1
|
Boumati S, Sour A, Heitz V, Seguin J, Beitz G, Kaga Y, Jakubaszek M, Karges J, Gasser G, Mignet N, Doan BT. Three in One: In Vitro and In Vivo Evaluation of Anticancer Activity of a Theranostic Agent that Combines Magnetic Resonance Imaging, Optical Bioimaging, and Photodynamic Therapy Capabilities. ACS APPLIED BIO MATERIALS 2023; 6:4791-4804. [PMID: 37862269 DOI: 10.1021/acsabm.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Cancer treatment is a crucial area of research and development, as current chemotherapeutic treatments can have severe side effects or poor outcomes. In the constant search for new strategies that are localized and minimally invasive and produce minimal side effects, photodynamic therapy (PDT) is an exciting therapeutic modality that has been gaining attention. The use of theranostics, which combine diagnostic and therapeutic capabilities, can further improve treatment monitoring through image guidance. This study explores the potential of a theranostic agent consisting of four Gd(III) DTTA complexes (DTTA: diethylenetriamine-N,N,N″,N″-tetraacetate) grafted to a meso-tetraphenylporphyrin core for PDT, fluorescence, and magnetic resonance imaging (MRI). The agent was first tested in vitro on both nonmalignant TIB-75 and MRC-5 and tumoral CT26 and HT-29 cell lines and subsequently evaluated in vivo in a preclinical colorectal tumor model. Advanced MRI and optical imaging techniques were employed with engineered quantitative in vivo molecular imaging based on dynamic acquisition sequences to track the biodistribution of agents in the body. With 3D quantitative volume computed by MRI and tumoral cell function assessed by bioluminescence imaging, we could demonstrate a significant impact of the molecular agent on tumor growth following light application. Further exhaustive histological analysis confirmed these promising results, making this theranostic agent a potential drug candidate for cancer.
Collapse
Affiliation(s)
- Sarah Boumati
- Université PSL Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), SEISAD, 75005 Paris, France
| | - Angélique Sour
- Université de Strasbourg, Institut de Chimie de Strasbourg, CNRS, UMR 7177, Laboratoire LSAMM, 67070 Strasbourg, France
| | - Valérie Heitz
- Université de Strasbourg, Institut de Chimie de Strasbourg, CNRS, UMR 7177, Laboratoire LSAMM, 67070 Strasbourg, France
| | - Johanne Seguin
- Université Paris Cité, CNRS, Inserm, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), 75006 Paris, France
| | - Gautier Beitz
- Université PSL Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), SEISAD, 75005 Paris, France
| | - Yusuke Kaga
- Université PSL Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), SEISAD, 75005 Paris, France
| | - Marta Jakubaszek
- Université PSL, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Johannes Karges
- Université PSL, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Gilles Gasser
- Université PSL, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, Inserm, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), 75006 Paris, France
| | - Bich-Thuy Doan
- Université PSL Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (I-CLeHS), SEISAD, 75005 Paris, France
| |
Collapse
|
2
|
Do HD, Marie C, Bessoles S, Dhotel H, Seguin J, Larrat B, Doan BT, Scherman D, Escriou V, Hacein-Bey-Abina S, Mignet N. Combination of thermal ablation by focused ultrasound, pFAR4-IL-12 transfection and lipidic adjuvant provide a distal immune response. EXPLORATION OF MEDICINE 2022; 3:398-413. [PMID: 36046055 PMCID: PMC9400762 DOI: 10.37349/etat.2022.00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: Gene-based immunotherapy against cancer is limited by low gene transfer efficiency. In the literature, interleukin-12 (IL-12) encoding plasmid associated with sonoporation has been shown to enhance antitumoral activity. Moreover, non-viral carriers and high-frequency ultrasound have both been shown to promote immune response activation. Here, IL-12 encoding plasmid, non-viral carrier stimulating the immune response and focused ultrasound were combined in order to improve the antitumoral efficiency. Methods: In order to enhance a gene-based antitumoral immune response, home-made lipids Toll-like receptor 2 (TLR2) agonists and plasmid free of antibiotic resistance version 4 (pFAR4), a mini-plasmid, encoding the IL-12 cytokine were combined with high-intensity focused ultrasound (HIFU). The lipid composition and the combination conditions were selected following in vitro and in vivo preliminary studies. The expression of IL-12 from our plasmid construct was measured in vitro and in vivo. The combination strategy was evaluated in mice bearing colon carcinoma cells (CT26) tumors following their weight, tumor volume, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) levels in the serum and produced by splenocytes exposed to CT26 tumor cells. Results: Lipid-mediated cell transfection and intratumoral injection into CT26 tumor mice using pFAR4-IL-12 led to the secretion of the IL-12 cytokine into cell supernatant and mice sera, respectively. Conditions of thermal deposition using HIFU were optimized. The plasmid encoding pFAR4-IL-12 or TLR2 agonist alone had no impact on tumor growth compared with control mice, whereas the complete treatment consisting of pFAR4-IL-12, TLR2 lipid agonist, and HIFU limited tumor growth. Moreover, only the complete treatment increased significantly mice survival and provided an abscopal effect on a metastatic CT26 model. Conclusions: The HIFU condition was highly efficient to stop tumor growth. The combined therapy was the most efficient in terms of IL-12 and IFN-γ production and mice survival. The study showed the feasibility and the limits of this combined therapy which has the potential to be improved.
Collapse
Affiliation(s)
- Hai Doan Do
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Corinne Marie
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France; Chimie ParisTech, Université PSL, F-75005 Paris, France
| | | | - Hélène Dhotel
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Johanne Seguin
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Benoit Larrat
- NeuroSpin, Institut des Sciences du Vivant Frédéric Joliot, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA), Université Paris Saclay, 91191 Gif-sur-Yvette, France
| | - Bich-Thuy Doan
- Université PSL, Chimie ParisTech, CNRS, SEISADCNRS, 75005 Paris, France
| | - Daniel Scherman
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Virginie Escriou
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France; Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique- Hôpitaux de Paris, 94275 Le-Kremlin-Bicêtre, France
| | - Nathalie Mignet
- Université de Paris Cité, CNRS, INSERM, UTCBS, 75006 Paris, France
| |
Collapse
|
3
|
Orlova A, Pavlova K, Kurnikov A, Maslennikova A, Myagcheva M, Zakharov E, Skamnitskiy D, Perekatova V, Khilov A, Kovalchuk A, Moiseev A, Turchin I, Razansky D, Subochev P. Noninvasive optoacoustic microangiography reveals dose and size dependency of radiation-induced deep tumor vasculature remodeling. Neoplasia 2022; 26:100778. [PMID: 35220045 PMCID: PMC8889238 DOI: 10.1016/j.neo.2022.100778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
Tumor microvascular responses may provide a sensitive readout indicative of radiation therapy efficacy, its time course and dose dependencies. However, direct high-resolution observation and longitudinal monitoring of large-scale microvascular remodeling in deep tissues remained challenging with the conventional microscopy approaches. We report on a non-invasive longitudinal study of morphological and functional neovascular responses by means of scanning optoacoustic (ОА) microangiography. In vivo imaging of CT26 tumor response to a single irradiation at varying dose (6, 12, and 18 Gy) has been performed over ten days following treatment. Tumor oxygenation levels were further estimated using diffuse optical spectroscopy (DOS) with a contact fiber probe. OA revealed the formation of extended vascular structures on the whole tumor scale during its proliferation, whereas only short fragmented vascular regions were identified following irradiation. On the first day post treatment, a decrease in the density of small (capillary-sized) and medium-sized vessels was revealed, accompanied by an increase in their fragmentation. Larger vessels exhibited an increase in their density accompanied by a decline in the number of vascular segments. Short-lasting response has been observed after 6 and 12 Gy irradiations, whereas 18 Gy treatment resulted in prolonged responses, up to the tenth day after irradiation. DOS measurements further revealed a delayed increase of tumor oxygenation levels for 18 Gy irradiations, commencing on the sixth day post treatment. The ameliorated oxygenation is attributed to diminished oxygen consumption by inhibited tumor cells but not to the elevation of oxygen supply. This work is the first to demonstrate the differential (size-dependent) nature of vascular responses to radiation treatments at varying doses in vivo. The OA approach thus facilitates the study of radiation-induced vascular changes in an unperturbed in vivo environment while enabling deep tissue high-resolution observations at the whole tumor scale.
Collapse
|
4
|
Turchin I, Bano S, Kirillin M, Orlova A, Perekatova V, Plekhanov V, Sergeeva E, Kurakina D, Khilov A, Kurnikov A, Subochev P, Shirmanova M, Komarova A, Yuzhakova D, Gavrina A, Mallidi S, Hasan T. Combined Fluorescence and Optoacoustic Imaging for Monitoring Treatments against CT26 Tumors with Photoactivatable Liposomes. Cancers (Basel) 2021; 14:197. [PMID: 35008362 PMCID: PMC8750546 DOI: 10.3390/cancers14010197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 μm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.6 ± 2.1 nm and polydispersity index (PDI) of 0.05 ± 0.01, and the zeta potential between -14.9 ± 1.04 to -16.9 ± 0.92 mV. In the in vivo studies on BALB/c mice with CT26 tumors were performed to evaluate PMILs' therapeutic efficacy. PMILs demonstrated the best inhibitory effect of 97% on tumor growth compared to the treatment with BPD-PC containing liposomes (PALs), 81%, or IRI containing liposomes (L-[IRI]) alone, 50%. This confirms the release of IRI within the tumor cells upon PMILs triggering by NIR light, which is additionally illustrated by FL monitoring demonstrating enhancement of drug accumulation in tumor initiated by PDT in 24 h after the treatment. OA monitoring revealed the largest alterations of the tumor vascular structure in the PMILs treated mice as compared to BPD-PC or IRI treated mice. The results were further corroborated with histological data that also showed a 5-fold higher percentage of hemorrhages in PMIL treated mice compared to the control groups. Overall, these results suggest that multifunctional PMILs simultaneously delivering PDT and chemotherapy agents along with OA and FL multi-modal imaging offers an efficient and personalized image-guided platform to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Ilya Turchin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
| | - Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Valeriya Perekatova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Vladimir Plekhanov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Alexey Kurnikov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Pavel Subochev
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Anastasiya Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Diana Yuzhakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Griffon J, Buffello D, Giron A, Bridal SL, Lamuraglia M. Non-Invasive Ultrasonic Description of Tumor Evolution. Cancers (Basel) 2021; 13:cancers13184560. [PMID: 34572788 PMCID: PMC8472198 DOI: 10.3390/cancers13184560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary During tumor evolution, heterogeneous structural and functional changes occur in the tumor microenvironment. These complex changes have pro- or anti-tumorigenesis effects and have an impact on therapy efficiency. Therefore, the tumor microenvironment needs to be non-invasively characterized over time. The aim of this preclinical work is to compare the sensitivity of modifications occurring during tumor evolution of volume, immunohistochemistry and non-invasive quantitative ultrasound parameters (Shear Wave Elastography and dynamic Contrast-Enhanced Ultrasound) and to study the link between them. The complementary evaluation over time of multiple morphological and functional parameters during tumor growth underlines the need to integrate histological, morphological, functional, and, ultimately, genomic information into models that can consider the temporal and spatial variability of features to better understand tumor evolution. Abstract Purpose: There is a clinical need to better non-invasively characterize the tumor microenvironment in order to reveal evidence of early tumor response to therapy and to better understand therapeutic response. The goals of this work are first to compare the sensitivity to modifications occurring during tumor growth for measurements of tumor volume, immunohistochemistry parameters, and emerging ultrasound parameters (Shear Wave Elastography (SWE) and dynamic Contrast-Enhanced Ultrasound (CEUS)), and secondly, to study the link between the different parameters. Methods: Five different groups of 9 to 10 BALB/c female mice with subcutaneous CT26 tumors were imaged using B-mode morphological imaging, SWE, and CEUS at different dates. Whole-slice immunohistological data stained for the nuclei, T lymphocytes, apoptosis, and vascular endothelium from these tumors were analyzed. Results: Tumor volume and three CEUS parameters (Time to Peak, Wash-In Rate, and Wash-Out Rate) significantly changed over time. The immunohistological parameters, CEUS parameters, and SWE parameters showed intracorrelation. Four immunohistological parameters (the number of T lymphocytes per mm2 and its standard deviation, the percentage area of apoptosis, and the colocalization of apoptosis and vascular endothelium) were correlated with the CEUS parameters (Time to Peak, Wash-In Rate, Wash-Out Rate, and Mean Transit Time). The SWE parameters were not correlated with the CEUS parameters nor with the immunohistological parameters. Conclusions: US imaging can provide additional information on tumoral changes. This could help to better explore the effect of therapies on tumor evolution, by studying the evolution of the parameters over time and by studying their correlations.
Collapse
Affiliation(s)
- Jerome Griffon
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - Delphine Buffello
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - Alain Giron
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - S. Lori Bridal
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - Michele Lamuraglia
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
- AP-HP, Hôpital Beaujon, Service d’Oncologie Digestive et Medicale, F-92110 Clichy, France
- Correspondence: ; Tel.: +33-144419605; Fax: +33-146335673
| |
Collapse
|
6
|
Thermosensitive hydrogels for local delivery of 5-fluorouracil as neoadjuvant or adjuvant therapy in colorectal cancer. Eur J Pharm Biopharm 2020; 157:154-164. [PMID: 33222768 DOI: 10.1016/j.ejpb.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Spurred by high risk for local tumor recurrence and non-specific toxicity of systemic chemotherapy, clinicians have recently granted a growing interest to locoregional therapeutic strategies. In this perspective, we recently developed a multipurpose thermosensitive hydrogel based on reversible thermogelling properties of poloxamers P407 and P188, a bioadhesive excipient and antineoplastic effect of 5-fluorouracil (5-FU) for the local treatment of colorectal cancer (CRC) in ectopic CT26 murine models. Antitumor efficacy was assessed in mice following intratumoral (IT) injection mimicking neoadjuvant therapy and subcutaneous (SC) application after tumor excision simulating adjuvant therapy. Rheological characterization disclosed that P407/P188/alginate 20/2/1% w/v thermosensitive hydrogel is an injectable free-flowing solution at ambient temperature that undergoes a SOL-GEL transition at 26.0 °C ± 0.6 °C and thereby forms in situ a non-flowing gel at physiological temperature. The generated gel presented an elastic behavior and responded according to a shear-thinning fluid upon shear rate. Although delayed by the addition of alginate 1% w/v, 5-FU is released mainly by diffusion mechanism. The local delivery of 5-FU from P407/P188/alginate/5-FU 20/2/1/0.5% w/v hydrogel in the preclinical tumor models led to a significant tumor growth delay. These results demonstrated that poloxamer-based thermosensitive hydrogels provide a simple and efficient means for local chemotherapeutics delivery.
Collapse
|
7
|
Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. J Control Release 2020; 322:137-148. [PMID: 32145266 DOI: 10.1016/j.jconrel.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Theranostic nanocarriers of antivascular drug encapsulated in thermosensitive ultramagnetic liposomes can be advantageously designed to provide a locally high concentration and an active delivery, with image-guided Magnetic Resonance Imaging (MRI) so as to reliably cure tumor. We propose a novel therapeutic strategy consisting of the magnetic accumulation of Ultra Magnetic Liposomes (UML) followed by High-Intensity Focused Ultrasound (HIFU) to trigger the release of an antivascular agent monitored by MRI. For this purpose, we co-encapsulated Combretastatin A4 phosphate (CA4P), a vascular disrupting agent, in the core of UML to obtain CA4P-loaded thermosensitive Ultra Magnetic Liposomes (CA4P-UML). To assess the HIFU parameters, the CA4P release has been triggered in vitro by local heating HIFU at the lipids transition temperature. Morphology of endothelial cells was assessed to evaluate the effect of encapsulated versus non-encapsulated CA4P. The efficiency of a treatment combining the magnetic targeting of CA4P-UML with the CA4P release triggered by HIFU was studied in CT26 murine tumors. Tumor perfusion and volume regression parameters were monitored by multiparametric quantitative anatomical and dynamic in vivo MRI at 7 T. Additionally, vascularization and cellularity were evaluated ex-vivo by histology. This thorough investigation showed that the combined treatment exhibited a full benefit. A 150-fold improvement compared with the chemotherapy alone was obtained using a magnetic targeting of CA4P-UML triggered by HIFU, and was consistent with an expected effect on vascularization 24 h after treatment.
Collapse
|
8
|
In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI. Mol Imaging Biol 2019; 21:269-278. [PMID: 29942990 DOI: 10.1007/s11307-018-1238-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The development of theranostic nanocarriers as an innovative therapy against cancer has been improved by targeting properties in order to optimize the drug delivery to safely achieve its desired therapeutic effect. The aim of this paper is to evaluate the magnetic targeting (MT) efficiency of ultra-magnetic liposomes (UML) into CT26 murine colon tumor by magnetic resonance imaging (MRI). PROCEDURES Dynamic susceptibility contrast MRI was applied to assess the bloodstream circulation time. A novel semi-quantitative method called %I0.25, based on the intensity distribution in T2*-weighted MRI images was developed to compare the accumulation of T2 contrast agent in tumors with or without MT. To evaluate the efficiency of magnetic targeting, the percentage of pixels under the intensity value I0.25 (I0.25 = 0.25(Imax - Imin)) was calculated on the intensity distribution histogram. RESULTS This innovative method of processing MRI images showed the MT efficiency by a %I0.25 that was significantly higher in tumors using MT compared to passive accumulation, from 15.3 to 28.6 %. This methodology was validated by ex vivo methods with an iron concentration that is 3-fold higher in tumors using MT. CONCLUSIONS We have developed a method that allows a semi-quantitative evaluation of targeting efficiency in tumors, which could be applied to different T2 contrast agents.
Collapse
|
9
|
Lemdani K, Seguin J, Lesieur C, Al Sabbagh C, Doan BT, Richard C, Capron C, Malafosse R, Boudy V, Mignet N. Mucoadhesive thermosensitive hydrogel for the intra-tumoral delivery of immunomodulatory agents, in vivo evidence of adhesion by means of non-invasive imaging techniques. Int J Pharm 2019; 567:118421. [DOI: 10.1016/j.ijpharm.2019.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
|
10
|
Ravoori MK, Margalit O, Singh S, Kim SH, Wei W, Menter DG, DuBois RN, Kundra V. Magnetic Resonance Imaging and Bioluminescence Imaging for Evaluating Tumor Burden in Orthotopic Colon Cancer. Sci Rep 2019; 9:6100. [PMID: 30988343 PMCID: PMC6465293 DOI: 10.1038/s41598-019-42230-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Quantifying tumor burden is important for following the natural history of orthotopic colon cancer and therapeutic efficacy. Bioluminescence imaging (BLI) is commonly used for such assessment and has both advantages and limitations. We compared BLI and magnetic resonance imaging (MRI) for quantifying orthotopic tumors in a mouse model of colon cancer. Among sequences tested, T2-based MRI imaging ranked best overall for colon cancer border delineation, contrast, and conspicuity. Longitudinal MRI detected tumor outside the colon, indistinguished by BLI. Colon tumor weights calculated from MRI in vivo correlated highly with tumor weights measured ex vivo whereas the BLI signal intensities correlated relatively poorly and this difference in correlations was highly significant. This suggests that MRI may more accurately assess tumor burden in longitudinal monitoring of orthotopic colon cancer in this model as well as in other models.
Collapse
Affiliation(s)
- M K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - O Margalit
- Department of Oncology, Chaim Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-HaShomer, 52621, Israel
| | - S Singh
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - W Wei
- Department of Biostatistics, U.T.-M.D. Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA
| | - D G Menter
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, U.T.-M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - R N DuBois
- MUSC College of Medicine, Dean's Office, 96 Jonathan Lucas Street, Suite 601, MSC 617, Charleston, SC, 29425, USA
| | - V Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA. .,Department of Radiology, U.T.-M.D. Anderson Cancer Center, 1400 Pressler St., Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Orlova A, Sirotkina M, Smolina E, Elagin V, Kovalchuk A, Turchin I, Subochev P. Raster-scan optoacoustic angiography of blood vessel development in colon cancer models. PHOTOACOUSTICS 2019; 13:25-32. [PMID: 30555784 PMCID: PMC6275215 DOI: 10.1016/j.pacs.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
- Corresponding author.
| | - Marina Sirotkina
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Vadim Elagin
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
12
|
Evans JP, Winiarski BK, Sutton PA, Ressel L, Duckworth CA, Pritchard DM, Palmer DH, Goldring CE, Kitteringham NR. Development of an orthotopic syngeneic murine model of colorectal cancer for use in translational research. Lab Anim 2019; 53:598-609. [PMID: 30760081 PMCID: PMC6900214 DOI: 10.1177/0023677219826165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Improving outcomes in colorectal cancer requires more accurate in vivo modelling of the disease in humans, allowing more reliable pre-clinical assessment of potential therapies. Novel imaging techniques are necessary to improve the longitudinal assessment of disease burden in these models, reducing the number of animals required for translational studies. This report describes the development of an immune-competent syngeneic orthotopic murine model of colorectal cancer, utilising caecal implantation of CT26 cells stably transfected with the luciferase gene into immune-competent BALB/c mice, allowing serial bioluminescent imaging of cancer progression. Luminescence in the stably transfected CT26 cell line, after pre-conditioning in the flank of a BALB/c mouse, accurately reflected cell viability and resulted in primary caecal tumours in five of eight (63%) mice in the initial pilot study following caecal injection. Luminescent signal continued to increase throughout the study period with one mouse (20%) developing a liver metastasis. Histopathological assessment confirmed tumours to be consistent with a poorly differentiated adenocarcinoma. We have now performed this technique in 68 immune-competent BALB/c mice. There have been no complications from the procedure or peri-operative deaths, with primary tumours developing in 44 (65%) mice and liver metastases in nine (20%) of these. This technique provides an accurate model of colorectal cancer with tumours developing in the correct microenvironment and metastasising to the liver with a similar frequency to that seen in patients presenting with colorectal cancer, with serial bioluminescent reducing the murine numbers required in studies by removing the need for cull for assessment of disease burden.
Collapse
Affiliation(s)
- Jonathan P Evans
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | | | - Paul A Sutton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Lorenzo Ressel
- Department of Veterinary Pathology, University of Liverpool, UK
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, University of Liverpool, UK
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, University of Liverpool, UK
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK.,Clatterbridge Cancer Centre, Liverpool, UK
| | | | - Neil R Kitteringham
- Department of Molecular and Clinical Pharmacology, University of Liverpool, UK
| |
Collapse
|
13
|
Trapiella-Alfonso L, Pons T, Lequeux N, Leleu L, Grimaldi J, Tasso M, Oujagir E, Seguin J, d'Orlyé F, Girard C, Doan BT, Varenne A. Clickable-Zwitterionic Copolymer Capped-Quantum Dots for in Vivo Fluorescence Tumor Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17107-17116. [PMID: 29701456 DOI: 10.1021/acsami.8b04708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In the last decades, fluorescent quantum dots (QDs) have appeared as high-performance biological fluorescent nanoprobes and have been explored for a variety of biomedical optical imaging applications. However, many central challenges still exist concerning the control of the surface chemistry to ensure high biocompatibility, low toxicity, antifouling, and specific active targeting properties. Regarding in vivo applications, circulation time and clearance of the nanoprobe are also key parameters to control the design and characterization of new optical imaging agents. Herein, the complete design and characterization of a peptide-near-infrared-QD-based nanoprobe for biomedical optical imaging is presented from the synthesis of the QDs and the zwitterionic-azide copolymer ligand, enabling a bio-orthogonal coupling, till the final in vivo test through all the characterization steps. The developed nanoprobes show high fluorescence emission, controlled grafting rate, low toxicity, in vitro active specific targeting, and in vivo long circulating blood time. This is, to our knowledge, the first report characterizing the in vivo circulation kinetics and tumor accumulation of targeted zwitterionic QDs.
Collapse
Affiliation(s)
- Laura Trapiella-Alfonso
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Thomas Pons
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Nicolas Lequeux
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Ludovic Leleu
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Juliette Grimaldi
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Mariana Tasso
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Edward Oujagir
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Johanne Seguin
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Fanny d'Orlyé
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Christian Girard
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Bich-Thuy Doan
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Anne Varenne
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| |
Collapse
|
14
|
Seguin J, Mignet N, Latorre Ossa H, Tanter M, Gennisson JL. Evaluation of Antivascular Combretastatin A4 P Efficacy Using Supersonic Shear Imaging Technique of Ectopic Colon Carcinoma CT26. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2352-2361. [PMID: 28666550 DOI: 10.1016/j.ultrasmedbio.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
A recent ultrasound imaging technique-shear wave elastography-showed its ability to image and quantify the mechanical properties of biological tissues, such as prostate or liver tissues. In the present study this technique was used to evaluate the relationship among tumor growth, stiffness and reduction of treatment with combretastatin (CA4 P) in allografted colon tumor CT26 in mice. During 12 d, CT26 tumor growth (n = 52) was imaged by ultrasound, and shear modulus was quantified, showing a good correlation between tumor volume and stiffness (r = 0.59). The treatment was initiated at d 12 and monitored every d during 4 d. Following the treatment, the tumor volume had decreased, while the elasticity of the tumor volume remained steady throughout the treatment. After segmentation using the shear modulus map, a detailed analysis showed a decrease in the stiffness after treatment. This reduction in the mechanical properties was shown to correlate with tissue reorganization, particularly, fibrosis and necrosis, assessed by histology.
Collapse
Affiliation(s)
- Johanne Seguin
- Paris Descartes University, Faculty of Pharmacy, Chimie ParisTech, Sorbonne Paris Cité, Chemical and Biological Technologies for Health Laboratory, Paris, France
| | - Nathalie Mignet
- Paris Descartes University, Faculty of Pharmacy, Chimie ParisTech, Sorbonne Paris Cité, Chemical and Biological Technologies for Health Laboratory, Paris, France
| | - Heldmuth Latorre Ossa
- Institut Langevin - Ondes et Images, ESPCI Paris, PSL Research University, Paris, France
| | - Mickaël Tanter
- Institut Langevin - Ondes et Images, ESPCI Paris, PSL Research University, Paris, France
| | - Jean-Luc Gennisson
- Institut Langevin - Ondes et Images, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
15
|
Elsaid Z, Taylor KMG, Puri S, Eberlein CA, Al-Jamal K, Bai J, Klippstein R, Wang JTW, Forbes B, Chana J, Somavarapu S. Mixed micelles of lipoic acid-chitosan-poly(ethylene glycol) and distearoylphosphatidylethanolamine-poly(ethylene glycol) for tumor delivery. Eur J Pharm Sci 2017; 101:228-242. [PMID: 28163163 DOI: 10.1016/j.ejps.2017.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 01/21/2023]
Abstract
Many chemotherapeutics suffer from poor aqueous solubility and tissue selectivity. Distearoylphosphatidylethanolamine-poly(ethylene glycol) (DSPE-PEG) micelles are a promising formulation strategy for the delivery of hydrophobic anticancer drugs. However, storage and in vivo instability restrict their use. The aim of this study was to prepare mixed micelles, containing a novel polymer, lipoic acid-chitosan-poly(ethylene glycol) (LACPEG), and DSPE-PEG, to overcome these limitations and potentially increase cancer cell internalisation. Drug-loaded micelles were prepared with a model tyrosine kinase inhibitor and characterized for size, surface charge, stability, morphology, drug entrapment efficiency, cell viability (A549 and PC-9 cell lines), in vivo biodistribution, ex vivo tumor accumulation and cellular internalisation. Micelles of size 30-130nm with entrapment efficiencies of 46-81% were prepared. LACPEG/DSPE-PEG mixed micelles showed greater interaction with the drug (condensing to half their size following entrapment), greater stability, and a safer profile in vitro compared to DSPE-PEG micelles. LACPEG/DSPE-PEG and DSPE-PEG micelles had similar entrapment efficiencies and in vivo tumor accumulation levels, but LACPEG/DSPE-PEG micelles showed higher tumor cell internalisation. Collectively, these findings suggest that LACPEG/DSPE-PEG mixed micelles provide a promising platform for tumor delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Zeeneh Elsaid
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | - Kevin M G Taylor
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sanyogitta Puri
- AstraZeneca, Macclesfield, Cheshire East SK10 2NA, United Kingdom
| | - Cath A Eberlein
- AstraZeneca, Macclesfield, Cheshire East SK10 2NA, United Kingdom
| | - Khuloud Al-Jamal
- Kings College London, Franklin-Wilkins Building, Stamford Street, London SE1 8WA, United Kingdom
| | - Jie Bai
- Kings College London, Franklin-Wilkins Building, Stamford Street, London SE1 8WA, United Kingdom
| | - Rebecca Klippstein
- Kings College London, Franklin-Wilkins Building, Stamford Street, London SE1 8WA, United Kingdom
| | - Julie Tzu-Wen Wang
- Kings College London, Franklin-Wilkins Building, Stamford Street, London SE1 8WA, United Kingdom
| | - Ben Forbes
- Kings College London, Franklin-Wilkins Building, Stamford Street, London SE1 8WA, United Kingdom
| | - Jasminder Chana
- Kings College London, Franklin-Wilkins Building, Stamford Street, London SE1 8WA, United Kingdom
| | | |
Collapse
|
16
|
From mice to men: Murine models of colorectal cancer for use in translational research. Crit Rev Oncol Hematol 2015; 98:94-105. [PMID: 26558688 DOI: 10.1016/j.critrevonc.2015.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide and despite advances in treatment, survival for patients with metastatic disease remains poor. With nearly 50% of patients developing metastases, in vivo investigation is essential to improve outcomes for these patients and numerous murine models of CRC have been developed to allow the study of chemoprevention and chemotherapy, in addition to improving our understanding of the pathogenesis of CRC. Selecting the most appropriate murine model for a specific application will maximize the conversion of potential therapies from the laboratory to clinical practice and requires an understanding of the various models available. This review will provide an overview of the murine models currently used in CRC research, discussing the limitations and merits of each and their most relevant application. It is aimed at the developing researcher, acting as a guide to prompt further reading in planning a specific study.
Collapse
|
17
|
Manchun S, Dass CR, Cheewatanakornkool K, Sriamornsak P. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer. Carbohydr Polym 2015; 126:222-30. [PMID: 25933543 DOI: 10.1016/j.carbpol.2015.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/23/2015] [Accepted: 03/10/2015] [Indexed: 01/24/2023]
Abstract
Efficacy of doxorubicin (DOX) in colorectal cancer treatment is limited by undesirable side-effects, which are partially due to nonspecific delivery DOX to the tumor target site. This study aimed to develop pH-responsive dextrin nanogels (DNGs) as anticancer drug carriers with pH-controlled drug release. DNGs prepared with formaldehyde as a cross-linker (FDNGs) exhibited smaller size, compared to that using glyoxal (GDNGs). Both DNGs showed pH-dependent drug release properties; drug release was slow at neutral pH but increased significantly in acidic medium. The cytotoxicity of empty and DOX-loaded FDNGs was lower than free DOX and GDNGs, against two commonly used colorectal cancer cells. Intracellular uptake studies indicated that the DOX-loaded FDNGs could efficiently deliver DOX into the nuclei. In vivo, DOX-loaded FDNGs substantially enhanced anti-tumor efficacy, compared to free DOX, exhibiting much higher effects on inhibiting proliferation and inducing apoptosis, as confirmed by mice weight shifts, tumor weight, tumor volume and histological assessment. Therefore, FDNGs are promising as a potential drug delivery vehicle for colorectal cancer therapy.
Collapse
Affiliation(s)
- Somkamol Manchun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Crispin R Dass
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth 6845, Australia; Curtin Health Innovation Research Institute of Ageing and Chronic Disease, Bentley 6102, Australia
| | - Kamonrak Cheewatanakornkool
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|