire and sleep diary outcome measures. Sleep improvements were similar for the two administered saffron doses. Compared to the placebo, saffron supplementation was associated with increases in evening melatonin concentrations but did not affect evening cortisol. Saffron supplementation was well-tolerated with no reported significant adverse effects. CONCLUSIONS These results provide further validation of the sleep-enhancing effects of 28-days of saffron supplementation in adults with unsatisfactory sleep. Further research is required to examine the efficacy and safety of saffron supplementation using objective sleep measures, over a longer duration, in people presenting with a diagnosed insomnia disorder and other psychogenic and demographic characteristics, and into its potential sleep-enhancing mechanisms of action.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, Perth, Western Australia, 6023, Australia; College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, 6150, Australia.
| | - Stephen J Smith
- Clinical Research Australia, Perth, Western Australia, 6023, Australia; College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, 6150, Australia
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, 6150, Australia
| |
Collapse
|
8
|
Hu Y, Lei S, Yan Z, Hu Z, Guo J, Guo H, Sun B, Pan C. Angelica Dahurica Regulated the Polarization of Macrophages and Accelerated Wound Healing in Diabetes: A Network Pharmacology Study and In Vivo Experimental Validation. Front Pharmacol 2021; 12:678713. [PMID: 34234674 PMCID: PMC8256266 DOI: 10.3389/fphar.2021.678713] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
Diabetic wounds exhibit retarded and partial healing processes. Therefore, patients are exposed to an elevated risk of infection. It has been verified that Angelica dahurica (Hoffm.) Benth. and Hook. f. ex Franch. and Sav (A. dahurica) is conducive for wound healing. However, the pharmacological mechanisms of A. dahurica are yet to be established. The present study uses network pharmacology and in vivo experimental validation to investigate the underlying process that makes A. dahurica conducive for faster wound healing in diabetes patients. 54 potential targets in A. dahurica that act on wound healing were identified through network pharmacology assays, such as signal transducer and activator of transcription 3 (STAT3), JUN, interleukin-1β (IL-1β), tumor necrosis factor (TNF), and prostaglandin G/H synthase 2 (PTGS2). Furthermore, in vivo validation showed that A. dahurica accelerated wound healing through anti-inflammatory effects. More specifically, it regulates the polarization of M1 and M2 subtypes of macrophages. A. dahurica exerted a curative effect on diabetic wound healing by regulating the inflammation. Hence, pharmacologic network analysis combined with in vivo validation elucidated the probable effects and underlying mechanisms of A. dahurica's therapeutic effect on diabetic wound healing.
Collapse
Affiliation(s)
- Yonghui Hu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Sisi Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Emergency, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyue Yan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhibo Hu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jun Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hang Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Yang BY, Wang HZ, Ma ZZ, Lu C, Li Y, Lu ZY, Lu XL, Gao B. A Network Pharmacology Study to Uncover the Multiple Molecular Mechanism of the Chinese Patent Medicine Toujiequwen Granules in the Treatment of Corona Virus Disease 2019 (COVID-19). Curr Med Sci 2021; 41:297-305. [PMID: 33877545 PMCID: PMC8056192 DOI: 10.1007/s11596-021-2346-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023]
Abstract
Since the outbreak of the novel corona virus disease 2019 (COVID-19) at the end of 2019, specific antiviral drugs have been lacking. A Chinese patent medicine Toujiequwen granules has been promoted in the treatment of COVID-19. The present study was designed to reveal the molecular mechanism of Toujiequwen granules against COVID-19. A network pharmacological method was applied to screen the main active ingredients of Toujiequwen granules. Network analysis of 149 active ingredients and 330 drug targets showed the most active ingredient interacting with many drug targets is quercetin. Drug targets most affected by the active ingredients were PTGS2, PTGS1, and DPP4. Drug target disease enrichment analysis showed drug targets were significantly enriched in cardiovascular diseases and digestive tract diseases. An “active ingredient-target-disease” network showed that 57 active ingredients from Toujiequwen granules interacted with 15 key targets of COVID-19. There were 53 ingredients that could act on DPP4, suggesting that DPP4 may become a potential new key target for the treatment of COVID-19. GO analysis results showed that key targets were mainly enriched in the cellular response to lipopolysaccharide, cytokine activity and other functions. KEGG analysis showed they were mainly concentrated in viral protein interaction with cytokine and cytokine receptors and endocrine resistance pathway. The evidence suggests that Toujiequwen granules might play an effective role by improving the symptoms of underlying diseases in patients with COVID-19 and multi-target interventions against multiple signaling pathways related to the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Bao-yu Yang
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036 China
| | - Hao-zhen Wang
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036 China
| | - Zhen-zhong Ma
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036 China
| | - Chen Lu
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036 China
| | - Yang Li
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036 China
| | - Zi-yin Lu
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036 China
| | - Xiu-li Lu
- Department of Biochemistry and Molecular Biology, Life Science School, Liaoning University, Shenyang, 110036 China
| | - Bing Gao
- Department of Cell biology and Genetics, Shenyang Medical College, Shenyang, 110034 China
| |
Collapse
|
10
|
Hong M, Chen D, Hong Z, Tang K, Yao Y, Chen L, Ye T, Qian J, Du Y, Sun R. Ex vivo and in vivo chemoprotective activity and potential mechanism of Martynoside against 5-fluorouracil-induced bone marrow cytotoxicity. Biomed Pharmacother 2021; 138:111501. [PMID: 33765584 DOI: 10.1016/j.biopha.2021.111501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Martynoside (MAR) is a bioactive glycoside of Rehmannia glutinosa, a traditional Chinese herb frequently prescribed for treating chemotherapy-induced pancytopenia. Despite its clinical usage in China for thousands of years, the mechanism of MAR's hematopoietic activity and its impact on chemotherapy-induced antitumor activity are still unclear. Here, we showed that MAR protected ex vivo bone marrow cells from 5-fluorouracil (5-FU)-induced cell death and inflammation response by down-regulating the TNF signaling pathway, in which II1b was the most regulatory gene. Besides, using mouse models with melanoma and colon cancer, we further demonstrated that MAR had protective effects against 5-FU-induced myelosuppression in mice without compromising its antitumor activity. Our results showed that MAR increased the number of bone marrow nucleated cells (BMNCs) and the percentage of leukocyte and granulocytic populations in 5-FU-induced myelosuppressive mice, accompanied by an increase in numbers of circulating white blood cells and platelets. The transcriptome profile of BMNCs further showed that the mode of action of MAR might be associated with the increased survival of BMNCs and the improvement of the bone marrow microenvironment. In summary, we revealed the potential molecular mechanism of MAR to counteract 5-FU-induced bone marrow cytotoxicity both ex vivo and in vivo, and highlighted its potential clinical usage in cancer patients experiencing chemotherapy-induced multi-lineage myelosuppression.
Collapse
Affiliation(s)
- Mengying Hong
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Dongdong Chen
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhuping Hong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Kejun Tang
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuanyuan Yao
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Liubo Chen
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Tingting Ye
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yushen Du
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ren Sun
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Understanding Traditional Chinese Medicine to strengthen conservation outcomes. PEOPLE AND NATURE 2020. [DOI: 10.1002/pan3.10166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Guo J, Lou MP, Hu LL, Zhang X. Uncovering the pharmacological mechanism of the effects of the Banxia-Xiakucao Chinese Herb Pair on sleep disorder by a systems pharmacology approach. Sci Rep 2020; 10:20454. [PMID: 33235305 PMCID: PMC7686484 DOI: 10.1038/s41598-020-77431-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/11/2020] [Indexed: 01/20/2023] Open
Abstract
Sleep disorder (SD) has a high incidence and seriously affects quality of life, mental health and even the manifestation of physical diseases. The combination of Pinellia ternata (Chinese name: banxia) and Prunella vulgaris (Chinese name: xiakucao), known as the Banxia-Xiakucao Chinese herb pair (BXHP), is a proven Chinese herbal medicine that has been used to treat SD for thousands of years due to its significant clinical effects. However, its active pharmacological components and sedative-hypnotic mechanisms have not been fully elucidated. Thus, the present study used a systematic pharmacological approach to develop pharmacokinetic screens and target predictions via construction of a protein-protein interaction network and annotation database for SD-related and putative BXHP-related targets. Visualization, screening and integrated discovery enrichment analyses were conducted. The BXHP chemical database contains 166 compounds between the two herbal ingredients, and of these, 22 potential active molecules were screened by pharmacokinetic evaluation. The targets of 114 of the active molecules were predicted, and 34 were selected for further analysis. Finally, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggested that BXHP can reduce inflammatory responses. and mediate immune-related and central nervous system neurotransmitters via regulation of multiple targets and pathways. The use of a systematic pharmacology-based approach in the present study further elucidated the mechanisms of action underlying BXHP for the treatment of SD from a holistic perspective and sheds light on the systemic mechanisms of action of Chinese herbal medicines in general.
Collapse
Affiliation(s)
- Jing Guo
- First Clincal Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Meng-Ping Lou
- First Clincal Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Lin-Lin Hu
- Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, People's Republic of China.
| | - Xin Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Huang XJ, He CJ, Liang S, Wang J, Li J, Yang GZ, Zhao Z. Veratrilla baillonii Franch Could Alleviate Lipid Accumulation in LO2 Cells by Regulating Oxidative, Inflammatory, and Lipid Metabolic Signaling Pathways. Front Pharmacol 2020; 11:575772. [PMID: 33071788 PMCID: PMC7538785 DOI: 10.3389/fphar.2020.575772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
Based on the pathological theory of lipid metabolism and using network pharmacology, this study was designed to investigate the protective effect of water extract of Veratrilla baillonii (WVBF) on non-alcoholic fatty liver disease (NAFLD) model using LO2 cells and to identify the potential mechanism underlying the effect. The components of V. baillonii were identified from the public database of traditional Chinese medicine systems pharmacology database (TCMSP). Cytoscape software was used to construct the related composite target network. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out for critical nodes. The BioGPS database was used to determine the distribution of the target in tissues and organs. Moreover, the inhibitory effect of V. baillonii was further investigated using an in vitro hepatocyte NAFLD model. Fourteen active components were then selected from the 27 known compounds of V. baillonii. The targets of gene enrichment analysis were mainly distributed in the lipid catabolism-related signaling pathway. Network analysis revealed that five target genes of TNF, MAPK8, mTOR, NF-ĸB, and SREBP-1c were key nodes and played important roles in this process. Organ localization analysis indicated that one of the core target site of V. baillonii was liver tissue. The results of the in vitro study revealed that WVBF can alleviate the inflammatory response and lipid accumulation in LO2 hepatocytes by inhibiting oxidative stress and the adipocytokine signaling pathway. Genes and proteins related to the lipid synthesis, such as SREBP-1C, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FASN), were significantly decreased, and PPARα expression is significantly increased with WVBF administration. In conclusion, V. baillonii may regulate local lipid metabolism and attenuate oxidative stress and inflammatory factors through the PPARα/SREBP-1c signaling pathway. The present study also indicates that multiple components of V. baillonii regulate multiple targets and pathways in NAFLD. The findings highlight the potential of V. baillonii as a promising treatment strategy for nonalcoholic fatty liver injury.
Collapse
Affiliation(s)
- Xian-ju Huang
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Cai-jing He
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Shuai Liang
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Jing Wang
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Jun Li
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Guang-zhong Yang
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Zhang Zhao
- Department of Anesthesiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Bizzarri M, Giuliani A, Monti N, Verna R, Pensotti A, Cucina A. Rediscovery of natural compounds acting via multitarget recognition and noncanonical pharmacodynamical actions. Drug Discov Today 2020; 25:920-927. [DOI: 10.1016/j.drudis.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
|
15
|
Sandhu N, Navarro V. Drug-Induced Liver Injury in GI Practice. Hepatol Commun 2020; 4:631-645. [PMID: 32363315 PMCID: PMC7193133 DOI: 10.1002/hep4.1503] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although drug-induced liver injury (DILI) is a rare clinical event, it carries significant morbidity and mortality, leaving it as the leading cause of acute liver failure in the United States. It is one of the most challenging diagnoses encountered by gastroenterologists. The development of various drug injury networks has played a vital role in expanding our knowledge regarding drug-related and herbal and dietary supplement-related liver injury. In this review, we discuss what defines liver injury, epidemiology of DILI, its biochemical and pathologic patterns, and management.
Collapse
Affiliation(s)
- Naemat Sandhu
- Division of Digestive Diseases and TransplantationAlbert Einstein Healthcare NetworkPhiladelphiaPA
| | - Victor Navarro
- Division of Digestive Diseases and TransplantationAlbert Einstein Healthcare NetworkPhiladelphiaPA
| |
Collapse
|
16
|
Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020; 25:molecules25081833. [PMID: 32316274 PMCID: PMC7221665 DOI: 10.3390/molecules25081833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Thanks to omic disciplines and a systems biology approach, the study of essential oils and phytocomplexes has been lately rolling on a faster track. While metabolomic fingerprinting can provide an effective strategy to characterize essential oil contents, network pharmacology is revealing itself as an adequate, holistic platform to study the collective effects of herbal products and their multi-component and multi-target mediated mechanisms. Multivariate analysis can be applied to analyze the effects of essential oils, possibly overcoming the reductionist limits of bioactivity-guided fractionation and purification of single components. Thanks to the fast evolution of bioinformatics and database availability, disease-target networks relevant to a growing number of phytocomplexes are being developed. With the same potential actionability of pharmacogenomic data, phytogenomics could be performed based on relevant disease-target networks to inform and personalize phytocomplex therapeutic application.
Collapse
|
17
|
An Integrated Approach Exploring the Synergistic Mechanism of Herbal Pairs in a Botanical Dietary Supplement: A Case Study of a Liver Protection Health Food. Int J Genomics 2020; 2020:9054192. [PMID: 32351982 PMCID: PMC7171619 DOI: 10.1155/2020/9054192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Herbal pairs are used as a bridge between single herb and polyherbal formulas in Traditional Chinese Medicine (TCM) to provide rationale for complicated TCM formulas. The effectiveness and rationality of TCM herbal pairs have been widely applied as a strategy for dietary supplements. However, due to the complexity of the phytochemistry of individual and combinations of herbal materials, it is difficult to reveal their effective and synergistic mechanisms from a molecular or systematic point of view. In order to address this question, UPLC-Q-TOF/MS analysis and System Pharmacology tools were applied to explore the mechanism of action, using a White Peony (Paeoniae Radix Alba) and Licorice (Glycyrrhizae Radix et Rhizoma)-based dietary supplement. A total of sixteen chemical constituents of White Peony and Licorice were isolated and identified, which interact with 73 liver protection-related targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed along with network analysis. Results showed that the synergistic mechanism of the White Peony and Licorice herbal pair was associated with their coregulation of bile secretion and ABC transporter pathways. In addition, Licorice exhibits a specific response to drug and xenobiotic metabolism pathways, whereas White Peony responds to Toll-like receptor signaling, C-type lectin receptor signaling, IL-17 signaling, and TNF signaling pathways, resulting in the prevention of hepatocyte apoptosis and the reduction of immune and inflammation-mediated liver damage. These findings suggest that a White Peony and Licorice herbal pair supplement would have a liver-protecting benefit through complimentary and synergistic mechanisms. This approach provides a new path to explore herbal compatibility in dietary supplements derived from TCM theory.
Collapse
|
18
|
Zheng E, Sandhu N, Navarro V. Drug-induced Liver Injury Secondary to Herbal and Dietary Supplements. Clin Liver Dis 2020; 24:141-155. [PMID: 31753247 DOI: 10.1016/j.cld.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The use of herbal and dietary supplements (HDS) is increasing in the United States and worldwide. Its significant association with liver injury has become a concern, particularly because rates of hepatotoxicity caused by HDS are increasing. There are variety of HDS available, ranging from multi-ingredient substances, to anabolic steroids for bodybuilding purposes, to individual ingredients for purposes of supplementing a diet. This article reviews the impact of liver injury cause by HDS and explores the hepatotoxic potential of such products and their individual ingredients.
Collapse
Affiliation(s)
- Elizabeth Zheng
- Columbia University Medical Center, 622 West 168th Street, PH-14-406, New York, NY 10032, USA
| | - Naemat Sandhu
- Einstein Medical Center, 5401 Old York Road, Klein Building Suite 505, Philadelphia, PA 19141, USA
| | - Victor Navarro
- Einstein Medical Center, 5401 Old York Road, Klein Building Suite 505, Philadelphia, PA 19141, USA.
| |
Collapse
|
19
|
Qin T, Wu L, Hua Q, Song Z, Pan Y, Liu T. Prediction of the mechanisms of action of Shenkang in chronic kidney disease: A network pharmacology study and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112128. [PMID: 31386888 DOI: 10.1016/j.jep.2019.112128] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine provides a unique curative treatment of complex chronic diseases, including chronic kidney disease (CKD), which is not effectively treated with the current therapies. The pharmacological mechanisms of Shenkang (SK), a herbal medicine containing rhubarb (Rheum palmatum L. or R. tanguticum Maxim. ex Balf.), red sage (Salvia miltiorrhiza Bunge), safflower (Carthamus tinctorius L.), and astragalus (Astragalus mongholicus Bunge), widely used to treat CKD in China, are still unclear. AIM OF THE STUDY In this study, the comprehensive approach used for elucidating the pharmacological mechanisms of SK included the identification of the effective constituents, target prediction and network analysis, by investigating the interacting pathways between these molecules in the context of CKD. These results were validated by performing an in vivo study and by comparison with literature reviews. MATERIALS AND METHODS This approach involved the following main steps: first, we constructed a molecular database for SK and screened for active molecules by conducting drug-likeness and drug half-life evaluations; second, we used a weighted ensemble similarity drug-targeting model to accurately identify the direct drug targets of the bioactive constituents; third, we constructed compound-target, target-pathway, and target-disease networks using the Cytoscape 3.2 software and determined the distribution of the targets in tissues and organs according to the BioGPS database. Finally, the resulting drug-target mechanisms were compared with those proposed by previous research on SK and validated in a mouse model of CKD. RESULTS By using Network analysis, 88 potential bioactive compounds in the four component herbs of SK and 85 CKD-related targets were identified, including pathways that involve the nuclear factor-κB, mitogen-activated protein kinase, transient receptor potential, and vascular endothelial growth factor, which were categorized as inflammation, proliferation, migration, and permeability modules. The results also included different tissues (kidneys, liver, lungs, and heart) and different disease types (urogenital, metabolic, endocrine, cardiovascular, and immune diseases as well as pathological processes) closely related to CKD. These findings agreed with those reported in the literature. However, our findings with the network pharmacology prediction did not account for all the effects reported for SK found in the literature, such as regulation of the hemodynamics, inhibition of oxidative stress and apoptosis, and the involvement of the transforming growth factor-β/SMAD3, sirtuin/forkhead box protein O (SIRT/FOXO) and B-cell lymphoma-2-associated X protein pathways. The in vivo validation experiment revealed that SK ameliorated CKD through antifibrosis and anti-inflammatory effects, by downregulating the levels of vascular cell adhesion protein 1, vitamin D receptor, cyclooxygenase-2, and matrix metalloproteinase 9 proteins in the unilateral ureteral obstruction mouse model. This was consistent with the predicted target and pathway networks. CONCLUSIONS SK exerted a curative effect on CKD and CKD-related diseases by targeting different organs, regulating inflammation and proliferation processes, and inhibiting abnormal extracellular matrix accumulation. Thus, pharmacological network analysis with in vivo validation explained the potential effects and mechanisms of SK in the treatment of CKD. However, these findings need to be further confirmed with clinical studies.
Collapse
Affiliation(s)
- Tianyu Qin
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qian Hua
- Academy of Basic Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zilin Song
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yajing Pan
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
20
|
Chen J, Chen Y, Shu A, Lu J, Du Q, Yang Y, Lv Z, Xu H. Radix Rehmanniae and Corni Fructus against Diabetic Nephropathy via AGE-RAGE Signaling Pathway. J Diabetes Res 2020; 2020:8358102. [PMID: 33344651 PMCID: PMC7725584 DOI: 10.1155/2020/8358102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/29/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIMS Radix Rehmanniae and Corni Fructus (RC) have been widely applied to treat diabetic nephropathy (DN) for centuries. But the mechanism of how RC plays the therapeutic role against DN is unclear as yet. METHODS The information about RC was obtained from a public database. The active compounds of RC were screened by oral bioavailability (OB) and drug-likeness (DL). Gene ontology (GO) analysis was performed to realize the key targets of RC, and an active compound-potential target network was created. The therapeutic effects of RC active compounds and their key signal pathways were preliminarily probed via network pharmacology analysis and animal experiments. RESULTS In this study, 29 active compounds from RC and 64 key targets related to DN were collected using the network pharmacology method. The pathway enrichment analysis showed that RC regulated advanced glycosylation end product (AGE-) RAGE and IL-17 signaling pathways to treat DN. The animal experiments revealed that RC significantly improved metabolic parameters, inflammation renal structure, and function to protect the kidney against DN. CONCLUSIONS The results revealed the relationship between multicomponents and multitargets of RC. The administratiom of RC might remit the DM-induced renal damage through the AGE-RAGE signaling pathway to improve metabolic parameters and protect renal structure and function.
Collapse
Affiliation(s)
- Jing Chen
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuping Chen
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, China
| | - Anmei Shu
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jinfu Lu
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qiu Du
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuwei Yang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Zhiyang Lv
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huiqin Xu
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
21
|
Saleem U, Raza Z, Anwar F, Chaudary Z, Ahmad B. Systems pharmacology based approach to investigate the in-vivo therapeutic efficacy of Albizia lebbeck (L.) in experimental model of Parkinson's disease. Altern Ther Health Med 2019; 19:352. [PMID: 31805998 PMCID: PMC6896792 DOI: 10.1186/s12906-019-2772-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 11/26/2019] [Indexed: 01/28/2023]
Abstract
Background Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta and clinically manifested mainly with motor dysfunctions. Plants are rich source of medicinally important bioactive compounds and inhabitants of underdeveloped countries used plants for treatment of various ailments. Albizia lebbeck has been reported to possess antioxidant and neuroprotective properties that suggest the evaluation of its traditional therapeutic potential in neurodegenerative diseases. The aim of present study was to validate the traditional use of Albizia lebbeck (L.) and delineate its mechanism of action in PD. The systems pharmacology approach was employed to explain the Albizia lebbeck (L.) mechanism of action in PD. Methods The haloperidol-induced catalepsy was adopted as experimental model of PD for in-vivo studies in wistar albino rats. The systems pharmacology approach was employed to explain the Albizia lebbeck (L.) mechanism of action in PD. Results In-vivo studies revealed that Albizia lebbeck improved the motor functions and endurance as demonstrated in behavioral studies which were further supported by the rescue of endogenous antioxidant defense and reversal of ultrastructural damages in histological studies. System pharmacology approach identified 25 drug like compounds interacting with 132 targets in a bipartite graph that revealed the synergistic mechanism of action at system level. Kaemferol, phytosterol and okanin were found to be the important compounds nodes with prominent target nodes of TDP1 and MAPT. Conclusion The therapeutic efficiency of Albizia lebbeck in PD was effectively delineated in our experimental and systems pharmacology approach. Moreover, this approach further facilitates the drug discovery from Albizia lebbeck for PD.
Collapse
|
22
|
Zhang LW, Guo Q, Fang R, Lin L, Ye BH, Zheng KL, Lin M, Yang ZY, Fang JQ, Li CD. Traditional Chinese Medicine-Guided Dietary Intervention for Male Youth Undergoing Drug Detoxification: A Randomized Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:3870316. [PMID: 31871480 PMCID: PMC6913165 DOI: 10.1155/2019/3870316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/11/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness of traditional Chinese medicine- (TCM-) guided dietary interventions in improving yang-qi deficiency and yin-blood deficiency TCM syndromes according to the principles of TCM syndrome differentiation theory in male youths undergoing drug detoxification during the rehabilitation period who stayed in a compulsory isolation detoxification center. METHODS Male youths undergoing drug detoxification who met the criteria to be included in the study were randomly divided into the intervention group (n = 62) and the control group (n = 61) according to a random number table in a 1 : 1 ratio. The intervention group received a TCM-guided diet, and the control group received routine food support. Over an intervention period of 3 months, we observed changes in the TCM syndrome element scores in the two groups before and after intervention. RESULTS After 3 months, the qi deficiency, yin deficiency, blood deficiency, and yin-blood deficiency syndrome in the intervention group improved significantly (P values 0.009, 0.000, 0.005, and 0.001, respectively). In the control group, yang deficiency, qi deficiency, and yang-qi deficiency syndromes worsened significantly (P values 0.003, 0.032, and 0.009, respectively). The differences (post-pre) in yang deficiency, qi deficiency, yang-qi deficiency, yin deficiency, blood deficiency, and yin-blood deficiency syndromes between the two groups were statistically significant (P values 0.003, 0.003, 0.003, 0.001, 0.005, and 0.002, respectively). CONCLUSION A TCM-guided diet can delay the worsening of yang-qi deficiency syndrome symptoms and improve yin-blood deficiency syndrome and the prognosis of male youth undergoing drug detoxification during the rehabilitation period.
Collapse
Affiliation(s)
- Li-wan Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qing Guo
- School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Rui Fang
- School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Li Lin
- People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bin-hua Ye
- People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kai-lin Zheng
- People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Min Lin
- Juvenile Compulsory Isolated Detoxification Center of Fujian Province, Fuzhou, China
| | - Zhao-yang Yang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ji-qian Fang
- School of Medicine, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Can-dong Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
23
|
Wei LH, Chen TR, Fang HB, Jin Q, Zhang SJ, Hou J, Yu Y, Dou TY, Cao YF, Guo WZ, Ge GB. Natural constituents of St. John's Wort inhibit the proteolytic activity of human thrombin. Int J Biol Macromol 2019; 134:622-630. [DOI: 10.1016/j.ijbiomac.2019.04.181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022]
|
24
|
Zhang W, Huai Y, Miao Z, Qian A, Wang Y. Systems Pharmacology for Investigation of the Mechanisms of Action of Traditional Chinese Medicine in Drug Discovery. Front Pharmacol 2019; 10:743. [PMID: 31379563 PMCID: PMC6657703 DOI: 10.3389/fphar.2019.00743] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/07/2019] [Indexed: 01/01/2023] Open
Abstract
As a traditional medical intervention in Asia and a complementary and alternative medicine in western countries, traditional Chinese medicine (TCM) has attracted global attention in the life science field. TCM provides extensive natural resources for medicinal compounds, and these resources are generally regarded as effective and safe for use in drug discovery. However, owing to the complexity of compounds and their related multiple targets of TCM, it remains difficult to dissect the mechanisms of action of herbal medicines at a holistic level. To solve the issue, in the review, we proposed a novel approach of systems pharmacology to identify the bioactive compounds, predict their related targets, and illustrate the molecular mechanisms of action of TCM. With a predominant focus on the mechanisms of actions of TCM, we also highlighted the application of the systems pharmacology approach for the prediction of drug combination and dynamic analysis, the synergistic effects of TCMs, formula dissection, and theory analysis. In summary, the systems pharmacology method contributes to understand the complex interactions among biological systems, drugs, and complex diseases from a network perspective. Consequently, systems pharmacology provides a novel approach to promote drug discovery in a precise manner and a systems level, thus facilitating the modernization of TCM.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Ying Huai
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Yonghua Wang
- Lab of Systems Pharmacology, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
25
|
A Systems Pharmacology-Based Study of the Molecular Mechanisms of San Cao Decoction for Treating Hypertension. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3171420. [PMID: 31354853 PMCID: PMC6632497 DOI: 10.1155/2019/3171420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023]
Abstract
Traditional Chinese medicine (TCM) has a longstanding history and has gained widespread clinical applications. San Cao Decoction (SCD) is an experience prescription first formulated by Prof. Duzhou Liu. We previously demonstrated its antihypertensive effects; however, to systematically explain the underlying mechanisms of action, we employed a systems pharmacology approach for pharmacokinetic screening and target prediction by constructing protein-protein interaction networks of hypertension-related and putative SCD-related targets, and Database for Annotation, Visualization, and Integrated Discovery enrichment analysis. We identified 123 active compounds in SCD and 116 hypertension-related targets. Furthermore, the enrichment analysis of the drug-target network showed that SCD acts in a multidimensional manner to regulate PI3K-Akt-endothelial nitric oxide synthase signaling to maintain blood pressure. Our results highlighted the molecular mechanisms of antihypertensive actions of medicinal herbs at a systematic level.
Collapse
|
26
|
Hong W, Li S, Wu L, He B, Jiang J, Chen Z. Prediction of VEGF-C as a Key Target of Pure Total Flavonoids From Citrus Against NAFLD in Mice via Network Pharmacology. Front Pharmacol 2019; 10:582. [PMID: 31214028 PMCID: PMC6558193 DOI: 10.3389/fphar.2019.00582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 01/12/2023] Open
Abstract
Pure total flavonoids from Citrus (PTFC) effectively reduce the symptoms of non-alcoholic fatty liver disease (NAFLD). Our previous microarray analysis uncovered the alterations of important signaling pathways in the treatment of NAFLD with PTFC. However, the underlying core genes that might be targeted by PTFC, which play important roles in the progression of NALFD are yet to be identified. In this study, we predicted the vascular endothelial growth factor-C (VEGF-C) as potential key molecular target of PTFC against NAFLD via network pharmacology analysis. The network pharmacology approach presented here provided important clues for understanding the mechanisms of PTFC treatment in the development of NAFLD.
Collapse
Affiliation(s)
- Wei Hong
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Songsong Li
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Liyan Wu
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Beihui He
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Jianping Jiang
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Zhiyun Chen
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Shi XQ, Yue SJ, Tang YP, Chen YY, Zhou GS, Zhang J, Zhu ZH, Liu P, Duan JA. A network pharmacology approach to investigate the blood enriching mechanism of Danggui buxue Decoction. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:227-242. [PMID: 30703496 DOI: 10.1016/j.jep.2019.01.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui buxue Decoction (DBD) has been frequently used to treat with blood deficiency, which consisted of Danggui (DG) and Huangqi (HQ) at a ratio of 1:5. Accumulating evidence showed that blood deficiency in traditional Chinese medicine (TCM) was similar to anemia in modern medicine. AIM OF THE STUDY The purpose of this study was to explore its therapeutic mechanism of with network pharmacology approach. MATERIALS AND METHODS We explored the chemical compounds of DBD and used compound ADME screening to identify the potential compounds. Targets for the therapeutic actions of DBD were obtained from the PharmMapper, Swiss, SEA and STITCH. GO analysis and pathway enrichment analysis was performed using the DAVID webserver. Cytoscape was used to visualize the compound-target-pathway network for DBD. The pharmacodynamics and crucial targets were also validated. RESULTS Thirty-six potential active components in DBD and 49 targets which the active components acted on were identified. 47 KEGG pathways which DBD acted on were also come to light. And then, according to KEGG pathway annotation analysis, only 16 pathways seemed to be related to the blood nourishing effect of DBD, such as PI3K-AKT pathway, and so on. Only 32 targets participated in these 16 pathways and they were acted on by 29 of the 36 active compounds. Whole pharmacodynamic experiments showed that DBD had significant effects to blood loss rats. Furthermore, DBD could promote the up-regulation of hematopoietic and immune related targets and the down-regulation of inflammatory related targets. Significantly, with the results of effective rate, molecular docking and experimental validation, we predicted astragaloside IV in HQ, senkyunolide A and senkyunolide K in DG might be the major contributing compounds to DBD's blood enriching effect. CONCLUSION In this study, a systematical network pharmacology approach was built. Our results provided a basis for the future study of senkyunolide A and senkyunolide K as the blood enriching compounds in DBD. Furthermore, combined network pharmacology with validation experimental results, the nourishing blood effect of DBD might be manifested by the dual mechanism of enhancing immunity and promoting hematopoiesis.
Collapse
Affiliation(s)
- Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China.
| | - Yan-Yan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jing Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
28
|
Zhang QR, Zhong ZF, Sang W, Xiong W, Tao HX, Zhao GD, Li ZX, Ma QS, Tse AKW, Hu YJ, Yu H, Wang YT. Comparative comprehension on the anti-rheumatic Chinese herbal medicine Siegesbeckiae Herba: Combined computational predictions and experimental investigations. JOURNAL OF ETHNOPHARMACOLOGY 2019; 228:200-209. [PMID: 30240786 DOI: 10.1016/j.jep.2018.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/19/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Siegesbeckiae Herba (SH) is a traditional anti-rheumatic herbal medicine in China. The SH-derived product is the first licensed traditional herbal medicinal product for the management of rheumatism-induced joint and muscle pain in United Kingdom. The authenticated plant origins listed in the official Chinese Pharmacopeia for SH include Siegesbeckia orientalis L. (SO), S. pubescens Markino (SP) and S. glabrescens Markino (SG). Although the therapeutic effects of these SH species in treating rheumatoid arthritis (RA) are similar, their difference in chemical profiles suggested their anti-rheumatisms mechanisms and effects may be different. AIM OF THE STUDY This study was designed to comparatively comprehend the chemical and biological similarity and difference of SO, SP and SG for treating rheumatoid arthritis based on the combination of computational predictions and biological experiment investigations. MATERIALS AND METHODS The reported compounds for SO, SP and SG were obtained from four chemical databases (SciFinder, Combined Chemical Dictionary v2009, Dictionary of Natural Products and Chinese academy of sciences Chemistry Database). The RA-relevant proteins involved in nuclear factor-kappa B (NF-κB), oxidative stress and autophagy signaling pathways were collected from the databases of Kyoto Encyclopedia of Genes and Genomes and Biocarta. The comparative comprehension of SH plants was performed using similarity analysis, molecular docking and compounds-protein network analysis. The chemical characterization of different SH extracts were qualitatively and quantitatively analyzed, and their effects on specific RA-relevant protein expressions were investigated using Western blotting analysis. RESULTS Chemical analysis revealed that SO contains mainly sequiterpenes and pimarenoids; SP contains mainly pimarenoids, sequiterpenes, and kaurenoids; and SG contains mainly pimarenoids, flavonoids and alkaloids. Moreover, coincided with the predicted results from computational analysis, different SH species were observed to present different chemical constituents, and diverse effects on RA-relevant proteins at the biological level. CONCLUSIONS The chemical and biological properties of SO, SP and SG were different and distinctive. The systematic comparison between these three confusing Chinese herbs provides reliable characterization profiles to clarify the pharmacological substances in SH for the precise management of rheumatism/-related diseases in clinics.
Collapse
Affiliation(s)
- Qian Ru Zhang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhang Feng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Wei Sang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Wei Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Hong Xun Tao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Guan Ding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Zhi Xin Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Qiu Shuo Ma
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Anfernee Kai Wing Tse
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuan Jia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China; HKBU Shenzhen Research Center, Shenzhen, Guangdong, China; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Yi Tao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| |
Collapse
|
29
|
Deng Y, Han BX, Hu DJ, Zhao J, Li SP. Qualitation and quantification of water soluble non-starch polysaccharides from Pseudostellaria heterophylla in China using saccharide mapping and multiple chromatographic methods. Carbohydr Polym 2018; 199:619-627. [DOI: 10.1016/j.carbpol.2018.06.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/28/2018] [Accepted: 06/14/2018] [Indexed: 12/28/2022]
|
30
|
Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget 2018; 8:50284-50304. [PMID: 28514737 PMCID: PMC5564849 DOI: 10.18632/oncotarget.17466] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/18/2017] [Indexed: 01/01/2023] Open
Abstract
Concepts of individualized therapy in the 1970s and 1980s attempted to develop predictive in vitro tests for individual drug responsiveness without reaching clinical routine. Precision medicine attempts to device novel individual cancer therapy strategies. Using bioinformatics, relevant knowledge is extracted from huge data amounts. However, tumor heterogeneity challenges chemotherapy due to genetically and phenotypically different cell subpopulations, which may lead to refractory tumors. Natural products always served as vital resources for cancer therapy (e.g., Vinca alkaloids, camptothecin, paclitaxel, etc.) and are also sources for novel drugs. Targeted drugs developed to specifically address tumor-related proteins represent the basis of precision medicine. Natural products from plants represent excellent resource for targeted therapies. Phytochemicals and herbal mixtures act multi-specifically, i.e. they attack multiple targets at the same time. Network pharmacology facilitates the identification of the complexity of pharmacogenomic networks and new signaling networks that are distorted in tumors. In the present review, we give a conceptual overview, how the problem of drug resistance may be approached by integrating phytochemicals and phytotherapy into academic western medicine. Modern technology platforms (e.g. “-omics” technologies, DNA/RNA sequencing, and network pharmacology) can be applied for diverse treatment modalities such as cytotoxic and targeted chemotherapy as well as phytochemicals and phytotherapy. Thereby, these technologies represent an integrative momentum to merge the best of two worlds: clinical oncology and traditional medicine. In conclusion, the integration of phytochemicals and phytotherapy into cancer precision medicine represents a valuable asset to chemically synthesized chemicals and therapeutic antibodies.
Collapse
|
31
|
Wang X, Yu S, Jia Q, Chen L, Zhong J, Pan Y, Shen P, Shen Y, Wang S, Wei Z, Cao Y, Lu Y. NiaoDuQing granules relieve chronic kidney disease symptoms by decreasing renal fibrosis and anemia. Oncotarget 2017; 8:55920-55937. [PMID: 28915563 PMCID: PMC5593534 DOI: 10.18632/oncotarget.18473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
NiaoDuQing (NDQ) granules, a traditional Chinese medicine, has been clinically used in China for over fourteen years to treat chronic kidney disease (CKD). To elucidate the mechanisms underlying the therapeutic benefits of NDQ, we designed an approach incorporating chemoinformatics, bioinformatics, network biology methods, and cellular and molecular biology experiments. A total of 182 active compounds were identified in NDQ granules, and 397 putative targets associated with different diseases were derived through ADME modelling and target prediction tools. Protein-protein interaction networks of CKD-related and putative NDQ targets were constructed, and 219 candidate targets were identified based on topological features. Pathway enrichment analysis showed that the candidate targets were mostly related to the TGF-β, the p38MAPK, and the erythropoietin (EPO) receptor signaling pathways, which are known contributors to renal fibrosis and/or renal anemia. A rat model of CKD was established to validate the drug-target mechanisms predicted by the systems pharmacology analysis. Experimental results confirmed that NDQ granules exerted therapeutic effects on CKD and its comorbidities, including renal anemia, mainly by modulating the TGF-β and EPO signaling pathways. Thus, the pharmacological actions of NDQ on CKD symptoms correlated well with in silico predictions.
Collapse
Affiliation(s)
- Xu Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qi Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lichuan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jinqiu Zhong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Peiliang Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Siliang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yuzhu Cao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
32
|
Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7198645. [PMID: 28690664 PMCID: PMC5485337 DOI: 10.1155/2017/7198645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022]
Abstract
With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed.
Collapse
|
33
|
Wang DD, Zou LW, Jin Q, Hou J, Ge GB, Yang L. Recent progress in the discovery of natural inhibitors against human carboxylesterases. Fitoterapia 2017; 117:84-95. [DOI: 10.1016/j.fitote.2017.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 01/22/2023]
|
34
|
Choi YY, Kim MH, Ahn KS, Um JY, Lee SG, Yang WM. Immunomodulatory effects of Pseudostellaria heterophylla (Miquel) Pax on regulation of Th1/Th2 levels in mice with atopic dermatitis. Mol Med Rep 2016; 15:649-656. [PMID: 28035398 PMCID: PMC5364855 DOI: 10.3892/mmr.2016.6093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Pseudostellaria heterophylla (PH) has various pharmacological effects that include immunologic enhancement and anti-oxidation. However, it remains unclear whether PH exerts beneficial effects in dermatological diseases. The present study examined the effects of PH on a 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) mouse model and elucidated its underlying mechanism of action. PH extract (1 and 100 mg/ml) was applied topically to DNCB-treated dorsal skin of mice every day for 11 days. The immunomodulatory effects of PH were evaluated by measuring skin thickness, mast cell infiltration, serum levels of immunoglobulin E (IgE), and mRNA expression levels of T helper (h)1/Th2 and pro-inflammatory cytokines in dorsal skin. In addition, cluster of differentiation (CD)4+ T cells were detected in dorsal skin by immunohistochemistry. Topical application of PH significantly reduced the thickness of dermis, epidermis and serum IgE production compared with the DNCB group. PH treatment inhibited infiltration of inflammatory cells, including mast cells and CD4+ T cells, and suppressed the mRNA expression levels of cytokines (interferon-γ, interleukin-4, −6, −8 and −1β, and tumor necrosis factor-α) associated with the immune response. Furthermore, PH treatment significantly downregulated the protein expression levels of nuclear factor-κB, phosphorylated inhibitor of κBα and mitogen-activated protein kinases. The results suggested that PH may be a potential therapeutic strategy for the treatment of AD via the modulation of Th1 and Th2 levels.
Collapse
Affiliation(s)
- You Yeon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Korean Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Korean Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Geun Lee
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
35
|
Liu YJ, Li SY, Hou J, Liu YF, Wang DD, Jiang YS, Ge GB, Liang XM, Yang L. Identification and characterization of naturally occurring inhibitors against human carboxylesterase 2 in White Mulberry Root-bark. Fitoterapia 2016; 115:57-63. [PMID: 27702666 DOI: 10.1016/j.fitote.2016.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 01/05/2023]
Abstract
White Mulberry Root-bark (WMR) is an edible Chinese herbal used for the treatment of inflammation, nephritis and asthma. This study aimed to investigate the inhibitory effects of ethanol extract from WMR against human carboxylesterase 2 (hCE2), as well as to identity and character natural hCE2 inhibitors in this herbal. Our results demonstrated that the ethanol extract of WMR displayed potent inhibitory effects against hCE2, while three major bioactive constitutes in WMR were identified on the basis of LC fingerprinting combined with activity-based screening of LC fractions. Three bioactive compounds including SD, KG and SC were efficiently identified by comparison of LC retention times, UV and MS spectral data, with the help of authentic standards. The inhibition potentials and inhibition types of these natural compounds against hCE2 were further investigated in human liver microsomes. The results demonstrated that these bioactive compounds are potent non-competitive inhibitors against hCE2, with the Ki values ranging from 0.76μM to 1.09μM. All these findings suggested that three abundant natural compounds in WMR displayed potent inhibitory effects against hCE2, which could be used as lead compounds to develop more potent hCE2 inhibitors for the alleviation of hCE2-mediated severe delayed-onset diarrhea.
Collapse
Affiliation(s)
- Ya-Jing Liu
- Dalian Medical University, Dalian 116044, China
| | - Shi-Yang Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jie Hou
- Dalian Medical University, Dalian 116044, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yan-Fang Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dan-Dan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong-Shan Jiang
- Dalian Medical University, Dalian 116044, China; The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guang-Bo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Xin-Miao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
36
|
Poornima P, Kumar JD, Zhao Q, Blunder M, Efferth T. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol Res 2016; 111:290-302. [PMID: 27329331 DOI: 10.1016/j.phrs.2016.06.018] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022]
Abstract
Despite massive investments in drug research and development, the significant decline in the number of new drugs approved or translated to clinical use raises the question, whether single targeted drug discovery is the right approach. To combat complex systemic diseases that harbour robust biological networks such as cancer, single target intervention is proved to be ineffective. In such cases, network pharmacology approaches are highly useful, because they differ from conventional drug discovery by addressing the ability of drugs to target numerous proteins or networks involved in a disease. Pleiotropic natural products are one of the promising strategies due to their multi-targeting and due to lower side effects. In this review, we discuss the application of network pharmacology for cancer drug discovery. We provide an overview of the current state of knowledge on network pharmacology, focus on different technical approaches and implications for cancer therapy (e.g. polypharmacology and synthetic lethality), and illustrate the therapeutic potential with selected examples green tea polyphenolics, Eleutherococcus senticosus, Rhodiola rosea, and Schisandra chinensis). Finally, we present future perspectives on their plausible applications for diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Paramasivan Poornima
- School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Jothi Dinesh Kumar
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Qiaoli Zhao
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| | - Martina Blunder
- Department of Neuroscience, Biomedical Center, Uppsala University, Uppsala, Sweden and Brain Institute, Federal University of Rio Grande do Norte, UFRN, Natal, Brazil
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
37
|
Xin H, Qi XY, Wu JJ, Wang XX, Li Y, Hong JY, He W, Xu W, Ge GB, Yang L. Assessment of the inhibition potential of Licochalcone A against human UDP-glucuronosyltransferases. Food Chem Toxicol 2016; 90:112-22. [DOI: 10.1016/j.fct.2016.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/24/2016] [Accepted: 02/05/2016] [Indexed: 01/19/2023]
|
38
|
ITPI: Initial Transcription Process-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8250323. [PMID: 27034696 PMCID: PMC4789420 DOI: 10.1155/2016/8250323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/22/2022]
Abstract
Identification of bioactive components is an important area of research in traditional Chinese medicine (TCM) formula. The reported identification methods only consider the interaction between the components and the target proteins, which is not sufficient to explain the influence of TCM on the gene expression. Here, we propose the Initial Transcription Process-based Identification (ITPI) method for the discovery of bioactive components that influence transcription factors (TFs). In this method, genome-wide chip detection technology was used to identify differentially expressed genes (DEGs). The TFs of DEGs were derived from GeneCards. The components influencing the TFs were derived from STITCH. The bioactive components in the formula were identified by evaluating the molecular similarity between the components in formula and the components that influence the TF of DEGs. Using the formula of Tian-Zhu-San (TZS) as an example, the reliability and limitation of ITPI were examined and 16 bioactive components that influence TFs were identified.
Collapse
|
39
|
Xu F, Ding Y, Guo Y, Liu B, Kou Z, Xiao W, Zhu J. Anti-osteoporosis effect of Epimedium via an estrogen-like mechanism based on a system-level approach. JOURNAL OF ETHNOPHARMACOLOGY 2016; 177:148-60. [PMID: 26593211 DOI: 10.1016/j.jep.2015.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/28/2015] [Accepted: 11/02/2015] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium is a popular traditional herbal medicine worldwide that has long been used to relieve osteoporosis. The estrogenic properties of the herb are conferred by several phytoestrogens, such as flavonoids, lignans, and steroids. However, the poor understanding on the estrogen-like mechanism of Epimedium at the molecular and system levels limits the applications of this herb in osteoporosis treatment. MATERIALS AND METHODS In this study, systems pharmacology was established to investigate the relationship between Epimedium and estrogen against osteoporosis by integrating active component screening, drug-likeness evaluation, herb feature mapping, target prediction and validation, and network analysis. RESULTS A total of 77 active components that possessed similar structural features to estrogen as determined using herb feature mapping were selected from Epimedium by oral bioavailability prediction and drug-likeness evaluation. Twenty three osteoporosis-related targets were obtained from the active components of Epimedium as potential targets, 11 of which were common targets with estrogen. All osteoporosis-related targets were further mapped to compound-target and target-pathway networks. Results displayed that Epimedium can exert anti-osteoporosis effects by directly regulating the 11 estrogen-related targets and a set of target proteins on five estrogen-related pathways. CONCLUSION This study explained the estrogen-like mechanism of Epimedium in preventing and treating osteoporosis, and provided a new standpoint for exploring the traditional herbal medicine against osteoporosis.
Collapse
Affiliation(s)
- Feifei Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China.
| | - Yingying Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Baoyue Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Zinong Kou
- Instrumental analysis center, Dalian Polytechnic University, Dalian 116034, PR China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang 222001, PR China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China.
| |
Collapse
|
40
|
Chung YK, Chen J, Ko KM. Spleen Function and Anxiety in Chinese Medicine: A Western Medicine Perspective. Chin Med 2016. [DOI: 10.4236/cm.2016.73012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Ghanemi A, Boubertakh B. Shorter and sturdier bridges between traditional Chinese medicines and modern pharmacology. Saudi Pharm J 2015; 23:330-2. [PMID: 26106282 PMCID: PMC4475857 DOI: 10.1016/j.jsps.2014.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/15/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Abdelaziz Ghanemi
- Key Laboratory of Brain and Cognitive Sciences and Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming 650223, Yunnan Province, PR China
| | - Besma Boubertakh
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, PR China
| |
Collapse
|
42
|
Al Mansour MA, Al-Bedah AMN, AlRukban MO, Elsubai IS, Mohamed EY, El Olemy AT, Khalil AAH, Khalil MKM, Alqaed MS, Almudaiheem A, Mahmoud WS, Medani KA, Qureshi NA. Medical students' knowledge, attitude, and practice of complementary and alternative medicine: a pre-and post-exposure survey in Majmaah University, Saudi Arabia. ADVANCES IN MEDICAL EDUCATION AND PRACTICE 2015; 6:407-20. [PMID: 26082671 PMCID: PMC4461096 DOI: 10.2147/amep.s82306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Evidently, complementary and alternative medicine (CAM) is a recognized medical practice that efficiently uses multiple treatment therapies and techniques in the prevention and management of a variety of human disorders. Many medical schools have integrated CAM curriculum in medical education system worldwide. Research in knowledge, attitude, and practice (KAP) of diverse health professionals exposed to CAM courses is important from many perspectives including improvement in KAP and teaching skills of faculty, together with capacity building and curriculum development. OBJECTIVE AND SETTING This pre- and post-design cross-sectional study aimed to assess CAM-KAP of two intakes of medical students in Majmaah University, Saudi Arabia. METHODS The second-year medical students of the first (year 2012-2013) and second (year 2013-2014) intake (n=26 and 39, respectively) were selected for this study. A reliable, 16-item self-administered questionnaire was distributed among all the students for answering before and after the 48-hour CAM course. The data were analyzed using appropriate statistical test of significance. RESULTS Medical students' knowledge and attitude toward CAM significantly improved across some subitems of CAM questionnaire with a positive trend in the rest of its items including their views on CAM practices. CONCLUSION CAM course tends to have a positive impact on KAP of medical students. The preliminary results of this study call for further research with a larger sample in academic settings across the nation.
Collapse
Affiliation(s)
| | - Abdullah MN Al-Bedah
- National Center of Complementary and Alternative Medicine, Ministry of Health, Saudi Arabia
| | - Mohammed Othman AlRukban
- Department of Family Medicine and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim S Elsubai
- National Center of Complementary and Alternative Medicine, Ministry of Health, Saudi Arabia
| | - Elsadiq Yousif Mohamed
- Department of Community Medicine and Public Health, College of Medicine, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Ahmed Tawfik El Olemy
- National Center of Complementary and Alternative Medicine, Ministry of Health, Saudi Arabia
| | - Asim AH Khalil
- National Center of Complementary and Alternative Medicine, Ministry of Health, Saudi Arabia
| | - Mohamed KM Khalil
- National Center of Complementary and Alternative Medicine, Ministry of Health, Saudi Arabia
| | - Meshari Saleh Alqaed
- National Center of Complementary and Alternative Medicine, Ministry of Health, Saudi Arabia
| | - Abdullah Almudaiheem
- National Center of Complementary and Alternative Medicine, Ministry of Health, Saudi Arabia
| | - Waqas Sami Mahmoud
- Department of Community Medicine and Public Health, College of Medicine, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Khalid Altohami Medani
- Department of Community Medicine and Public Health, College of Medicine, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Naseem Akhtar Qureshi
- National Center of Complementary and Alternative Medicine, Ministry of Health, Saudi Arabia
| |
Collapse
|
43
|
Guo Y, Ding Y, Xu F, Liu B, Kou Z, Xiao W, Zhu J. Systems pharmacology-based drug discovery for marine resources: an example using sea cucumber (Holothurians). JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:61-72. [PMID: 25701746 DOI: 10.1016/j.jep.2015.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea cucumber, a kind of marine animal, have long been utilized as tonic and traditional remedies in the Middle East and Asia because of its effectiveness against hypertension, asthma, rheumatism, cuts and burns, impotence, and constipation. In this study, an overall study performed on sea cucumber was used as an example to show drug discovery from marine resource by using systems pharmacology model. The value of marine natural resources has been extensively considered because these resources can be potentially used to treat and prevent human diseases. However, the discovery of drugs from oceans is difficult, because of complex environments in terms of composition and active mechanisms. Thus, a comprehensive systems approach which could discover active constituents and their targets from marine resource, understand the biological basis for their pharmacological properties is necessary. MATERIALS AND METHODS In this study, a feasible pharmacological model based on systems pharmacology was established to investigate marine medicine by incorporating active compound screening, target identification, and network and pathway analysis. RESULTS As a result, 106 candidate components of sea cucumber and 26 potential targets were identified. Furthermore, the functions of sea cucumber in health improvement and disease treatment were elucidated in a holistic way based on the established compound-target and target-disease networks, and incorporated pathways. CONCLUSIONS This study established a novel strategy that could be used to explore specific active mechanisms and discover new drugs from marine sources.
Collapse
Affiliation(s)
- Yingying Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China.
| | - Feifei Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Baoyue Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Zinong Kou
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, PR China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, PR China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China.
| |
Collapse
|
44
|
Network Pharmacology Bridges Traditional Application and Modern Development of Traditional Chinese Medicine. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60014-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Liu YF, Ai N, Keys A, Fan XH, Chen MJ. Network Pharmacology for Traditional Chinese Medicine Research: Methodologies and Applications. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60015-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Fu Y, Wang Y, Zhang B. Systems pharmacology for traditional Chinese medicine with application to cardio-cerebrovascular diseases. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2014. [DOI: 10.1016/j.jtcms.2014.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
47
|
Ma X, Wang J, He X, Zhao Y, Wang J, Zhang P, Zhu Y, Zhong L, Zheng Q, Xiao X. Large dosage of chishao in formulae for cholestatic hepatitis: a systematic review and meta-analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:328152. [PMID: 24987427 PMCID: PMC4060395 DOI: 10.1155/2014/328152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/15/2014] [Indexed: 02/05/2023]
Abstract
Objective. To evaluate the efficacy and safety of large dosage of Chishao in formulae for treatment of cholestatic hepatitis. Methods. The major databases (PubMed, Embase, Cochrane Library, Chinese Biomedical Database Wanfang, VIP medicine information system, and China National Knowledge Infrastructure) were searched until January 2014. Randomized controlled trials (RCTs) of large dosage of Chishao in formulae that reported on publications in treatment of cholestatic hepatitis with total efficacy rate, together with the biochemical indices including alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL), were extracted by two reviewers. The Cochrane tool was used for the assessment of risk of bias included trials. Data were analyzed with RevMan 5.2.7 software. Results. 11 RCTs involving 1275 subjects with cholestatic hepatitis were included. Compared with essential therapy, large dosage of Chishao in formulae demonstrated more efficiently with down regulation of serum ALT, AST, TBIL, DBIL. Meanwhile, there were no obvious adverse events. Conclusion. As a promising novel treatment approach, widely using large dosage of Chishao in formulae may enhance the curative efficacy for cholestatic hepatitis. Considering being accepted by more and more practitioners, further rigorously designed clinical studies are required.
Collapse
Affiliation(s)
- Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing 100039, China
| | - Ji Wang
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuan He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanling Zhao
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing 100039, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing 100039, China
| | - Ping Zhang
- Department of Integrative Medical Center, 302 Hospital of People's Liberation Army, Beijing 100039, China
| | - Yun Zhu
- Department of Integrative Medical Center, 302 Hospital of People's Liberation Army, Beijing 100039, China
| | - Lin Zhong
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing 100039, China
| | - Quanfu Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing 100039, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing 100039, China
| |
Collapse
|
48
|
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6:13. [PMID: 24735618 PMCID: PMC4001360 DOI: 10.1186/1758-2946-6-13] [Citation(s) in RCA: 3051] [Impact Index Per Article: 277.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Background Modern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed. Description The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski’s rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development. Conclusions The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.
Collapse
Affiliation(s)
- Jinlong Ru
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Li
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinan Wang
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Zhou
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bohui Li
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Huang
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pidong Li
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zihu Guo
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiyang Tao
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinfeng Yang
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xue Xu
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yonghua Wang
- Center for Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|