1
|
Long M, Zheng CW, Roldan MA, Zhou C, Rittmann BE. Co-Removal of Perfluorooctanoic Acid and Nitrate from Water by Coupling Pd Catalysis with Enzymatic Biotransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11514-11524. [PMID: 38757358 DOI: 10.1021/acs.est.3c10377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
PFAS (poly- and per-fluorinated alkyl substances) represent a large family of recalcitrant organic compounds that are widely used and pose serious threats to human and ecosystem health. Here, palladium (Pd0)-catalyzed defluorination and microbiological mineralization were combined in a denitrifying H2-based membrane biofilm reactor to remove co-occurring perfluorooctanoic acid (PFOA) and nitrate. The combined process, i.e., Pd-biofilm, enabled continuous removal of ∼4 mmol/L nitrate and ∼1 mg/L PFOA, with 81% defluorination of PFOA. Metagenome analysis identified bacteria likely responsible for biodegradation of partially defluorinated PFOA: Dechloromonas sp. CZR5, Kaistella koreensis, Ochrobacterum anthropic, and Azospira sp. I13. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and metagenome analyses revealed that the presence of nitrate promoted microbiological oxidation of partially defluorinated PFOA. Taken together, the results point to PFOA-oxidation pathways that began with PFOA adsorption to Pd0, which enabled catalytic generation of partially or fully defluorinated fatty acids and stepwise oxidation and defluorination by the bacteria. This study documents how combining catalysis and microbiological transformation enables the simultaneous removal of PFOA and nitrate.
Collapse
Affiliation(s)
- Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe, Arizona 85281, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
- Institute for the Environment and Health, Nanjing University, Suzhou Campus, Suzhou 215163, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
2
|
Kilonzi JM, Otieno S. Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation. STRESS BIOLOGY 2024; 4:11. [PMID: 38319394 PMCID: PMC10847075 DOI: 10.1007/s44154-023-00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.
Collapse
Affiliation(s)
- J M Kilonzi
- Kenya Agricultural and Livestock Research Organization Tigoni, Limuru, P.O BOX 338-0217, Kenya.
| | - S Otieno
- Kenya Agricultural and Livestock Research Organization Tigoni, Limuru, P.O BOX 338-0217, Kenya
| |
Collapse
|
3
|
Yang K, Zhao Y, Ji M, Li Z, Zhai S, Zhou X, Wang Q, Wang C, Liang B. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. WATER RESEARCH 2021; 193:116862. [PMID: 33550168 DOI: 10.1016/j.watres.2021.116862] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols (CPs) are highly toxic and refractory contaminants which widely exist in various environments and cause serious harm to human and environment health and safety. This review provides comprehensive information on typical CPs biodegradation technologies, the most green and benign ones for CPs removal. The known aerobic and anaerobic degradative bacteria, functional enzymes, and metabolic pathways of CPs as well as several improving methods and critical parameters affecting the overall degradation efficiency are systematically summarized and clarified. The challenges for CPs mineralization are also discussed, mainly including the dechlorination of polychlorophenols (poly-CPs) under aerobic condition and the ring-cleavage of monochlorophenols (MCPs) under anaerobic condition. The coupling of functional materials and degraders as well as the operation of sequential anaerobic-aerobic bioreactors and bioelectrochemical system (BES) are promising strategies to overcome some current limitations. Future perspective and research gaps in this field are also proposed, including the further understanding of microbial information and the specific role of materials in CPs biodegradation, the potential application of innovative biotechnologies and new operating modes to optimize and maximize the function of the system, and the scale-up of bioreactors towards the efficient biodegradation of CPs.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Chang YT, Chen HC, Chou HL, Li H, Boyd SA. A coupled UV photolysis-biodegradation process for the treatment of decabrominated diphenyl ethers in an aerobic novel bioslurry reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6078-6089. [PMID: 32989696 PMCID: PMC7521767 DOI: 10.1007/s11356-020-10753-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
The commercial flame retardant is an emerging contaminant (EC) commonly found in soils and sediments. A coupled UV-photolysis-biodegradation process was used to decompose decabromodiphenyl ether (BDE-209) in clay slurries. A novel bioslurry bioreactor (NBB) was employed in which BDE-209 degradation was maximized by the simultaneous application of LED UVA irradiation and biodegradation by a mixed bacterial culture. The rate of BDE-209 degradation decreased in the order: coupled UV photolysis-biodegradation (1.31 × 10-2 day-1) > UV photolysis alone (1.10 × 10-2 day-1) > biodegradation alone (1.00 × 10-2 day-1). Degradation intermediates detected included hydroxylated polybrominated diphenylethers, partially debrominated PBDE congeners and polybrominated dibenzofuran. The UV-resistant bacterial strains isolated that could utilize BDE-209 as a sole carbon source included Stenotrophomonas sp., Pseudomonas sp., and Microbacterium sp. These strains encoded important functional genes such as dioxygenase and reductive dehalogenases. Continuous UV irradiation during the NBB process affected various biochemical oxidative reactions during PBDEs biodegradation. Simultaneous photolysis and biodegradation in the NBB system described reduces operational time, energy, expense, and maintenance-demands required for the remediation of BDE-209 when compared to sequential UV-biodegradation process or to biodegradation alone.
Collapse
Affiliation(s)
- Yi-Tang Chang
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan.
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI, 48824, USA.
| | - Huei-Chen Chen
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Hsi-Ling Chou
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Hui Li
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Stephen A Boyd
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Raes B, Horemans B, Rentsch D, T'Syen J, Ghequire MGK, De Mot R, Wattiez R, Kohler HPE, Springael D. Aminobacter sp. MSH1 Mineralizes the Groundwater Micropollutant 2,6-Dichlorobenzamide through a Unique Chlorobenzoate Catabolic Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10146-10156. [PMID: 31386350 DOI: 10.1021/acs.est.9b02021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
2,6-Dichlorobenzamide (BAM) is a major groundwater micropollutant posing problems for drinking water treatment plants (DWTPs) that depend on groundwater intake. Aminobacter sp. MSH1 uses BAM as the sole source of carbon, nitrogen, and energy and is considered a prime biocatalyst for groundwater bioremediation in DWTPs. Its use in bioremediation requires knowledge of its BAM-catabolic pathway, which is currently restricted to the amidase BbdA converting BAM into 2,6-dichlorobenzoic acid (2,6-DCBA) and the monooxygenase BbdD transforming 2,6-DCBA into 2,6-dichloro-3-hydroxybenzoic acid. Here, we show that the 2,6-DCBA catabolic pathway is unique and differs substantially from catabolism of other chlorobenzoates. BbdD catalyzes a second hydroxylation, forming 2,6-dichloro-3,5-dihydroxybenzoic acid. Subsequently, glutathione-dependent dehalogenases (BbdI and BbdE) catalyze the thiolytic removal of the first chlorine. The remaining chlorine is then removed hydrolytically by a dehalogenase of the α/β hydrolase superfamily (BbdC). BbdC is the first enzyme in that superfamily associated with dehalogenation of chlorinated aromatics and appears to represent a new subtype within the α/β hydrolase dehalogenases. The activity of BbdC yields a unique trihydroxylated aromatic intermediate for ring cleavage that is performed by an extradiol dioxygenase (BbdF) producing 2,4,6-trioxoheptanedioic acid, which is likely converted to Krebs cycle intermediates by BbdG.
Collapse
Affiliation(s)
| | | | - Daniel Rentsch
- Laboratory for Functional Polymers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600 , Switzerland
| | | | | | | | - Ruddy Wattiez
- Department of Proteomics and Microbiology , University of Mons , Mons 7000 , Belgium
| | - Hans-Peter E Kohler
- Department of Environmental Microbiology , Eawag, Swiss Federal Institute of Aquatic Science and Technology , Dübendorf 8600 , Switzerland
| | | |
Collapse
|
6
|
Doolotkeldieva T, Konurbaeva M, Bobusheva S. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31848-31862. [PMID: 28884389 PMCID: PMC6208721 DOI: 10.1007/s11356-017-0048-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/29/2017] [Indexed: 04/12/2023]
Abstract
In Kyrgyzstan, many former storehouses and dump sites for obsolete pesticides exist. In 2009/2010, an inventory and assessment of these sites including risks of environmental hazard has been conducted by FAO and the World Bank. Monitoring revealed high concentration of pesticides listed as persistent organic pollutants (POPs). The purpose of this research was to study the microbial structural complexes of the pesticide-contaminated soils in these dumping zones, and to search for and select microorganism's destructors with cytochrome P450 genes for pesticide degradation. Culture-dependent and culture-independent approaches were used to determine the taxonomic composition of these bacterial communities. The universal primer set for the 16S ribosomal RNA (rRNA) gene and the specific primer set P450R were used to amplify the cytochrome P450 hydroxylase gene. In soils from Suzak A and B and soils from Balykchy dumping sites, the bacteria from the Actinobacteria phylum (Micrococcus genus) were dominant. These bacteria made up 32-47% of the indigenous local microflora; bacteria species from the Pseudomonas genus (Gammaproteobacteria phylum) made up 23% in Suzak, 12% in Balykchy soils. Bacillus species from the Firmicutes phylum were found only in Suzak soils. The 16S rRNA analyses and the specific primer set P450R have revealed bacteria with cytochrome genes which are directly involved in the degradation process of organic carbon compounds. Experiments were carried out to help select active degraders from the bacterial populations isolated and used to degrade Aldrin in laboratory. Active bacterial strains from the Pseudomonas fluorescens and Bacillus polymyxa population were selected which demonstrated high rates of degradation activity on Aldrin.
Collapse
Affiliation(s)
- Tinatin Doolotkeldieva
- Plant Protection Department, Kyrgyz-Turkish Manas University, 56 Prospect Mira, Bishkek, Kyrgyzstan.
| | - Maxabat Konurbaeva
- Plant Protection Department, Kyrgyz-Turkish Manas University, 56 Prospect Mira, Bishkek, Kyrgyzstan
| | - Saykal Bobusheva
- Plant Protection Department, Kyrgyz-Turkish Manas University, 56 Prospect Mira, Bishkek, Kyrgyzstan
| |
Collapse
|
7
|
Wang H, Cao X, Li L, Fang Z, Li X. Augmenting atrazine and hexachlorobenzene degradation under different soil redox conditions in a bioelectrochemistry system and an analysis of the relevant microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:735-741. [PMID: 28942276 DOI: 10.1016/j.ecoenv.2017.09.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Soil microbial fuel cells (MFCs) are a sustainable technology that degrades organic pollutants while generating electricity. However, there have been no detailed studies of the mechanisms of pollutant degradation in soil MFCs. In this study, the effects of external resistance and electrode effectiveness on atrazine and hexachlorobenzene (HCB) degradation were evaluated, the performance of soil MFCs in the degradation of these pollutants under different soil redox conditions was assessed, and the associated microorganisms in the anode were investigated. With an external resistance of 20Ω, the degradation efficiencies of atrazine and HCB were 95% and 78%, respectively. The degradation efficiency, degradation rate increased with decreasing external resistance, while the half-life decreased. There were different degradation trends for different pollutants under different soil redox conditions. The fastest degradation rate of atrazine was in the upper MFC section (aerobic), whereas that of HCB was in the lower MFC section (anaerobic). The results showed that electrode effectiveness played a significant role in pollution degradation. In addition, the microbial community analysis demonstrated that Proteobacteria, especially Deltaproteobacteria involved in current generation was extremely abundant (27.49%) on soil MFC anodes, although the percentage abundances of atrazine degrading Rhodocyclaceae (8.77%), Desulfitobacterium (0.64%), and HCB degrading Desulfuromonas (0.73%), were considerably lower. The results of the study suggested that soil MFCs can enhance the degradation of atrazine and HCB, and bioelectrochemical reduction was the main mechanism for the pollutants degradation.
Collapse
Affiliation(s)
- Hui Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xian Cao
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Lei Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Zhou Fang
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
8
|
Wang H, Yi S, Cao X, Fang Z, Li X. Reductive dechlorination of hexachlorobenzene subjected to several conditions in a bioelectrochemical system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:172-178. [PMID: 28135664 DOI: 10.1016/j.ecoenv.2017.01.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/04/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
A microbial fuel cell (MFC) is a very promising way to remove organic pollutants. Hexachlorobenzene (HCB) is a widely used agricultural pesticide. In this study, single-chamber and membrane-less soil MFCs were constructed. The HCB was degraded to pentachlorobenzene (PeCB), tetrachlorobenzene (TeCB), and trichlorobenzene (TCB) in sequence by a reductive dechlorination process in soil MFCs. The influences of the external resistance, concentration of phosphate buffer, and electrode spacing in soil MFCs on the degradation rate and removal efficiency of HCB were analyzed. The results showed that the degradation rate and removal efficiency of HCB were increased when the external resistance decreased from 2000 to 20Ω, and also when the concentration of phosphate buffer increased. The anode area played a significant role in dechlorination of HCB. Altering the spacing of the reducing electrode resulted in a lower ohmic resistance in the soil MFCs. The ohmic resistance was negatively correlated with the removal efficiency and degradation rate (P<0.05). In conclusion, HCB removal efficiency could be enhanced by soil MFCs, the performance of which was improved by a decrease in external resistance and internal resistance, and an increase in phosphate buffer concentration, rather than just by shortening the electrode spacing.
Collapse
Affiliation(s)
- Hui Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Shuyu Yi
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xian Cao
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Zhou Fang
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
9
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
10
|
Isolation of Pseudomonas fluorescens species highly resistant to pentachlorobenzene. Folia Microbiol (Praha) 2017; 62:325-334. [PMID: 28188482 DOI: 10.1007/s12223-017-0501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Polychlorinated aromatic compounds, including pentachlorobenzenes and hexachlorobenzenes, are recalcitrant industrial pollutants that cause adverse effects on living cells. In this paper, the isolation of Pseudomonas fluorescens species with high resistance to pentachlorobenzene (PeCB) is reported. It was found that, in contrast to its slightly negative effect on P. fluorescens growth, PeCB readily inhibited the cell growth of Serratia spp. and Escherichia coli strains, thus indicating that inhibition of bacterial growth by PeCB is species-dependent. Analysis of a P. fluorescens isolate revealed that the exposure to PeCB induced production of reactive oxygen species and led to an increase in the level of alkyl hydroperoxide reductase C (AhpC), an important enzyme enhancing the cell tolerance to organic hydroperoxides usually accumulated under oxidative stress. The putative mechanism conferring PeCB resistance to P. fluorescens and the potential use of P. fluorescens in bioremediation are discussed.
Collapse
|
11
|
Toxicity and Microbial Degradation of Nitrobenzene, Monochloronitrobenzenes, Polynitrobenzenes, and Pentachloronitrobenzene. J CHEM-NY 2014. [DOI: 10.1155/2014/265140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nitrobenzene and its derivatives (NBDs) are highly toxic compounds that have been released into the environment by anthropogenic activities. Many bacteria and fungi have been well-characterized for their ability to degrade NBDs. The biochemical and molecular characterization of the microbial degradation of NBDs has also been studied. In this review, we have summarized the toxicity and degradation profiles of nitrobenzene, monochloronitrobenzenes, polynitrobenzenes, and pentachloronitrobenzene. This review will increase our current understanding of toxicity and microbial degradation of NBDs.
Collapse
|