1
|
Hao C, Li C, Wang J, Yu S. Diagnostic Value and Mechanism of Action of Serum miR-1281 Involved in T2DM and Complications of DKD. Nephrology (Carlton) 2025; 30:e70052. [PMID: 40331404 DOI: 10.1111/nep.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
OBJECTIVE To research the diagnostic value and mechanism of miR-1281 involved in type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD). METHODS One hundred and eighteen patients with T2DM (68 DKD patients) and 35 healthy individuals were included. Fasting venous blood and one-time morning urine were collected for biochemical testing. RT-qPCR detected miR-1281 expression, ROC curve assessed the diagnostic value of miR-1281 for T2DM and DKD, and logistic regression predicted risk factors affecting the progression of DKD. ELISA analysed inflammatory cytokine expression, and Pearson correlation assessed its relevance to miR-1281. CCK8 detected cell proliferation and flow cytometry recorded apoptosis. RESULTS miR-1281 was upregulated in T2DM patients and increased more significantly in DKD patients. The ROC curves indicated that miR-1281 had diagnostic value in predicting T2DM and DKD, and miR-1281 was closely related to the pathological characteristics of DKD patients. The logistic results showed that increased miR-1281 expression was a risk factor for DKD progression. ELISA showed that inflammatory cytokines (IL-6, IL-18, TNF-α) were significantly increased in patients with T2DM, and Pearson correlation analysis indicated a positive correlation between miR-1281 and inflammatory cytokine expression. The high-glucose environment promoted cell proliferation, decreased apoptosis, and increased inflammatory factor levels, but transfection of the miR-1281 inhibitor resisted the adverse effects of the high-glucose environment on cells. CONCLUSION miR-1281 promotes glomerular cell proliferation, inhibits apoptosis, and increases the level of intracellular inflammation, leading to impaired renal function in T2DM patients.
Collapse
Affiliation(s)
- Cuicui Hao
- Department of Endocrinology, The Second People's Hospital of Liaocheng, Liaocheng, China
| | - Cui Li
- Department of Internal Medicine, The Third People's Hospital of Liaocheng, Liaocheng, China
| | - Junhong Wang
- Department of Endocrinology, The Second People's Hospital of Liaocheng, Liaocheng, China
| | - Shan Yu
- Department of Endocrinology, The Second People's Hospital of Liaocheng, Liaocheng, China
| |
Collapse
|
2
|
Tao Y, Liu M, Siebert G, Das-Earl P, Ibrahim D, Crowe N, Zheng S, Ma R. I-mfa, Mesangial Cell TRPC1 Channel, and Regulation of GFR. J Am Soc Nephrol 2025; 36:614-627. [PMID: 39446484 PMCID: PMC11975231 DOI: 10.1681/asn.0000000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Key Points I-mfa is a multifunctional cytosolic protein and its function in kidney is unknown. The major finding in the present study was that I-mfa promoted glomerular filtration rate in both male and female mice. I-mfa suppressed contractile function of both human and mouse glomerular mesangial cells by decreasing TRPC1 channel protein abundance. Background Inhibitor of MyoD family A (I-mfa) is a cytosolic protein. Its function in the kidney is unknown. The aim of this study was to examine the regulatory role of I-mfa on GFR. Methods GFR was measured by transdermal measurement of fluorescein isothiocyanate–sinitrin clearance in conscious wild-type (WT) and I-mfa knockout (KO) mice. Cell contractility was assessed in a single human or mouse mesangial cell. Single-cell RNA sequence, Western blot, and Ca2+ imaging were used to evaluate the effects of I-mfa on transient receptor potential canonical (TRPCs) at messenger, protein, and functional levels in mesangial cells. Results In KO mice, GFR was significantly lower than that in WT mice. In WT mice, knocking down I-mfa selectively in mesangial cells using targeted nanoparticle/small interfering RNA delivery system significantly decreased GFR. In human mesangial cells, overexpression of I-mfa significantly blunted the angiotensin II (Ang II)-stimulated contraction, and knockdown of I-mfa significantly enhanced the contractile response. Consistently, the Ang II–induced contraction was significantly augmented in primary mesangial cells isolated from KO mice. The exaggerated response was restored by reintroducing I-mfa. Furthermore, single-cell RNA sequence showed an increase in trpc1 messenger, and Western blot showed an increase in TRPC1 protein abundance in I-mfa KO mouse mesangial cells. TRPC1 protein abundance was decreased in human embryonic kidney cells overexpressing I-mfa. Ca2+ imaging experiments showed that downregulation of I-mfa significantly enhanced Ang II–stimulated Ca2+ entry in human mesangial cells. Finally, TRPC1 inhibitor Pico145 significantly blunted Ang II–induced mesangial cell contraction. Conclusions I-mfa positively regulated GFR by decreasing mesangial cell contractile function through inhibition of TRPC1-mediated Ca2+ signaling.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and Anatomy, University of North Texas HSC, Fort Worth, Texas
| | - Muyi Liu
- Department of Microbiology, Immunology and Genetics, University of North Texas HSC, Fort Worth, Texas
| | - Garland Siebert
- Texas College of Osteopathic Medicine, University of North Texas HSC, Fort Worth, Texas
| | - Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas HSC, Fort Worth, Texas
| | - Deena Ibrahim
- Department of Physiology and Anatomy, University of North Texas HSC, Fort Worth, Texas
| | - Nicole Crowe
- Department of Physiology and Anatomy, University of North Texas HSC, Fort Worth, Texas
| | - Suilan Zheng
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas HSC, Fort Worth, Texas
| |
Collapse
|
3
|
Fan X, Li J, Gao Y, Li L, Zhang H, Bi Z. The mechanism of enterogenous toxin methylmalonic acid aggravating calcium-phosphorus metabolic disorder in uremic rats by regulating the Wnt/β-catenin pathway. Mol Med 2025; 31:19. [PMID: 39844078 PMCID: PMC11756144 DOI: 10.1186/s10020-025-01067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Uremia (UR) is caused by increased UR-related toxins in the bloodstream. We explored the mechanism of enterogenous toxin methylmalonic acid (MMA) in calcium-phosphorus metabolic disorder in UR rats via the Wnt/β-catenin pathway. METHODS The UR rat model was established by 5/6 nephrectomy. The fecal bacteria of UR rats were transplanted into Sham rats. Sham rats were injected with exogenous MMA or Salinomycin (SAL). Pathological changes in renal/colon tissues were analyzed. MMA concentration, levels of renal function indicators, serum inflammatory factors, Ca2+/P3+, and parathyroid hormone, intestinal flora structure, fecal metabolic profile, intestinal permeability, and glomerular filtration rate (GFR) were assessed. Additionally, rat glomerular podocytes were cultured, with cell viability and apoptosis measured. RESULTS Intestinal flora richness and diversity in UR rats were decreased, along with unbalanced flora structure. Among the screened 133 secondary differential metabolites, the MMA concentration rose, showing the most significant difference. UR rat fecal transplantation caused elevated MMA concentration in the serum and renal tissues of Sham rats. The intestinal flora metabolite MMA or exogenous MMA promoted intestinal barrier impairment, increased intestinal permeability, induced glomerular podocyte loss, and reduced GFR, causing calcium-phosphorus metabolic disorder. The intestinal flora metabolite MMA or exogenous MMA induced inflammatory responses and facilitated glomerular podocyte apoptosis by activating the Wnt/β-catenin pathway, which could be counteracted by repressing the Wnt/β-catenin pathway. CONCLUSIONS Enterogenous toxin MMA impelled intestinal barrier impairment in UR rats, enhanced intestinal permeability, and activated the Wnt/β-catenin pathway to induce glomerular podocyte loss and reduce GFR, thus aggravating calcium-phosphorus metabolic disorder.
Collapse
Affiliation(s)
- Xing Fan
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Jing Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Yan Gao
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Lin Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Haisong Zhang
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Zhaoyu Bi
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| |
Collapse
|
4
|
Liu H, Wang J, Yue G, Xu J. Placenta-derived mesenchymal stem cells protect against diabetic kidney disease by upregulating autophagy-mediated SIRT1/FOXO1 pathway. Ren Fail 2024; 46:2303396. [PMID: 38234193 PMCID: PMC10798286 DOI: 10.1080/0886022x.2024.2303396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common chronic microvascular complication of diabetes mellitus. Although studies have indicated the therapeutic potential of mesenchymal stem cells (MSCs) for DKD, the underlying molecular mechanisms remain unclear. Herein, we explored the renoprotective effect of placenta-derived MSCs (P-MSCs) and the potential mechanism of SIRT1/FOXO1 pathway-mediated autophagy in DKD. The urine microalbumin/creatinine ratio was determined using ELISA, and renal pathological changes were detected by special staining techniques. Immunofluorescence was used for detecting the renal tissue expression of podocin and nephrin; immunohistochemistry for the renal expression of autophagy-related proteins (LC3, Beclin-1, SIRT1, and FOXO1); and western blotting and PCR for the expression of podocyte autophagy- and pathway-related indicators. We found that P-MSCs ameliorated renal tubular injury and glomerular mesangial matrix deposition and alleviated podocyte damage in DKD rats. PMSCs enhanced autophagy levels and increased SIRT1 and FOXO1 expression in DKD rat renal tissue, whereas the autophagy inhibitor 3-methyladenine significantly attenuated the renoprotective effect of P-MSCs. P-MSCs improved HG-induced Mouse podocyte clone5(MPC5)injury, increased podocyte autophagy, and upregulated SIRT1 and FOXO1 expression. Moreover, downregulation of SIRT1 expression blocked the P-MSC-mediated enhancement of podocyte autophagy and improvement of podocyte injury. Thus, P-MSCs can significantly improve renal damage and reduce podocyte injury in DKD rats by modulating the SIRT1/FOXO1 pathway and enhancing podocyte autophagy.
Collapse
Affiliation(s)
- Honghong Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P.R.China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P.R.China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, P.R.China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, P.R.China
| | - Guanru Yue
- Department of Medical Genetics and Cell biology, Medical College of Nanchang University, Nanchang, P.R. China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P.R.China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, P.R.China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, P.R.China
| |
Collapse
|
5
|
Ming WH, Wen L, Hu WJ, Qiao RF, Zhou Y, Su BW, Bao YN, Gao P, Luan ZL. The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease. Kidney Res Clin Pract 2024; 43:724-738. [PMID: 39558651 PMCID: PMC11615452 DOI: 10.23876/j.krcp.23.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 11/20/2024] Open
Abstract
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
Collapse
Affiliation(s)
- Wen-Hua Ming
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Rong-Fang Qiao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yang Zhou
- Beijing Institute of Medical Device Testing, Beijing, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Zhu J, Li L, Luan Y, Zhang Z, Wang Y, Xu Z. Salidroside Pre-Treatment Inhibits Hypertensive Renal Injury and Fibrosis Through Inhibiting Wnt/β-Catenin Pathway. Dose Response 2024; 22:15593258241298045. [PMID: 39506979 PMCID: PMC11539081 DOI: 10.1177/15593258241298045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Objectives This study aimed to explore the protective effects and underlying mechanisms of salidroside (SAL) in angiotensin II (Ang II)-induced hypertensive renal injury and fibrosis, using in vivo and in vitro models. Methods In this study, we generated Ang II-induced hypertensive renal injury and fibrosis in mice and the recombinant interferon-gamma (IFN-γ)-stimulated murine podocyte clone 5 (MPC5) model in vitro. Histological and oxidative stress analyses were performed to evaluate the renal injury. Results SAL pre-treatment reduced systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), and attenuated serum creatinine (Scr), blood urea nitrogen (BUN), and serum cystatin C (Cys-C) levels in Ang II-infused mice (all, P < 0.001). SAL reduced renal fibrosis and related molecules expression, including Collagen I, Collagen III, and α-smooth muscle actin (α-SMA) (all, P < 0.001). SAL decreased the content of malondialdehyde (MDA) while increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in Ang II-treated mice (all, P < 0.001). In addition, SAL pre-treatment inhibited AT1R, Wnt1, Wnt3a, and β-catenin expressions (all, P < 0.001), both in vivo and in vitro. Conclusion Our experimental data demonstrate that SAL pre-treatment protects against Ang II-induced hypertensive renal injury and fibrosis by suppressing the Wnt/β-catenin pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Emergency Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Li
- Department of Emergency Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuting Luan
- Department of Infectious Diseases, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziqing Zhang
- Department of Emergency Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Emergency Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Xu
- Department of Emergency Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Wang H, Li Y, Wu N, Lv C, Wang Y. P4HB regulates the TGFβ/SMAD3 signaling pathway through PRMT1 to participate in high glucose-induced epithelial-mesenchymal transition and fibrosis of renal tubular epithelial cells. BMC Nephrol 2024; 25:297. [PMID: 39251943 PMCID: PMC11385120 DOI: 10.1186/s12882-024-03733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS HG induced an increase in the expression of P4HB and TGFβ, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. CONCLUSION P4HB regulated the TGFβ/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of nephrology, China-Japan Friendship Hospital, chaoyang District, 100029, Beijing, China
| | - Yang Li
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Na Wu
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Chunmei Lv
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Yishu Wang
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China.
| |
Collapse
|
8
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
9
|
Han LL, Wang SH, Yao MY, Zhou H. Urinary exosomal microRNA-145-5p and microRNA-27a-3p act as noninvasive diagnostic biomarkers for diabetic kidney disease. World J Diabetes 2024; 15:92-104. [PMID: 38313849 PMCID: PMC10835498 DOI: 10.4239/wjd.v15.i1.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD), characterized by increased urinary microalbumin levels and decreased renal function, is the primary cause of end-stage renal disease. Its pathological mechanisms are complicated and multifactorial; Therefore, sensitive and specific biomarkers are needed. Urinary exosome originate from diverse renal cells in nephron segments and partially mirror the pathological changes in the kidney. The microRNAs (miRNAs) in urinary exosome are remarkably stable and highly tissue-specific for the kidney. AIM To determine if urinary exosomal miRNAs from diabetic patients can serve as noninvasive biomarkers for early DKD diagnosis. METHODS Type 2 diabetic mellitus (T2DM) patients were recruited from the Second Hospital of Hebei Medical University and were divided into two groups: DM, diabetic patients without albuminuria [urinary albumin to creatinine ratio (UACR) < 30 mg/g] and DKD, diabetic patients with albuminuria (UACR ≥ 30 mg/g). Healthy subjects were the normal control (NC) group. Urinary exosomal miR-145-5p, miR-27a-3p, and miR-29c-3p, were detected using real-time quantitative polymerase chain reaction. The correlation between exosomal miRNAs and the clinical indexes was evaluated. The diagnostic values of exosomal miR-145-5p and miR-27a-3p in DKD were determined using receiver operating characteristic (ROC) analysis. Biological functions of miR-145-5p were investigated by performing Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. RESULTS Urinary exosomal expression of miR-145-5p and miR-27a-3p was more upregulated in the DKD group than in the DM group (miR-145-5p: 4.54 ± 1.45 vs 1.95 ± 0.93, P < 0.001; miR-27a-3p: 2.33 ± 0.79 vs 1.71 ± 0.76, P < 0.05) and the NC group (miR-145-5p: 4.54 ± 1.45 vs 1.55 ± 0.83, P < 0.001; miR-27a-3p: 2.33 ± 0.79 vs 1.10 ± 0.51, P < 0.001). The exosomal miR-145-5p and miR-27a-3p positively correlated with albuminuria and serum creatinine and negatively correlated with the estimated glomerular filtration rate. miR-27a-3p was also closely related to blood glucose, glycosylated hemoglobin A1c, and low-density lipoprotein cholesterol. ROC analysis revealed that miR-145-5p had a better area under the curve of 0.88 [95% confidence interval (CI): 0.784-0.985, P < 0.0001] in diagnosing DKD than miR-27a-3p with 0.71 (95%CI: 0.547-0.871, P = 0.0239). Bioinformatics analysis revealed that the target genes of miR-145-5p were located in the actin filament, cytoskeleton, and extracellular exosome and were involved in the pathological processes of DKD, including apoptosis, inflammation, and fibrosis. CONCLUSION Urinary exosomal miR-145-5p and miR-27a-3p may serve as novel noninvasive diagnostic biomarkers or promising therapeutic targets for DKD.
Collapse
Affiliation(s)
- Lu-Lu Han
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Endocrinology, Baoding No. 1 Central Hospital, Baoding 071000, Hebei Province, China
| | - Sheng-Hai Wang
- Department of Critical Care Medicine, The Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| | - Ming-Yan Yao
- Department of Endocrinology, Baoding No. 1 Central Hospital, Baoding 071000, Hebei Province, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
10
|
Kundu S, Ghosh A, Yadav KS, Mugale MN, Sahu BD. Imperatorin ameliorates kidney injury in diabetic mice by regulating the TGF-β/Smad2/3 signaling axis, epithelial-to-mesenchymal transition, and renal inflammation. Eur J Pharmacol 2024; 963:176250. [PMID: 38092315 DOI: 10.1016/j.ejphar.2023.176250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/11/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Diabetic nephropathy (DN) is a serious concern in patients with diabetes mellitus. Prolonged hyperglycemia induces oxidative damage, chronic inflammation, and build-up of extracellular matrix (ECM) components in the renal cells, leading to kidney structural and functional changes. Imperatorin (IMP) is a naturally occurring furanocoumarin derivative with proven antioxidative and anti-inflammatory properties. We investigated whether IMP could improve DN and employed high glucose (HG)-induced HK-2 cells and high-fat diet-fed streptozotocin (HFD/STZ)-generated DN experimental model in C57BL/6 mice. In vitro, IMP effectively reduced the HG-activated reactive oxygen species generation, disturbance in the mitochondrial membrane potential (MMP) and epithelial-to-mesenchymal transition (EMT)-related markers, and the transforming growth factor (TGF)-β and collagen 1 expression in HK-2 cells. In vivo, we found an elevation of serum creatinine, kidney histology alterations, and collagen build-up in the kidneys of the DN control group. Also, we found an altered expression of EMT-related markers, upregulation of the TGF-β/Smad2/3 axis, and elevated pro-inflammatory molecules, TNF-α, IL-1β, IL-18 and phospho-NF-kB (p65) in the DN control group. IMP treatment did not significantly reduce the blood glucose level compared to the DN control group. However, IMP treatment effectively improved renal damage by ameliorating kidney histological changes and serum renal injury markers. IMP treatment restored renal antioxidants and exhibited anti-inflammatory effects in the kidneys. Moreover, the abnormal manifestation of EMT-related attributes and elevated levels of TGF-β, phospho-Smad2/3, and collagen 1 were also normalized in the IMP treatment group. Our findings highlight that IMP may be a potential candidate for treating DN.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Ankana Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Karan Singh Yadav
- Department of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Madhav Nilakanth Mugale
- Department of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India.
| |
Collapse
|
11
|
Xue B, Kadeerhan G, Sun LB, Chen YQ, Hu XF, Zhang ZK, Wang DW. Circulating exosomal miR-16-5p and let-7e-5p are associated with bladder fibrosis of diabetic cystopathy. Sci Rep 2024; 14:837. [PMID: 38191820 PMCID: PMC10774280 DOI: 10.1038/s41598-024-51451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Diabetic cystopathy (DCP) is a prevalent etiology of bladder dysfunction in individuals with longstanding diabetes, frequently leading to bladder interstitial fibrosis. Research investigating the initial pathological alterations of DCP is notably scarce. To comprehend the development of fibrosis and find effective biomarkers for its diagnosis, we prepared streptozotocin-induced long-term diabetic SD rats exhibiting a type 1 diabetes phenotype and bladder fibrosis in histology detection. After observing myofibroblast differentiation from rats' primary bladder fibroblasts with immunofluorescence, we isolated fibroblasts derived exosomes and performed exosomal miRNA sequencing. The co-differentially expressed miRNAs (DEMis) (miR-16-5p and let-7e-5p) were screened through a joint analysis of diabetic rats and long-term patients' plasma data (GES97123) downloaded from the GEO database. Then two co-DEMis were validated by quantitative PCR on exosomes derived from diabetic rats' plasma. Following with a series of analysis, including target mRNAs and transcription factors (TFs) prediction, hubgenes identification, protein-protein interaction (PPI) network construction and gene enrichment analysis, a miRNA-mediated genetic regulatory network consisting of two miRNAs, nine TFs, and thirty target mRNAs were identified in relation to fibrotic processes. Thus, circulating exosomal miR-16-5p and let-7e-5p are associated with bladder fibrosis of DCP, and the crucial genes in regulatory network might hold immense significance in studying the pathogenesis and molecular mechanisms of fibrosis, which deserves further exploration.
Collapse
Affiliation(s)
- Bo Xue
- Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Gaohaer Kadeerhan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Li-Bin Sun
- Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Xiao-Feng Hu
- Shanxi Medical University, Taiyuan, 030001, China
| | | | - Dong-Wen Wang
- Shanxi Medical University, Taiyuan, 030001, China.
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
12
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
13
|
Tang Y, Wan F, Tang X, Lin Y, Zhang H, Cao J, Yang R. Celastrol attenuates diabetic nephropathy by upregulating SIRT1-mediated inhibition of EZH2related wnt/β-catenin signaling. Int Immunopharmacol 2023; 122:110584. [PMID: 37454630 DOI: 10.1016/j.intimp.2023.110584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Proteinuria is an independent risk factor for the progression of diabetic nephropathy (DN) and an imbalance in podocyte function aggravates proteinuria. Celastrol is the primary active ingredient of T. wilfordii, effective in treating DN renal injury; however, the mechanisms underlying its effect are unclear. We explored how celastrol prevents DN podocyte damage using in vivo and in vitro experiments. We randomly divided 24 male C57BLKS/J mice into three groups: db/m (n = 8), db/db (n = 8), and celastrol groups (db/db + celastrol, 1 mg/kg/d, gavage administration, n = 8). In vivo experiments lasted 12 weeks and intervention lasted ten weeks. Serum samples and kidney tissues were collected for biochemical tests, pathological staining, transmission electron microscopy, fluorescencequantitation polymerase chain reaction, and western blotting analysis. In vitro experiments to elaborate the mechanism of celastrol protection were performed on high glucose (HG)-induced podocyte injury. Celastrol reduced blood glucose levels and renal function index in db/db mice, attenuated renal histomorphological injury and glomerular podocyte foot injuries, and induced significant anti-inflammatory effects. Celastrol upregulated silent information regulator 2 related enzyme 1(SIRT1) expression and downregulated enhancer of zeste homolog (EZH2), inhibiting the wnt/β-catenin pathway-related molecules, such as wnt1, wnt7a, and β-catenin. SIRT1 repressed the promoter activity of EZH2, and was co-immunoprecipitated with EZH2 in mouse podocyte cells (MPC5). SIRT1 knockdown aggravated the protective effects of celastrol on MPC5 cells. Celastrol protected podocyte injury via SIRT1/EZH2, which participates in the wnt/β-catenin pathway. Overall, celastrol-mediated SIRT1 upregulation inhibited the EZH2-related wnt/β-catenin signaling pathway to attenuate DN and podocyte injury, providing a theoretical basis for celastrol clinical application.
Collapse
Affiliation(s)
- Yuewen Tang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Feng Wan
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuanli Tang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi Lin
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Huaqin Zhang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiawei Cao
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruchun Yang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
QiHuangYiShen Granules Modulate the Expression of LncRNA MALAT1 and Attenuate Epithelial-Mesenchymal Transition in Kidney of Diabetic Nephropathy Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3357281. [PMID: 36760471 PMCID: PMC9904933 DOI: 10.1155/2023/3357281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Background QiHuangYiShen granules (QHYS), a traditional Chinese herbal medicine formula, have been used in clinical practice for treating diabetic kidney disease for several years by our team. The efficacy of reducing proteinuria and delaying the decline of renal function of QHYS has been proved by our previous studies. However, the exact mechanism by which QHYS exerts its renoprotection remains largely unknown. Emerging evidence suggests that lncRNA MALAT1 is abnormally expressed in diabetic nephropathy (DN) and can attenuate renal fibrosis by modulating podocyte epithelial-mesenchymal transition (EMT). Objective In the present study, we aimed to explore whether QHYS could modulate lncRNA MALAT1 expression and attenuate the podocyte EMT as well as the potential mechanism related to the Wnt/β-catenin signal pathway. Methods SD rats were fed with the high-fat-high-sucrose diet for 8 weeks and thereafter administered with 30 mg/kg streptozotocin intraperitoneally to replicate the DN model. Quality control of QHYS was performed using high-performance liquid chromatography. QHYS were orally administered at 1.25, 2.5, and 5 g/kg doses, respectively, to the DN model rats for 12 weeks. Body weight, glycated haemoglobin, blood urea nitrogen, serum creatinine, 24-h proteinuria, and kidney index were measured. The morphologic pathology of the kidney was evaluated by Hematoxylin-eosin and Masson's trichrome staining. The expression level of lncRNA MALAT1 was determined by quantitative real-time polymerase chain reaction. In addition, the expression levels of podocyte EMT protein markers and Wnt/β-catenin pathway proteins in renal tissues were evaluated by Western blotting and immunohistochemistry. Results The results showed that QHYS significantly reduced 24-h proteinuria, blood urea nitrogen, kidney index, and ameliorated glomerular hypertrophy and collagen fiber deposition in the kidney of DN rats. Importantly, QHYS significantly downregulated the expression level of lncRNA MALAT1, upregulated the expression of nephrin, the podocyte marker protein, downregulated the expression of desmin and FSP-1, and mesenchymal cell markers. Furthermore, QHYS significantly downregulated the expression levels of Wnt1, β-catenin, and active β-catenin. Conclusion Conclusively, our study revealed that QHYS significantly reduced proteinuria, alleviated renal fibrosis, and attenuated the podocyte EMT in DN rats, which may be associated with the downregulation of lncRNA MALAT1 expression and inhibition of the Wnt/β-catenin pathway.
Collapse
|
15
|
Sun X, Yang Y, Sun X, Meng H, Hao W, Yin J, Ma F, Guo X, Du L, Sun L, Wu H. Krill Oil Turns Off TGF-β1 Profibrotic Signaling in the Prevention of Diabetic Nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9865-9876. [PMID: 35916281 DOI: 10.1021/acs.jafc.2c02850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), results in high mortality due to the lack of effective interventions. The current study investigated the preventive effect of krill oil (KO) on DN using a type 2 DM mouse model induced by streptozotocin and high-fat diet for 24 weeks. The diabetic mice developed albuminuria, mesangial matrix accumulation, glomerular hypertrophy, and fibrosis formation, with an increase in renal proinflammatory, oxidative and profibrotic gene expression. KO significantly prevented these effects but did not improve hyperglycemia and glucose intolerance. In high-glucose-treated mesangial cells (MCs), KO preferably modulated TGF-β1 signaling as revealed by RNA-sequencing. In TGF-β1-treated MCs, KO abolished SMAD2/3 phosphorylation and nuclear translocation and activated Smad7 gene expression. The action of KO on the SMADs was confirmed in the diabetic kidneys. Therefore, KO may prevent DN predominantly by suppressing the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Xuechun Sun
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Yu Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Xiaodan Sun
- Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Rd., Jinan, Shandong 250033, China
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin St., Changchun, Jilin 130021, China
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
16
|
Sanabria-de la Torre R, García-Fontana C, González-Salvatierra S, Andújar-Vera F, Martínez-Heredia L, García-Fontana B, Muñoz-Torres M. The Contribution of Wnt Signaling to Vascular Complications in Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23:6995. [PMID: 35805996 PMCID: PMC9266892 DOI: 10.3390/ijms23136995] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular complications are the leading cause of morbidity and mortality among patients with type 2 diabetes mellitus (T2DM). These vascular abnormalities result in a chronic hyperglycemic state, which influences many signaling molecular pathways that initially lead to increased oxidative stress, increased inflammation, and endothelial dysfunction, leading to both microvascular and macrovascular complications. Endothelial dysfunction represents the initial stage in both types of vascular complications; it represents "mandatory damage" in the development of microvascular complications and only "introductory damage" in the development of macrovascular complications. Increasing scientific evidence has revealed an important role of the Wnt pathway in the pathophysiology of the vascular wall. It is well known that the Wnt pathway is altered in patients with T2DM. This review aims to be an update of the current literature related to the Wnt pathway molecules that are altered in patients with T2DM, which may also be the cause of damage to the vasculature. Both microvascular complications (retinopathy, nephropathy, and neuropathy) and macrovascular complications (coronary artery disease, cerebrovascular disease, and peripheral arterial disease) are analyzed. This review aims to concisely concentrate all the evidence to facilitate the view on the vascular involvement of the Wnt pathway and its components by highlighting the importance of exploring possible therapeutic strategy for patients with T2DM who develop vascular pathologies.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sheila González-Salvatierra
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Francisco Andújar-Vera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Luis Martínez-Heredia
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Chen C, Shi Y, Ma J, Chen Z, Zhang M, Zhao Y. Trigonelline reverses high glucose-induced proliferation, fibrosis of mesangial cells via modulation of Wnt signaling pathway. Diabetol Metab Syndr 2022; 14:28. [PMID: 35139912 PMCID: PMC8827266 DOI: 10.1186/s13098-022-00798-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of the end-stage renal disease (ESRD). The proliferation and apoptosis of mesangial cells induced by the activated Wnt/β-catenin pathway is crucial in DN. Trigonelline (TRL) is an alkaloid that has been shown to decrease proteinuria and protect the renal function in DN. However, the effect of TRL on the Wnt/β-catenin pathway of mesangial cells is unclear. METHODS As a cellular DN model, human mesangial cells (HMCs) were treated with high-glucose (HG). β-Catenin plasmid and control knockdown plasmids were transfected into HG-treated HMCs as β-catenin pcDNA and β-catenin siRNA groups, respectively. Cell viability was measured by MTT assay. Flow cytometry was used to detect the cell cycle. Cell apoptosis was evaluated by flow cytometry and terminal dUTP transferase nick end labeling (TUNEL) assay. mRNA expression of Wnt1, Wnt3a, Wnt4, Wnt5a, β-catenin, TCF4, Cyclin D1, and CDK4 were detected by qRT-PCR. Protein expression of Wnt4, Wnt5a, nucleus-β-catenin, TCF4, Cyclin D1, and CDK4 were detected by western blotting. RESULTS TRL significantly inhibited HG-induced HMCs viability over three-time points measured (24, 48, and 72 h). In addition, TRL suppressed the levels of fibronectin (FN) and collagen IV (Col IV) in HG-stimulated HMCs. Furthermore, TRL efficiently inhibited the activation of the Wnt/β-catenin signaling pathway in HG-stimulated HMCs. Taken together, these data indicated that TRL inhibited HG-induced HMCs proliferation and ECM expression via the modulation of the Wnt signaling pathway. CONCLUSIONS TRL reduces HG-induced cell injury by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chen Chen
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Yan Shi
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Jiulong Ma
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Zhen Chen
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Ming Zhang
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Yan Zhao
- Physical Examination Center, Jilin University Second Hospital, Street No. 218, Changchun, Ziqiang, People's Republic of China.
| |
Collapse
|
19
|
Wang H, Zhang R, Wu X, Chen Y, Ji W, Wang J, Zhang Y, Xia Y, Tang Y, Yuan J. The Wnt Signaling Pathway in Diabetic Nephropathy. Front Cell Dev Biol 2022; 9:701547. [PMID: 35059392 PMCID: PMC8763969 DOI: 10.3389/fcell.2021.701547] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney-related complication of both type 1 and type 2 diabetes mellitus (T1DM, T2DM) and the second major cause of end-stage kidney disease. DN can lead to hypertension, edema, and proteinuria. In some cases, DN can even progress to kidney failure, a life-threatening condition. The precise etiology and pathogenesis of DN remain unknown, although multiple factors are believed to be involved. The main pathological manifestations of DN include mesangial expansion, thickening of the glomerular basement membrane, and podocyte injury. Eventually, these pathological manifestations will lead to glomerulosclerosis, thus affecting renal function. There is an urgent need to develop new strategies for the prevention and treatment of DN. Existing evidence shows that the Wnt signaling cascade plays a key role in regulating the development of DN. Previous studies focused on the role of the Wnt canonical signaling pathway in DN. Subsequently, accumulated evidence on the mechanism of the Wnt non-canonical signaling indicated that Wnt/Ca2+ and Wnt/PCP also have essential roles in the progression of DN. In this review, we summarize the specific mechanisms of Wnt signaling in the occurrence and development of DN in podocyte injury, mesangial cell injury, and renal fibrosis. Also, to elucidate the significance of the Wnt canonical pathway in the process of DN, we uncovered evidence supporting that both Wnt/PCP and Wnt/Ca2+ signaling are critical for DN development.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Jining Medical University, Jining, China
| | - Ran Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Xinjie Wu
- Basic Medical School, Jining Medical University, Jining, China
| | - Yafen Chen
- Basic Medical School, Jining Medical University, Jining, China
| | - Wei Ji
- Basic Medical School, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yawen Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinxiang Yuan
- Collaborative Innovation Center, Jining Medical University, Jining, China
| |
Collapse
|
20
|
The Role of Vitamin D in Diabetic Nephropathy: A Translational Approach. Int J Mol Sci 2022; 23:ijms23020807. [PMID: 35054991 PMCID: PMC8775873 DOI: 10.3390/ijms23020807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
According to several animal and human studies, vitamin D appears to play a significant role in the development of diabetic nephropathy. However, the possible renoprotective effect of vitamin D and its influence on the reversal of already existing renal damage remains doubtful. At this moment, there are a few hypotheses concerning the underlying molecular and genetic mechanisms including the link between vitamin D and inflammation, oxidative stress, and extracellular matrix accumulation. The present review aims to investigate the potential role of vitamin D in the development of diabetic kidney disease from a translational approach.
Collapse
|
21
|
Ricciardi CA, Gnudi L. Kidney disease in diabetes: From mechanisms to clinical presentation and treatment strategies. Metabolism 2021; 124:154890. [PMID: 34560098 DOI: 10.1016/j.metabol.2021.154890] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Metabolic and haemodynamic perturbations and their interaction drive the development of diabetic kidney disease (DKD) and its progression towards end stage renal disease (ESRD). Increased mitochondrial oxidative stress has been proposed as the central mechanism in the pathophysiology of DKD, but other mechanisms have been implicated. In parallel to increased oxidative stress, inflammation, cell apoptosis and tissue fibrosis drive the relentless progressive loss of kidney function affecting both the glomerular filtration barrier and the renal tubulointerstitium. Alteration of glomerular capillary autoregulation is at the basis of glomerular hypertension, an important pathogenetic mechanism for DKD. Clinical presentation of DKD can vary. Its classical presentation, often seen in patients with type 1 diabetes (T1DM), features hyperfiltration and albuminuria followed by progressive fall in renal function. Patients can often also present with atypical features characterised by progressive reduction in renal function without albuminuria, others in conjunction with non-diabetes related pathologies making the diagnosis, at times, challenging. Metabolic, lipid and blood pressure control with lifestyle interventions are crucial in reducing the progressive renal function decline seen in DKD. The prevention and management of DKD (and parallel cardiovascular disease) is a huge global challenge and therapies that target haemodynamic perturbations, such as inhibitors of the renin-angiotensin-aldosterone system (RAAS) and SGLT2 inhibitors, have been most successful.
Collapse
Affiliation(s)
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Science, King's College London, London, UK.
| |
Collapse
|
22
|
Tziastoudi M, Tsezou A, Stefanidis I. Cadherin and Wnt signaling pathways as key regulators in diabetic nephropathy. PLoS One 2021; 16:e0255728. [PMID: 34411124 PMCID: PMC8375992 DOI: 10.1371/journal.pone.0255728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
AIM A recent meta-analysis of genome-wide linkage studies (GWLS) has identified multiple genetic regions suggestive of linkage with DN harboring hundreds of genes. Moving this number of genetic loci forward into biological insight is truly the next step. Here, we approach this challenge with a gene ontology (GO) analysis in order to yield biological and functional role to the genes, an over-representation test to find which GO terms are enriched in the gene list, pathway analysis, as well as protein network analysis. METHOD GO analysis was performed using protein analysis through evolutionary relationships (PANTHER) version 14.0 software and P-values less than 0.05 were considered statistically significant. GO analysis was followed by over-representation test for the identification of enriched terms. Statistical significance was calculated by Fisher's exact test and adjusted using the false discovery rate (FDR) for correction of multiple tests. Cytoscape with the relevant plugins was used for the construction of the protein network and clustering analysis. RESULTS The GO analysis assign multiple GO terms to the genes regarding the molecular function, the biological process and the cellular component, protein class and pathway analysis. The findings of the over-representation test highlight the contribution of cell adhesion regarding the biological process, integral components of plasma membrane regarding the cellular component, chemokines and cytokines with regard to protein class, while the pathway analysis emphasizes the contribution of Wnt and cadherin signaling pathways. CONCLUSIONS Our results suggest that a core feature of the pathogenesis of DN may be a disturbance in Wnt and cadherin signaling pathways, whereas the contribution of chemokines and cytokines need to be studied in additional studies.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, School of Medicine, University of Thessaly, Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, School of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
23
|
Su X, Zhou G, Tian M, Wu S, Wang Y. Silencing of RSPO1 mitigates obesity-related renal fibrosis in mice by deactivating Wnt/β-catenin pathway. Exp Cell Res 2021; 405:112713. [PMID: 34181940 DOI: 10.1016/j.yexcr.2021.112713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Obesity, a global epidemic, is one of the critical causes of chronic kidney disease (CKD). R-spondin1 (RSPO1) possessing the potential to activate Wnt/β-catenin pathway was reported to be elevated in circulation of obesity objects. However, the function of RSPO1 and the latent mechanism in obesity-related CKD are still left to be revealed. In the present study, renal RSPO1 expression was increased in mice fed on high-fat diet (HFD) for 12 weeks. Lentivirus-mediated RSPO1 knockdown partly recovered obesity-related metabolic symptoms, while distinctly remitted kidney dysfunction and renal fibrosis in obesity mice. In vitro, recombinant RSPO1 was found to elevate leucine-rich repeat-containing G protein coupled receptor 4 (LGR4) expression, promote Wnt/β-catenin signaling pathway activation, facilitate epithelial-mesenchymal transition (EMT) and increase collagen deposition in HK2 renal tubular cells. Such pro-fibrotic effect of RSPO1 was diminished by LGR4 siRNA in HK2 cells. In summary, we demonstrate that RSPO1/LGR4 axis is involved in obesity-related renal fibrosis at least through activating Wnt/β-catenin signaling pathway, providing a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Si Wu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
24
|
Xing X, Guo S, Liu Y, Kuang J, Huang Z, Wang X, Lu Q. Saxagliptin protects against diabetic nephropathy by inhibiting caspase 3/PARP-1-dependent nephrocyte apoptosis. Exp Ther Med 2021; 22:990. [PMID: 34345272 PMCID: PMC8311252 DOI: 10.3892/etm.2021.10422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Saxagliptin (SAX) can protect against tissue damage caused by diabetic nephropathy. However, whether this compound can restore kidney function, and its specific mechanism of action remain unclear. The present study explored the therapeutic effects and mechanisms of SAX. Male Wistar rats (8 weeks old) were randomly divided into the following groups: A control group (n=10); a group with streptozocin-induced diabetes mellitus (DM) treated with saline (n=20); and a group with streptozocin-induced DM treated with SAX (n=20). Following 20 weeks of treatment, renal function and the extent of renal damage were assessed based on histological staining using hematoxylin and eosin, periodic acid-Schiff and Masson's trichrome staining. The experimental results indicated that Streptozocin induction of DM led to thicker basement membranes in mesangial cells and a more abundant extracellular matrix. These changes were ameliorated following treatment with SAX. The data demonstrated that renal tissue and renal cell apoptosis were ameliorated significantly following treatment with SAX. Furthermore, the expression levels of the apoptotic genes poly (ADP-ribose) polymerase-1 (PARP-1) and caspase 3 were significantly decreased following treatment with SAX. Therefore, SAX may reduce the extent of renal apoptosis and pathological outcomes in diabetic nephropathy by downregulating the expression of caspase 3 and PARP-1 in the death receptor pathway of apoptosis.
Collapse
Affiliation(s)
- Xiaowei Xing
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuang Guo
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yusheng Liu
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jiangying Kuang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhiwei Huang
- Department of Hematology, The Qilu Children's Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xin Wang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
25
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021; 9:696542. [PMID: 34327204 PMCID: PMC8314387 DOI: 10.3389/fcell.2021.696542] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongrong Zhou
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
26
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Qishen Yiqi Dripping Pill Protects Against Diabetic Nephropathy by Inhibiting the Wnt/β-Catenin and Transforming Growth Factor-β/Smad Signaling Pathways in Rats. Front Physiol 2021; 11:613324. [PMID: 33679423 PMCID: PMC7933526 DOI: 10.3389/fphys.2020.613324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy is a severe microvascular complication of diabetes. Qishen Yiqi dripping pill (QYDP) has been reported to be a renal protective drug. However, the mechanisms remain unclear. This study was performed to investigate the mechanisms. In this study, Sprague-Dawley rats were injected with streptozotocin to generate a diabetes model. Diabetic rats were administered 150 or 300 mg/kg/day QYDP. After 8 weeks of treatment, serum creatinine, serum blood urea nitrogen, and 24-h urinary albumin were measured. Kidney histological staining and immunostaining were analyzed. Then, the renal tissue was analyzed with a genome expression array. The results showed that QYDP treatment reduced serum creatinine, blood urea nitrogen, and 24-h urinary albumin and improved kidney histology and fibrosis. The gene array revealed that the expression of 189 genes was increased, and that of 127 genes was decreased in the high dosage QYDP group compared with the diabetic group. Pathway and gene ontology analyses showed that the differentially expressed genes were involved in the Wnt/β-catenin and transforming growth factor-β (TGF-β)/Smad2 signaling pathways. QYDP reduced the renal Wnt1, catenin β1, Tgfb1, and Smad2 gene expression and β-catenin, TGF-β, Smad2, collagen I, α-smooth muscle actin, and fibronectin protein expression in diabetic rats. Our results provide the first evidence that QYDP performs its renal-protective function by inhibiting the Wnt/β-catenin and TGF-β/Smad2 signaling pathways in diabetic rats.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Zhang X, Zhang L, Chen Z, Li S, Che B, Wang N, Chen J, Xu C, Wei C. Exogenous spermine attenuates diabetic kidney injury in rats by inhibiting AMPK/mTOR signaling pathway. Int J Mol Med 2021; 47:27. [PMID: 33537831 PMCID: PMC7895520 DOI: 10.3892/ijmm.2021.4860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is the primary cause of end‑stage renal disease, which is closely associated with dysfunction of the podocytes, the main component of the glomerular filtration membrane; however, the exact underlying mechanism is unknown. Polyamines, including spermine, spermidine and putrescine, have antioxidant and anti‑aging properties that are involved in the progression of numerous diseases, but their role in DN has not yet been reported. The present study aimed to explore the role of polyamines in DN, particularly in podocyte injury, and to reveal the molecular mechanism underlying the protective effect of exogenous spermine. Streptozotocin intraperitoneal injection‑induced type 1 diabetic (T1D) rat models and high glucose (HG)‑stimulated podocyte injury models were established. It was found that in T1D rat kidneys and HG‑induced podocytes, ornithine decarboxylase (a key enzyme for polyamine synthesis) was downregulated, while spermidine/spermine N1‑acetyltransferase (a key enzyme for polyamines degradation) was upregulated, which suggested that reduction of the polyamine metabolic pool particularly decreased spermine content, is a major factor in DN progression. In addition, hyperglycemia can induce an increased rat kidney weight ratio, serum creatinine, urea, urinary albumin excretion and glomerular cell matrix levels, and promote mesangial thickening and loss or fusion of podocytes. The expression levels of podocyte marker proteins (nephrin, CD2‑associated protein and podocin) and autophagy‑related proteins [autophagy protein 5, microtube‑associated proteins 1A/1B light chain 3 (LC3)II/LC3I, Beclin 1 and phosphorylated (p)‑AMPK] were downregulated, while cleaved caspase‑3, P62 and p‑mTOR were increased. These changes could be improved by pretreatment with exogenous spermine or rapamycin (autophagic agonist). In conclusion, spermine may have the potential to prevent diabetic kidney injury in rats by promoting autophagy via regulating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Li Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Zhe Chen
- Department of Infectious Diseases, General Hospital for The Head Office of Agricultural Cultivation of Heilongjiang, Harbin, Heilongjiang 150088, P.R. China
| | - Siwei Li
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bingbing Che
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ningning Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Junting Chen
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
28
|
Shati AA, Alfaifi MY. Salidroside protects against diabetes mellitus-induced kidney injury and renal fibrosis by attenuating TGF-β1 and Wnt1/3a/β-catenin signalling. Clin Exp Pharmacol Physiol 2020; 47:1692-1704. [PMID: 32472701 DOI: 10.1111/1440-1681.13355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 01/09/2023]
Abstract
This study evaluated if the nephroprotective effect of Salidroside in type 1 diabetes mellitus (T1DM) involves modulation of Wnt/β-catenin signalling pathways. Control or Streptozotocin (STZ, 50 mg/kg, iv)-induced T1DM adult male Wister rats were treated with the vehicle and Salidroside (100 mg/kg, orally) for 8 weeks daily. As compared to T1DM-induced rats, Salidroside improved kidney structure, reduced urinary protein and albumin level, increased creatinine clearance, and suppressed renal fibrosis. It also decreased mRNA and protein levels of Wnt1, Wnt3, and TGF-β1, phosphorylation of Smad-3, total and nuclear levels of β-catenin, and levels and activities of cleaved caspase-3. Concomitantly, Salidroside significantly increased the levels of p-β-catenin (Ser33/37 /Thr41 ) and suppressed protein levels of Axin-2, fibronectin, and, mRNA and protein levels of collagen IIIa, the main targets of β-catenin. In both control and T1DM rats, Salidroside significantly lowered fasting glucose levels and reduced renal levels of reactive oxygen species (ROS) p-and GS3Kβ (Ser9) but significantly increased levels of SOD and GSH. In conclusion, Salidroside protected the kidney of rats against T1DM-induced injury and fibrosis by activating GS3Kβ-induced inhibition of Wnt1/Wnt3a β-catenin. This was associated with hypoglycaemic and antioxidant effects.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Department of Biology, College of Science, King Khalid University (KKU), Abha, Saudi Arabia
| |
Collapse
|
29
|
Wei Y, Yu J, Zhang X, Mu J, Zhang J, Zeng W, Feng B. ICAT acts as a Coactivator in Regulating PPARγ Transcriptional Activity in Mesangial Cells. Exp Clin Endocrinol Diabetes 2020; 129:365-373. [PMID: 32937668 DOI: 10.1055/a-0879-1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS Our study aims to explore the role of β-catenin interaction protein-1(ICAT) in regulating peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity in mesangial cells. The abnormal ICAT expression in mesangial cells under high glucose(HG) contributes to the development of diabetes and its complications such as diabetic nephropathy (DN). METHODS Human mesangial cells (HMCs) were cultured in either 5.5 (normal control) or 30 (high glucose) mmol/L glucose medium. Overexpression and knock-down of ICAT or β-catenin were carried out by transient transfection. PPARγ transcriptional activity was evaluated by luciferase assay. Protein-protein interactions were tested by Coimmunoprecipitation and GST-pull down assay. Cell phenotype transition of HMCs was detected by the expression level of α-SMA and fibronectin, as well as MTT assay. RESULTS High β-catenin protein expression but low ICAT was accompanied by low PPARγ transcriptional activity in HMCs cultured in HG. By using bioinformatics prediction, protein-protein and protein-DNA interaction experimental methods, ICAT and β-catenin were confirmed to act as coactivators in regulating PPARγ transcriptional activity. Overexpression of ICAT could mitigate the decrease of PPARγ transcriptional activity and partly relieve cell phenotype transition in HMCs. CONCLUSIONS β-catenin and ICAT interact as coactivator to modulate PPARγ transcriptional activation. In HMCs cultured in HG, the low expression of ICAT leads to low PPARγ transcriptional activation.
Collapse
Affiliation(s)
- Yi Wei
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiawei Yu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | - Jiao Mu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Zhang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Zeng
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bing Feng
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
30
|
Sheng L, Zhuang S. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front Physiol 2020; 11:569322. [PMID: 33041867 PMCID: PMC7522479 DOI: 10.3389/fphys.2020.569322] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is described as the process in which injured renal tubular epithelial cells undergo a phenotype change, acquiring mesenchymal characteristics and morphing into fibroblasts. Initially, it was widely thought of as a critical mechanism of fibrogenesis underlying chronic kidney disease. However, evidence that renal tubular epithelial cells can cross the basement membrane and become fibroblasts in the renal interstitium is rare, leading to debate about the existence of EMT. Recent research has demonstrated that after injury, renal tubular epithelial cells acquire mesenchymal characteristics and the ability to produce a variety of profibrotic factors and cytokines, but remain attached to the basement membrane. On this basis, a new concept of “partial epithelial-mesenchymal transition (pEMT)” was proposed to explain the contribution of renal epithelial cells to renal fibrogenesis. In this review, we discuss the concept of pEMT and the most recent findings related to this process, including cell cycle arrest, metabolic alternation of epithelial cells, infiltration of immune cells, epigenetic regulation as well as the novel signaling pathways that mediate this disturbed epithelial-mesenchymal communication. A deeper understanding of the role and the mechanism of pEMT may help in developing novel therapies to prevent and halt fibrosis in kidney disease.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
31
|
Zhang J, Dong XJ, Ding MR, You CY, Lin X, Wang Y, Wu MJY, Xu GF, Wang GD. Resveratrol decreases high glucose‑induced apoptosis in renal tubular cells via suppressing endoplasmic reticulum stress. Mol Med Rep 2020; 22:4367-4375. [PMID: 33000199 PMCID: PMC7533457 DOI: 10.3892/mmr.2020.11511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetic nephropathy (DN) is the second most common complication of diabetes mellitus after cardiovascular complications. Endoplasmic reticulum (ER) stress is known to be associated with DN. Resveratrol (RSV) exhibits anti-oxidative, anti-inflammatory and cytoprotective effects. Therefore, the aims of the present study were to investigate the role of RSV in the inhibition of high concentration glucose (HG)-induced apoptosis in renal tubular cells, as well as to examine the protective effects of RSV against diabetes-mediated renal damage via inhibition of ER stress in DN. RSV was orally administered to diabetic db/db mice once a day for 12 consecutive weeks. Compared with untreated db/db mice, treating db/db mice with RSV significantly decreased urine albumin excretion and the urine albumin to creatinine ratio, and attenuated renal histopathological injury. Furthermore, RSV treatment resulted in decreased expression levels of glucose-regulated protein of 78 kDa and C/EBP-homologous protein (two ER stress markers) and caspase12 in murine kidneys. RSV administration also inhibited the apoptosis of NRK-52E cells and activation of the ER stress signal transduction pathway induced by HG treatment in vitro. Collectively, the present results indicated that RSV protected renal tubular cells against HG-induced apoptosis in DN by suppressing ER stress.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiong-Jun Dong
- Department of Nephrology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Meng-Ru Ding
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wuhu, Anhui 241002, P.R. China
| | - Chun-Yu You
- Department of Nephrology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xin Lin
- Department of Nephrology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ying Wang
- School of Medical Imaging, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Miao-Jie-Yang Wu
- School of Medical Imaging, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Guo-Fei Xu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wuhu, Anhui 241002, P.R. China
| | - Guo-Dong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
32
|
Huang L, Lin T, Shi M, Chen X, Wu P. Liraglutide suppresses production of extracellular matrix proteins and ameliorates renal injury of diabetic nephropathy by enhancing Wnt/β-catenin signaling. Am J Physiol Renal Physiol 2020; 319:F458-F468. [PMID: 32715762 DOI: 10.1152/ajprenal.00128.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is involved in production of the extracellular matrix (ECM) by mesangial cells (MCs). Recent studies by us and others have demonstrated that glucagon-like peptide-1 receptor agonists (GLP-1RAs) have protective effects against diabetic nephropathy. The purpose of the present study was to investigate whether the Wnt/β-catenin signaling in MCs contributes to GLP-1RA-induced inhibition of ECM accumulation and mitigation of glomerular injury in diabetic nephropathy. In cultured human mesangial cells, liraglutide (a GLP-1RA) treatment significantly reduced high glucose (HG)-stimulated production of fibronectin, collagen type IV, and α-smooth muscle actin, and the liraglutide effects were significantly attenuated by XAV-939, a selective inhibitor of Wnt/β-catenin signaling. Furthermore, HG treatment significantly decreased protein abundance of Wnt4, Wnt5a, phospho-glycogen synthase kinase-3β, and β-catenin. These HG effects on Wnt/β-catenin signaling proteins were significantly blunted by liraglutide treatment. For in vivo experiments, we administered liraglutide (200 μg·kg-1·12 h-1) by subcutaneous injection to streptozocin-induced type 1 diabetic rats for 8 wk. Administration of liraglutide significantly improved elevated blood urine nitrogen, serum creatinine, and urinary albumin excretion rate and alleviated renal hypertrophy, mesangial expansion, and glomerular fibrosis in type 1 diabetic rats, whereas blood glucose level and body weight did not have significant changes. Consistent with the in vitro experiments, liraglutide treatment significantly reduced the diabetes-induced increases in glomerular fibronectin, collagen type IV, and α-smooth muscle actin and decreases in glomerular Wnt/β-catenin signaling proteins. These results suggest that liraglutide alleviated glomerular ECM accumulation and renal injury in diabetic nephropathy by enhancing Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Linjing Huang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Tingting Lin
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Meizhen Shi
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Xiuqing Chen
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Peiwen Wu
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| |
Collapse
|
33
|
Wang S, Nie P, Lu X, Li C, Dong X, Yang F, Luo P, Li B. Nrf2 participates in the anti-apoptotic role of zinc in Type 2 diabetic nephropathy through Wnt/β-catenin signaling pathway. J Nutr Biochem 2020; 84:108451. [PMID: 32795642 DOI: 10.1016/j.jnutbio.2020.108451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/11/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Zinc (Zn), as an essential trace element, has been approved to serve many roles in diabetic studies. Also Zn deficiency will aggravate renal damage in diabetes through suppression of nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and function. The purpose of this study was to illustrate the role of Zn in renal apoptosis in diabetes and whether Nrf2 participated in the process. Type 2 diabetes mice model was induced by a single dose of streptozotocin (STZ) injection after high-fat diet (HFD) feeding for 3 months, then the mice were given diets supplemented with different concentrations of Zn (control, 30 ppm; low-concentration, 0.85 ppm). After 12-week treatment, morphology and associated protein expressions were examined. The results showed that low Zn diet significantly aggravated the level of renal apoptosis during diabetes, performed as the upregulation of caspase-3 expression. In addition, either low Zn diet or diabetes or both dramatically decreased the expression of Nrf2 and P-AKT in kidney. Moreover, the expression of β-catenin in kidney was increased markedly in diabetic groups. Mechanistic study applying human renal tubular epithelial cells (HK11) confirmed the role of Nrf2, as silencing Nrf2 expression abolished Zn supplementation protection against high sugar + high fat + low Zn-induced apoptosis and downregulation of β-catenin expression. All these results suggest that Nrf2 plays a key role in Zn protection against Type 2 diabetes induced renal apoptosis, which might be through Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Songyan Wang
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China; Department of Nephropathy, Jilin Province People's Hospital, 1183 Gongnong Road, Changchun 130021, China.
| | - Ping Nie
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Xiaodan Lu
- Diagnostics Medical Center, Jilin Province People's Hospital, 1183 Gongnong Road, Changchun 130021, China.
| | - Chunguang Li
- Department of Surgery, Changchun Traditional Chinese Medicine Hospital, 1913 Taibei Street, Changchun 130000, China.
| | - Xiaoming Dong
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Fan Yang
- Department of Nephropathy, Jilin Province People's Hospital, 1183 Gongnong Road, Changchun 130021, China.
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Bing Li
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
34
|
Resham K, Khare P, Bishnoi M, Sharma SS. Neuroprotective effects of isoquercitrin in diabetic neuropathy via Wnt/β-catenin signaling pathway inhibition. Biofactors 2020; 46:411-420. [PMID: 31960520 DOI: 10.1002/biof.1615] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy is a peripheral nervous system disorder affecting both somatic and autonomic components of nervous system. A growing body of evidence have depicted that high glucose levels can induce activation of the Wnt/β-catenin pathway, however there are no studies targeting this pathway in DN. The intent of the present study was to investigate the effects of isoquercitrin (ISQ), a Wnt/β-catenin signaling pathway inhibitor, in diabetic neuropathy. Streptozotocin (50 mg/kg, i.p.) was used to induce diabetes in rats. 6-week diabetic rats were treated intrathecally with ISQ at 10 and 30 μM doses for 3 days. Furthermore, to confirm the results of the intrathecal study, a 2-week intraperitoneal treatment of ISQ was given to diabetic rats. After 6 weeks, diabetic rats developed neuropathy which was evident from reduced thermal and mechanical hyperalgesia thresholds and significant deterioration in motor nerve conduction velocity (MNCV), nerve blood flow (NBF). Sciatic nerves of diabetic neuropathy rats showed increased expression of Wnt pathway proteins namely β-catenin, c-myc and MMP2. Treatment with ISQ, both intrathecally (10 and 30 μM) and intraperitoneally (10 mg/kg), significantly ameliorated the alterations in behavioral pain thresholds and improved functional parameters in diabetic rats. Moreover, ISQ also downregulated the expression of Wnt/β-catenin pathway proteins significantly in diabetic rats as compared to vehicle-treated diabetic rats. Results of the present study suggest the neuroprotective potential of ISQ in the treatment of DN via inhibition of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Kahkashan Resham
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Pragyanshu Khare
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Punjab, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
35
|
Shotorbani PY, Chaudhari S, Tao Y, Tsiokas L, Ma R. Inhibitor of myogenic differentiation family isoform a, a new positive regulator of fibronectin production by glomerular mesangial cells. Am J Physiol Renal Physiol 2020; 318:F673-F682. [PMID: 31984795 PMCID: PMC7099507 DOI: 10.1152/ajprenal.00508.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Overproduction of extracellular matrix proteins, including fibronectin by mesangial cells (MCs), contributes to diabetic nephropathy. Inhibitor of myogenic differentiation family isoform a (I-mfa) is a multifunctional cytosolic protein functioning as a transcriptional modulator or plasma channel protein regulator. However, its renal effects are unknown. The present study was conducted to determine whether I-mfa regulated fibronectin production by glomerular MCs. In human MCs, overexpression of I-mfa significantly increased fibronectin abundance. Silencing I-mfa significantly reduced the level of fibronectin mRNA and blunted transforming growth factor-β1-stimulated production of fibronectin. We further found that high glucose increased I-mfa protein content in a time course (≥48 h) and concentration (≥25 mM)-dependent manner. Although high glucose exposure increased I-mfa at the protein level, it did not significantly alter transcripts of I-mfa in MCs. Furthermore, the abundance of I-mfa protein was significantly increased in the renal cortex of rats with diabetic nephropathy. The I-mfa protein level was also elevated in the glomerulus of mice with diabetic kidney disease. However, there was no significant difference in glomerular I-mfa mRNA levels between mice with and without diabetic nephropathy. Moreover, H2O2 significantly increased I-mfa protein abundance in a dose-dependent manner in cultured human MCs. The antioxidants polyethylene glycol-catalase, ammonium pyrrolidithiocarbamate, and N-acetylcysteine significantly blocked the high glucose-induced increase of I-mfa protein. Taken together, our results suggest that I-mfa, increased by high glucose/diabetes through the production of reactive oxygen species, stimulates fibronectin production by MCs.
Collapse
Affiliation(s)
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
36
|
Zhao C, Gao J, Li S, Liu Q, Hou X, Xing X, Wang D, Sun M, Wang S, Luo Y. Cyclin G2 regulates canonical Wnt signalling via interaction with Dapper1 to attenuate tubulointerstitial fibrosis in diabetic nephropathy. J Cell Mol Med 2020; 24:2749-2760. [PMID: 31978940 PMCID: PMC7077553 DOI: 10.1111/jcmm.14946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclin G2 (CCNG2) is an atypical cyclin that inhibits cell cycle progression and is often dysregulated in human cancers. Cyclin G2 in the occurrence and development of diabetic nephropathy (DN), one of the most severe diabetic complications, has not been fully identified. In this study, we investigated the function and regulatory mechanism of cyclin G2 in DN. In vivo studies revealed that a deficiency of cyclin G2 significantly increased albuminuria and promoted tubulointerstitial fibrosis in established DN. Cyclin G2 regulated the expression of fibrosis‐related proteins via the canonical Wnt signalling pathway in renal tubular epithelial cells. Moreover, the binding of cyclin G2 to Dapper1 (Dpr1/DACT1), a protein involved in Wnt signalling, decreased the phosphorylation of Dpr1 at Ser762 by casein kinase 1 (CK1) and suppressed the Wnt signalling pathway. These findings reveal that cyclin G2 can protect against renal injury and fibrosis associated with DN and, thus, is a new target for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Sen Li
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiaoyu Hou
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Danning Wang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Manni Sun
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Shusen Wang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
37
|
Cai J, Liu Z, Huang X, Shu S, Hu X, Zheng M, Tang C, Liu Y, Chen G, Sun L, Liu H, Liu F, Cheng J, Dong Z. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression. Kidney Int 2019; 97:106-118. [PMID: 31787254 DOI: 10.1016/j.kint.2019.08.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 01/20/2023]
Abstract
Fibrosis is a common pathologic pathway of progressive kidney disease involving complex signaling networks. The deacetylase sirtuin 6 (sirt6) was recently implicated in kidney injury. However, it remains elusive whether and how sirt6 contributes to the regulation of kidney fibrosis. Here, we demonstrate that sirt6 protects against kidney interstitial fibrosis through epigenetic regulation of β-catenin signaling. Sirt6 is markedly upregulated during fibrogenesis following obstructed nephropathy and kidney ischemia-reperfusion injury. Pharmacological inhibition of sirt6 deacetylase activity aggravates kidney fibrosis in obstructed nephropathy. Consistently, knockdown of sirt6 in mouse kidney proximal tubular epithelial cells aggravates transforming growth factor-β-induced fibrosis in vitro. Mechanistically, sirt6 deficiency results in augmented expression of the downstream target proteins of β-catenin signaling. We further show that sirt6 interacts with β-catenin during transforming growth factor-β treatment and binds to the promoters of β-catenin target genes, resulting in the deacetylation of histone H3K56 to prevent the transcription of fibrosis-related genes. Thus, our data reveal the anti-fibrotic function of sirt6 by epigenetically attenuating β-catenin target gene expression.
Collapse
Affiliation(s)
- Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Xian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqun Shu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Xiaoru Hu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Meiling Zheng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| |
Collapse
|
38
|
Hernandez-Diaz I, Pan J, Ricciardi CA, Bai X, Ke J, White KE, Flaquer M, Fouli GE, Argunhan F, Hayward AE, Hou FF, Mann GE, Miao RQ, Long DA, Gnudi L. Overexpression of Circulating Soluble Nogo-B Improves Diabetic Kidney Disease by Protecting the Vasculature. Diabetes 2019; 68:1841-1852. [PMID: 31217174 PMCID: PMC6706276 DOI: 10.2337/db19-0157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Damage to the vasculature is the primary mechanism driving chronic diabetic microvascular complications such as diabetic nephropathy, which manifests as albuminuria. Therefore, treatments that protect the diabetic vasculature have significant therapeutic potential. Soluble neurite outgrowth inhibitor-B (sNogo-B) is a circulating N-terminus isoform of full-length Nogo-B, which plays a key role in vascular remodeling following injury. However, there is currently no information on the role of sNogo-B in the context of diabetic nephropathy. We demonstrate that overexpression of sNogo-B in the circulation ameliorates diabetic kidney disease by reducing albuminuria, hyperfiltration, and abnormal angiogenesis and protecting glomerular capillary structure. Systemic sNogo-B overexpression in diabetic mice also associates with dampening vascular endothelial growth factor-A signaling and reducing endothelial nitric oxide synthase, AKT, and GSK3β phosphorylation. Furthermore, sNogo-B prevented the impairment of tube formation, which occurred when human endothelial cells were exposed to sera from patients with diabetic kidney disease. Collectively, these studies provide the first evidence that sNogo-B protects the vasculature in diabetes and may represent a novel therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Ivan Hernandez-Diaz
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Jiaqi Pan
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Carlo Alberto Ricciardi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Xiaoyan Bai
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianting Ke
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Kathryn E White
- Electron Microscopy Unit, Newcastle University, Newcastle upon Tyne, U.K
| | - Maria Flaquer
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Georgia E Fouli
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Fulye Argunhan
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Anthea E Hayward
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Fan Fan Hou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Giovanni E Mann
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | | | - David A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, U.K
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, U.K.
| |
Collapse
|
39
|
Abstract
Developmental signaling pathways control a vast array of biological processes during embryogenesis and in adult life. The WNT pathway was discovered simultaneously in cancer and development. Recent advances have expanded the role of WNT to a wide range of pathologies in humans. Here, we discuss the WNT pathway and its role in human disease and some of the advances in WNT-related treatments.
Collapse
|
40
|
Gu P, Wang W, Yao Y, Xu Y, Wang L, Zang P, Ma J, Yang C, Liang J, Lu B, Shao J. Increased Circulating Chemerin in Relation to Chronic Microvascular Complications in Patients with Type 2 Diabetes. Int J Endocrinol 2019; 2019:8693516. [PMID: 31379940 PMCID: PMC6662434 DOI: 10.1155/2019/8693516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2DM) is a global epidemic and increases mortality due to its vascular complications. Chemerin has been found to exert a major role in glucose and lipid metabolism. The aim of this study was to explore the correlation between plasma chemerin levels and microangiopathy in patients with T2DM. METHODS A total of 598 T2DM patients were classified into two groups: with and without microvascular complications. Anthropometric parameters and blood pressure were taken. The amounts of glycosylated hemoglobin, glucose, lipid profiles, creatinine, and chemerin concentrations in the blood were determined. The presence and severity of nephropathy, retinopathy, and neuropathy were also evaluated by specific tests. RESULTS Plasma levels of chemerin in diabetic subjects with microvascular complications were markedly elevated compared to those without. The number of microvascular complications increased with high plasma chemerin levels. Patients with high chemerin levels had an increased incidence of nephropathy and retinopathy. Furthermore, the chemerin plasma concentrations increased with the progression of diabetic nephropathy with highest values in macroalbuminuria groups. In contrast, no significant difference was observed in plasma chemerin levels between subjects with and without peripheral neuropathy. Pearson correlation analysis showed that plasma chemerin levels were positively related to duration of diabetes, serum creatinine, and 24-hour urine albumin excretion, even after multiple adjustments. Using logistic regression analysis, plasma chemerin concentrations were independently associated with the presence of nephropathy and retinopathy, not neuropathy. CONCLUSION This study elucidated a positive correlation between increased chemerin levels and the development of some subtypes of diabetic microangiopathy.
Collapse
Affiliation(s)
- Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Yao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yixin Xu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Liping Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Pu Zang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jian Ma
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Cuihua Yang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Junya Liang
- Hypertension Research Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
41
|
Wang Y, Fang Q, Jin Y, Liu Z, Zou C, Yu W, Li W, Shan X, Chen R, Khan Z, Liang G. Blockade of myeloid differentiation 2 attenuates diabetic nephropathy by reducing activation of the renin-angiotensin system in mouse kidneys. Br J Pharmacol 2019; 176:2642-2657. [PMID: 30959575 PMCID: PMC6592858 DOI: 10.1111/bph.14687] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Both innate immunity and the renin-angiotensin system (RAS) play important roles in the pathogenesis of diabetic nephropathy (DN). Myeloid differentiation factor 2 (MD2) is a co-receptor of toll-like receptor 4 (TLR4) in innate immunity. While TLR4 is involved in the development of DN, the role of MD2 in DN has not been characterized. It also remains unclear whether the MD2/TLR4 signalling pathway is associated with RAS activation in diabetes. EXPERIMENTAL APPROACH MD2 was blocked using siRNA or the low MW inhibitor, L6H9, in renal proximal tubular cells (NRK-52E cells) exposed to high concentrations of glucose (HG). In vivo, C57BL/6 and MD2-/- mice were injected with streptozotocin to induce Type 1 diabetes and nephropathy. KEY RESULTS Inhibition of MD2 by genetic knockdown or the inhibitor L6H9 suppressed HG-induced expression of ACE and angiotensin receptors and production of angiotensin II in NRK-52E cells, along with decreased fibrosis markers (TGF-β and collagen IV). Inhibition of the MD2/TLR4-MAPKs pathway did not affect HG-induced renin overproduction. In vivo, using the streptozotocin-induced diabetic mice, MD2 was overexpressed in diabetic kidney. MD2 gene knockout or L6H9 attenuated renal fibrosis and dysfunction by suppressing local RAS activation and inflammation. CONCLUSIONS AND IMPLICATIONS Hyperglycaemia activated the MD2/TLR4-MAPKs signalling cascade to induce renal RAS activation, leading to renal fibrosis and dysfunction. Pharmacological inhibition of MD2 may be considered as a therapeutic approach to mitigate DN and the low MW inhibitor L6H9 could be a candidate for such therapy.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chalcone/pharmacology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetic Nephropathies/chemically induced
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/immunology
- Kidney/drug effects
- Kidney/immunology
- Lymphocyte Antigen 96/antagonists & inhibitors
- Lymphocyte Antigen 96/deficiency
- Lymphocyte Antigen 96/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Small Interfering/pharmacology
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/immunology
- Streptozocin
Collapse
Affiliation(s)
- Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yiyi Jin
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhoudi Liu
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chunpeng Zou
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weihui Yu
- Department of Endocrinology, The First Affiliated Yueqing HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xiaoou Shan
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Ruijie Chen
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zia Khan
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
42
|
Guo Q, Zhong W, Duan A, Sun G, Cui W, Zhuang X, Liu L. Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: An unresolved issue. Pharmacol Res 2019; 144:151-157. [PMID: 30935943 DOI: 10.1016/j.phrs.2019.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
In recent years, the Wnt/β-catenin signaling has gained tremendous attention due to its ability to modulate a number of diseases including diabetic nephropathy. Studies have shown that there is decrease in the secretion of Wnt proteins including Wnt4, 5a and Wnt 6 during high glucose concentration or diabetic conditions, which leads to decreased translocation of β-catenin to nucleus. The down-regulation of Wnt/β-catenin signaling leads to detrimental effects on kidney including increased apoptosis of mesangial cells and increased deposition of fibrous tissue in mesangium. The pharmacological modulators such as spironolactone, NO donor and antioxidant are shown to produce beneficial effects in diabetic nephropathy by up regulating the expression of Wnt proteins and activation of diabetes-induced suppressed Wnt/β-catenin signaling. On the other hand, it is documented that diabetes leads to overactivation of Wnt1/β-catenin signaling, which promotes podocyte injury, induce epithelial-mesenchymal transition of podocytes along with renal injury and fibrosis. Accordingly, different interventions aimed to suppress overactivated Wnt/β-catenin signaling are reported to improve the condition and symptoms associated with diabetic nephropathy. The present review discusses the dual role of Wnt/beta-catenin signaling in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Qiaoyan Guo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Wei Zhong
- Department of Ophthalmology, The China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Aosong Duan
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, 130021,China.
| | - Guanggong Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Xiaohua Zhuang
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Lihua Liu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
43
|
Wang Q, Ren D, Li Y, Xu G. Klotho attenuates diabetic nephropathy in db/db mice and ameliorates high glucose-induced injury of human renal glomerular endothelial cells. Cell Cycle 2019; 18:696-707. [PMID: 30784349 DOI: 10.1080/15384101.2019.1580495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glomerular endothelial cell injury plays an important role in the development and progression of diabetic nephropathy (DN). The expression and function of klotho in glomerular endothelial cells remain unclear. Thus, this study aimed to investigate the expression and the functional role of klotho in DN progression in mice and in high glucose (HG)-induced cell injury of human renal glomerular endothelial cells (HRGECs) and the underlying mechanism. In this study, HRGECs were cultured with media containing HG to induce endothelial cell injury and db/db mice were used as DN model mice. Klotho was overexpressed or knocked down in HRECs to evaluate its role in HG-induced HRGECs injury. klotho-overexpressing adenovirus (rAAV-klotho) was injected into db/db mice via the tail vein to further validate the protective effect of klotho in DN. Decreased klotho expression was observed in DN patients, DN mice, and HG-exposed HRGECs. Furthermore, klotho overexpression significantly abolished the HG-induced HRGECs injury and activation of Wnt/β-catenin pathway and RAAS. In contrast, klotho knockdown exerted the opposite effects. Moreover, klotho attenuated diabetic nephropathy in db/db mice, which was also associated with inhibition of the Wnt/β-catenin pathway and RAAS. In conclusion, klotho attenuates DN in db/db mice and ameliorates HG-induced injury of HRGECs.
Collapse
Affiliation(s)
- Qi Wang
- a Department of Nephrology , the Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Daijin Ren
- a Department of Nephrology , the Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Yebei Li
- a Department of Nephrology , the Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Gaosi Xu
- a Department of Nephrology , the Second Affiliated Hospital of Nanchang University , Nanchang , China
| |
Collapse
|
44
|
Han Y, Sun T, Han Y, Lin L, Liu C, Liu J, Yan G, Tao R. Human umbilical cord mesenchymal stem cells implantation accelerates cutaneous wound healing in diabetic rats via the Wnt signaling pathway. Eur J Med Res 2019; 24:10. [PMID: 30736851 PMCID: PMC6367839 DOI: 10.1186/s40001-019-0366-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Difficulty in wound healing is one common complication of diabetes mellitus. The study explored whether the therapeutic effect of human umbilical cord mesenchymal stem cells (hUCMSCs) on diabetic ulcer wound was enhanced by the activation of the Wnt signaling pathway. METHODS Rat diabetic model was established by intraperitoneal injection of Streptozotocin (STZ). hUCMSCs were purified and seeded on the collagen-chitosan laser drilling acellular dermal matrix (CCLDADM) scaffold, which was subsequently implanted into the cutaneous wound of normal and diabetic rats, followed by daily injection of Wnt signaling pathway agonist (Wnt3a) or antagonist (sFRP3) at the edge of the scaffold. Wound healing was checked on days 7, 14, and 21, and the fibrous tissue deposition, capillaries, and epidermal regeneration at the wound were examined by hematoxylin-eosin staining. The hUCMSCs-CCLDADM scaffold was cultured in vitro and treated with Wnt3a or sFRP3, followed by evaluation of cell proliferation, cell proliferation rate, survival status, and altered protein levels in the Wnt signaling pathway using BrdU staining, CCK-8 assay, live/dead staining, and Western blotting, respectively. RESULTS On days 7 and 14 postoperatively, the speed of wound healing was significantly lower in diabetic rats than that in normal control rats. This phenomenon was significantly improved by the activation of the Wnt signaling pathway that also elevated the fibrous protein deposition and the abundance of capillary in the granulation tissue. Conversely, blockade of Wnt signaling slowed the healing of skin wound in diabetic rats. The activation of Wnt signaling pathway promoted the proliferation and differentiation and decreased the apoptosis of hUCMSCs, thereby elevating the number of living hUCMSCs on the CCLDADM scaffold, while the suppression exerted a contrary effect. CONCLUSION The activation of the Wnt signaling pathway promotes the healing of diabetic skin wound by the regulation of proliferation and differentiation of hUCMSCs on the CCLDADM scaffold.
Collapse
Affiliation(s)
- Yanfu Han
- Department of Plastic Surgery, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyilu, Yangfangdian Haidian District, 100038, Beijing, People's Republic of China
| | - Tianjun Sun
- Department of Burn and Plastic Surgery, Hainan Branch of People's Liberation Army General Hospital, Haitangwan, Sanya, People's Republic of China
| | - Yanqing Han
- School of Electrical and Information Engineering, Wuhan Institute of Technology, 366 Huquan, Wuhan, People's Republic of China
| | - Lingling Lin
- Department of Burn and Plastic Surgery, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, People's Republic of China
| | - Chang Liu
- Department of Plastic Surgery, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyilu, Yangfangdian Haidian District, 100038, Beijing, People's Republic of China
| | - Jing Liu
- Department of Plastic Surgery, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyilu, Yangfangdian Haidian District, 100038, Beijing, People's Republic of China
| | - Guangzhi Yan
- Department of Burn and Plastic Surgery, Harrison International Peace Hospital, 180 Renmin East Road, Hengshui, Hebei, People's Republic of China.
| | - Ran Tao
- Department of Plastic Surgery, PLA General Hospital, 28 Fuxing Road, Beijing, People's Republic of China.
| |
Collapse
|
45
|
Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease. Clin Sci (Lond) 2018; 132:2407-2422. [PMID: 30348828 DOI: 10.1042/cs20180702] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
Emerging studies suggest that lipid accumulates in the kidneys during diabetic kidney disease (DKD). However, the correlation between ectopic lipid accumulation with tubular damage has not been thoroughly elucidated to date. Using Oil Red staining, lipid accumulation was observed in the kidneys of type 2 DKD patients (classes II-III) and db/db mice compared with the control and was predominantly located in the proximal tubular compartment. Immunohistochemistry (IHC) staining showed that the intensity of adipose differentiation related protein (ADRP) and sterol regulatory element binding protein-1 (SREBP-1) was clearly up-regulated, which was positively correlated with the tubulointerstitial damage score and inflammation. Furthermore, the urine ADRP content significantly increased in DKD patients compared with the control, which positively correlated with abnormal lipid metabolism, serum creatinine, urine N-acetyl-β-glucosaminidase (NAG), albumin excretion (albumin-to-creatinine ratio (ACR)), and tumor necrosis factor-α (TNF-α) expression. However, there was no significant difference observed in plasma ADRP levels. In addition, the expression of SREBP-1 protein was dramatically increased in peripheral blood mononuclear cells (PBMCs) isolated from DKD patients, which was also tightly correlated with urine NAG, ACR, and TNF-α levels. In vitro studies demonstrated increased ADRP and SREBP-1 expression accompanied by lipid accumulation in HK-2 cells cultured in high glucose (HG). HG induced high levels of TNF-α expression, which was partially blocked by transfection of ADRP siRNA or SREBP-1 siRNA. These data indicated that ADRP and SREBP-1 are crucial factors that mediate lipid accumulation with tubular damage and inflammation in DKD, and ectopic lipid accumulation may serve as a novel therapeutic target for amelioration of tubular injury in DKD.
Collapse
|
46
|
Salvia miltiorrhiza protects against diabetic nephropathy through metabolome regulation and wnt/β-catenin and TGF-β signaling inhibition. Pharmacol Res 2018; 139:26-40. [PMID: 30395946 DOI: 10.1016/j.phrs.2018.10.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy (DN) is a complication of diabetes that is caused by uncontrolled high blood sugar. It has been reported that Salvia miltiorrhiza (SM) possesses the ability to prevent kidney damage, although the mechanisms remain unclear. The study was to investigate whether and how SM improved DN injury via regulation of metabolome and the molecular mechanisms. In this study, SD rats were fed a high glucose / high fat diet accompanied by 0.5% glucose water. Three weeks later, the rats were given one intraperitoneal injection of 30 mg/kg STZ each day for three days for DN model. The biochemical indicators and metabolomics of plasma, urine and renal tissue were analyzed. Then the western blotting analysis of renal tissue and glomerular mesangial cells were investigated. The results showed that Salvia miltiorrhiza extracts improved the renal injury and regulation of abnormal glycolipid metabolism. The metabolites in serum, urine and renal tissues have been changed significantly. The involved metabolic pathways mainly include phospholipid, arachidonic acid, and pyrimidine metabolisms. Meanwhile, SM inhibited the relative expression levels of wnt4, β-catenin and TGF-β in renal tissue and high-glucose induced glomerular mesangial cells.
Collapse
|
47
|
Cyclin G2 Suppresses Glomerulosclerosis by Regulating Canonical Wnt Signalling. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6938482. [PMID: 30420966 PMCID: PMC6215590 DOI: 10.1155/2018/6938482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022]
Abstract
Recent data has shown that cyclin G2 (CCNG2) is an atypical cyclin that inhibits cell cycle progression and is often dysregulated in human cancers. The involvement of cyclin G2 in the occurrence and development of diabetic nephropathy (DN) has not been determined. In the present study, we conducted cyclin G2 knockout studies to determine whether this protein regulates glomerulosclerosis in DN mice. We found that cyclin G2 regulated the expression of renal glomerulosclerosis-related proteins via the canonical Wnt signalling pathway in glomerular mesangial cells. A cyclin G2 deficiency resulted in more severe renal injury in DN mice. These findings provided new insight into the pathogenesis of DN, revealing that cyclin G2 has a protective role in glomerulosclerosis and is a potential new target for the prevention and treatment of DN.
Collapse
|
48
|
Zhuang Y, Niu F, Liu D, Sun J, Zhang X, Zhang J, Guo S. Associations of TCF7L2 gene polymorphisms with the risk of diabetic nephropathy: A case-control study. Medicine (Baltimore) 2018; 97:e8388. [PMID: 30290587 PMCID: PMC6200515 DOI: 10.1097/md.0000000000008388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of the study was to explore the correlation between rs7903146 and rs290487 polymorphisms in transcription factor 7-like 2 (TCF7L2) gene and diabetic nephropathy (DN) in Chinese Han population.Polymerase chain reaction-restriction fragment length polymorphism was used to determine genotypes of TCF7L2 polymorphisms in 90 patients with DN and 96 diabetes patients without DN. The linkage disequilibrium (LD) and haplotype analysis were performed with haploview software. Hardy-Weinberg equilibrium was assessed in the control group based on the genotype distributions of TCF7L2 polymorphisms. The genotype, allele, and haplotype distribution differences between the case and control groups were analyzed by chi-squared test, and odds ratio (OR) and 95% confidence interval (CI) were used to indicate the relative risk of DN.People carrying TT genotype of rs7903146 were more easily to be attacked by DN than CC genotype carriers (P = .02, OR = 4.26, 95% CI = 1.12-16.24). Meanwhile, T allele also showed 1.85 times risk to suffer from DN compared with C allele (OR = 1.85, 95% CI = 1.02-3.10). However, there was no significant difference in genotypes and alleles frequencies of rs290487 between 2 groups. The strong LD existed between the 2 single nucleotide polymorphisms and haplotype T-T (rs7903146-rs290487) increased the susceptibility to DN (OR = 2.63, 95% CI = 1.31-5.25).TCF7L2 rs7903146 polymorphism may be associated with the susceptibility to DN in Chinese Han population, but rs290487 is not. Additionally, haplotype is also a risk factor for DN.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Zhang
- Department of Infectious Diseases, Linyi Central Hospital, Linyi, Shandong, China
| | | |
Collapse
|
49
|
Dai X, Su S, Cai H, Wei D, Yan H, Zheng T, Zhu Z, Shang EX, Guo S, Qian D, Duan JA. Protective Effects of Total Glycoside From Rehmannia glutinosa Leaves on Diabetic Nephropathy Rats via Regulating the Metabolic Profiling and Modulating the TGF-β1 and Wnt/β-Catenin Signaling Pathway. Front Pharmacol 2018; 9:1012. [PMID: 30271343 PMCID: PMC6143134 DOI: 10.3389/fphar.2018.01012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
Rehmannia glutinosa Libosch (RG), is officially listed in the Chinese Pharmacopoeia and is widely used in China. The leaves of RG (LR) is an important vegetative organ of the plant. At present, the total glycosides of RG (TLR) were extracted from RG, and developed a national second class of new drugs to the Dihuangye total glycoside capsule (DTG). Additionally, DTG has the effect of nourishing yin and tonifying kidney, promoting blood circulation and blood cooling, and applicable to chronic glomerulonephritis mild to Qi and Yin Deficiency. Moreover, diabetic nephropathy (DN) rats model was induced by intraperitoneal injection of a small dose of streptozotocin (45 mg/kg) and high-fat diet and plus 5% glucose drinking water. Over 15 days, after oral administration TLR and DTG in DN rats, samples from serum, urine and kidney were collected for biochemical indicators measurements, pathological analysis, western blotting and metabolomics. Therefore, the analytical results of biochemical indicators, histopathological observations and western blotting showed that TLR and DTG exhibited a significant effect in renal protection. And 27 endogenous metabolites (12 in serum and 15 in urine) could be tentatively identified in the process of DN in rats using metabolomics method. Those endogenous metabolites were chiefly involved in sphingolipid metabolism; pentose, glucuronate interconversion; terpenoid backbone biosynthesis; purine metabolism and retinol metabolism. After drug intervention, these endogenous metabolites turned back to normal level some extent (P < 0.05). Furthermore, TLR and DTG prevent high glucose-induced glomerular mesangial cells (GMCs) by inhibiting TGF-β1 and Wnt/β-catenin signaling pathway, providing a powerful supports to develop a new therapeutic agent for DN. This study paved the way for further exploration of the pathogenesis of DN, early diagnosis and the evaluation of curative effect.
Collapse
Affiliation(s)
- Xinxin Dai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongdie Cai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyao Zheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
50
|
Daehn IS. Glomerular Endothelial Cell Stress and Cross-Talk With Podocytes in Early [corrected] Diabetic Kidney Disease. Front Med (Lausanne) 2018; 5:76. [PMID: 29629372 PMCID: PMC5876248 DOI: 10.3389/fmed.2018.00076] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the major causes of morbidity and mortality in diabetic patients and also the leading single cause of end-stage renal disease in the United States. A large proportion of diabetic patients develop DKD and others don't, even with comparable blood glucose levels, indicating a significant genetic component of disease susceptibility. The glomerulus is the primary site of diabetic injury in the kidney, glomerular hypertrophy and podocyte depletion are glomerular hallmarks of progressive DKD, and the degree of podocyte loss correlates with severity of the disease. We know that chronic hyperglycemia contributes to both microvascular and macrovascular complications, as well as podocyte injury. We are beginning to understand the role of glomerular endothelial injury, as well as the involvement of reactive oxygen species and mitochondrial stress, which play a direct role in DKD and in other diabetic complications. There is, however, a gap in our knowledge that links genetic susceptibility to early molecular mechanisms and proteinuria in DKD. Emerging research that explores glomerular cell's specific responses to diabetes and cell cross-talk will provide mechanistic clues that underlie DKD and provide novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Ilse Sofia Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York City, NY, United States
| |
Collapse
|