1
|
Olivero-Verbel J, Quintero-Rincón P, Caballero-Gallardo K. Aromatic plants as cosmeceuticals: benefits and applications for skin health. PLANTA 2024; 260:132. [PMID: 39500772 PMCID: PMC11538177 DOI: 10.1007/s00425-024-04550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION This review highlights the potential of aromatic plants as natural antioxidants in cosmeceuticals to combat skin aging and promote health and rejuvenation. Aromatic plant extracts, essential oils, or their phytoconstituents have a long history of use in skincare, dating back centuries. Currently, these plant-based sources are extensively researched and utilized in the cosmeceutical industry to formulate products that enhance skin health and promote a youthful appearance. These plants' diverse bioactivities and sensory properties make them ideal ingredients for developing anti-aging agents recommended for maintaining healthy skin through self-care routines, offering a natural alternative to synthetic products. Reactive oxygen species (ROS) accumulation in the dermis, attributed to intrinsic and extrinsic aging factors, particularly prolonged sun exposure, is identified as the primary cause of skin aging. Plant extracts enriched with antioxidant compounds including flavonoids, phenolics, tannins, stilbenes, terpenes, and steroids, are fundamental to counteract ROS-induced oxidative stress. Noteworthy effects observed from the use of these natural sources include photoprotective, senolytic, anti-inflammatory, anti-wrinkle, anti-acne, and anti-tyrosinase activities, encompassing benefits like photoprotection, wound healing, skin whitening, anti-pigmentation, tissue regeneration, among others. This review highlights several globally distributed aromatic plant species renowned for their benefits for skin, including Foeniculum vulgare Mill. (Apiaceae), Calendula officinalis L. and Matricaria chamomilla L. (Asteraceae), Thymus vulgaris L. (Lamiaceae), Litsea cubeba (Lour.) Pers. (Lauraceae), Althaea officinalis L. (Malvaceae), Malaleuca alternifolia (Maiden y Betche) Cheel (Myrtaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Rubus idaeus L. (Rosaceae), and Citrus sinensis L. Osbeck (Rutaceae), emphasizing their potential in skincare formulations and their role in promoting health and rejuvenation.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
| | - Patricia Quintero-Rincón
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
2
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Grover M, Behl T, Virmani T, Bhatia S, Al-Harrasi A, Aleya L. Chrysopogon zizanioides-a review on its pharmacognosy, chemical composition and pharmacological activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44667-44692. [PMID: 34215988 DOI: 10.1007/s11356-021-15145-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Vetiver is a traditional plant with versatile applications in medicine, aroma, commerce, environmental-protection, and agriculture. This review was designed to compile all the latest information on phytochemistry, pharmacology, and traditional uses of C. zizanioides. All the information related to this plant was gathered from several authentic sites, using keywords like Chrysopogon zizanioides, Vetiveria zizanioides, Khus, and Khas-Khas. The included resources were journaled articles, book chapters, books, Ayurvedic Pharmacopoeias, and Ayurvedic Formulary of India, from science direct, PubMed, research gate etc. All the necessary, relevant, authentic, and updated information were tried to inculcate in the manuscript. The literature was collected via online sites like Pub med, Scopus, and Science direct as well. During compilation, it observed that many traditional utilities of vetiver got their authentication when tested using different disease-based pharmacological models taking various extracts of roots, leaves, and root oil as test samples. However, systematic studies for isolation of active constituents and establishing their mechanism of action are still required to be validated. On the other hand, the development of novel and robust techniques needed for oil extraction can further enhance the exploration of biological utilities faster. Moreover, the cultivators and harvesters must address carefully to prevent the linked drawback of soil erosion.
Collapse
Affiliation(s)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
4
|
Lunz K, Stappen I. Back to the Roots-An Overview of the Chemical Composition and Bioactivity of Selected Root-Essential Oils. Molecules 2021; 26:3155. [PMID: 34070487 PMCID: PMC8197530 DOI: 10.3390/molecules26113155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Since ancient times, plant roots have been widely used in traditional medicine for treating various ailments and diseases due to their beneficial effects. A large number of studies have demonstrated that-besides their aromatic properties-their biological activity can often be attributed to volatile constituents. This review provides a comprehensive overview of investigations into the chemical composition of essential oils and volatile components obtained from selected aromatic roots, including Angelica archangelica, Armoracia rusticana, Carlina sp., Chrysopogon zizanioides, Coleus forskohlii, Inula helenium, Sassafras albidum, Saussurea costus, and Valeriana officinalis. Additionally, their most important associated biological impacts are reported, such as anticarcinogenic, antimicrobial, antioxidant, pesticidal, and other miscellaneous properties. Various literature and electronic databases-including PubMed, ScienceDirect, Springer, Scopus, Google Scholar, and Wiley-were screened and data was obtained accordingly. The results indicate the promising properties of root-essential oils and their potential as a source for natural biologically active products for flavor, pharmaceutical, agricultural, and fragrance industries. However, more research is required to further establish the mechanism of action mediating these bioactivities as well as essential oil standardization because the chemical composition often strongly varies depending on external factors.
Collapse
Affiliation(s)
| | - Iris Stappen
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
5
|
Grover M, Behl T, Bungau S, Aleya L. Potential therapeutic effect of Chrysopogon zizanioides (Vetiver) as an anti-inflammatory agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15597-15606. [PMID: 33534103 DOI: 10.1007/s11356-021-12652-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Vetiver has a broad history of traditional medicinal uses, but only a handful of research article has reported its utility in treating diseases. But unfortunately, no work has been reported on the anti-inflammatory activity of its plant extract and inflammatory-linked diseases. Hence, the present review focuses on investigating the several presumptions which can be put forward to explain its anti-inflammatory property. Thus, for ensuring the same, all the databases like science direct, PubMed, book chapters, and other authenticated papers were thoroughly studied to present a connection between inflammation and the plant potential. After gaining enough knowledge on pathogenesis of inflammation, it has been observed that the release of mediators from the arachidonic acid metabolism pathway and generation of oxidative and nitrogen species are presented as the main reason for the occurrence of inflammation condition. The stimulation of antioxidant enzyme system network by the plant extract reduces the level of oxidative stress, creating a balance between oxidant and antioxidant system. Moreover, its antimicrobial activity will prevent the biological source of stimulation towards injury and the CNS depressant effect will subside the pain of inflammation. Amalgamating all the factors together, the plant can be utilized as anti-inflammatory can be and also can be proved as a beneficial perspective in the treatment of inflammation-linked disorders.
Collapse
Affiliation(s)
- Madhuri Grover
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
6
|
Di Martile M, Garzoli S, Ragno R, Del Bufalo D. Essential Oils and Their Main Chemical Components: The Past 20 Years of Preclinical Studies in Melanoma. Cancers (Basel) 2020; 12:cancers12092650. [PMID: 32948083 PMCID: PMC7565555 DOI: 10.3390/cancers12092650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In the last years, targeted therapy and immunotherapy modified the landscape for metastatic melanoma treatment. These therapeutic approaches led to an impressive improvement in patients overall survival. Unfortunately, the emergence of drug resistance and side effects occurring during therapy strongly limit the long-term efficacy of such treatments. Several preclinical studies demonstrate the efficacy of essential oils as antitumoral agents, and clinical trials support their use to reduce side effects emerging during therapy. In this review we have summarized studies describing the molecular mechanism through which essential oils induce in vitro and in vivo cell death in melanoma models. We also pointed to clinical trials investigating the use of essential oils in reducing the side effects experienced by cancer patients or those undergoing anticancer therapy. From this review emerged that further studies are necessary to validate the effectiveness of essential oils for the management of melanoma. Abstract The last two decades have seen the development of effective therapies, which have saved the lives of a large number of melanoma patients. However, therapeutic options are still limited for patients without BRAF mutations or in relapse from current treatments, and severe side effects often occur during therapy. Thus, additional insights to improve treatment efficacy with the aim to decrease the likelihood of chemoresistance, as well as reducing side effects of current therapies, are required. Natural products offer great opportunities for the discovery of antineoplastic drugs, and still represent a useful source of novel molecules. Among them, essential oils, representing the volatile fraction of aromatic plants, are always being actively investigated by several research groups and show promising biological activities for their use as complementary or alternative medicine for several diseases, including cancer. In this review, we focused on studies reporting the mechanism through which essential oils exert antitumor action in preclinical wild type or mutant BRAF melanoma models. We also discussed the latest use of essential oils in improving cancer patients’ quality of life. As evidenced by the many studies listed in this review, through their effect on apoptosis and tumor progression-associated properties, essential oils can therefore be considered as potential natural pharmaceutical resources for cancer management.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
| | - Rino Ragno
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| |
Collapse
|
7
|
Ramírez-Rueda RY, Marinho J, Salvador MJ. Bioguided identification of antimicrobial compounds from Chrysopogon zizaniodes (L.) Roberty root essential oil. Future Microbiol 2020; 14:1179-1189. [PMID: 31625440 DOI: 10.2217/fmb-2019-0167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine the group of compounds from Chrysopogon zizaniodes root essential oil that have antimicrobial activity. Materials & methods: Thin-layer chromatography coupled to direct bioautography was used to determinate the fraction(s) having antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VREF). Through GC-MS identification, the fractions with the greatest similarity to the active thin-layer chromatography fraction were used to determinate the MIC. Results: The subfraction 8 from column chromatography was responsible for the best MIC for MRSA (62.5 μg/ml) and VREF (125 μg/ml). Five compounds possibly responsible for antimicrobial activity were preliminary identified. Conclusion: We suggest that Cedr-8-en-13-ol, could be the more relevant compound involved in the antimicrobial activity in this study.
Collapse
Affiliation(s)
- Román Yesid Ramírez-Rueda
- Department of Plant Biology, PPG BTPB & PPG BV, Institute of Biology, University of Campinas - UNICAMP, Postal box 6109, Campinas - SP 13083-970, Brazil
| | - Jane Marinho
- Department of Plant Biology, PPG BTPB & PPG BV, Institute of Biology, University of Campinas - UNICAMP, Postal box 6109, Campinas - SP 13083-970, Brazil
| | - Marcos José Salvador
- Department of Plant Biology, PPG BTPB & PPG BV, Institute of Biology, University of Campinas - UNICAMP, Postal box 6109, Campinas - SP 13083-970, Brazil
| |
Collapse
|
8
|
Zaid AN, Al Ramahi R. Depigmentation and Anti-aging Treatment by Natural Molecules. Curr Pharm Des 2020; 25:2292-2312. [PMID: 31269882 DOI: 10.2174/1381612825666190703153730] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 11/22/2022]
Abstract
Natural molecules are becoming more accepted choices as cosmetic agents, many products in the market today claim to include natural components. Plants include many substances that could be of a value in the whitening of the skin and working as anti-aging agents. A wide range of articles related to natural skin whitening and anti-aging agents have been reviewed. Many plant-derived and natural molecules have shown to affect melanin synthesis by different mechanisms, examples include Arbutin, Ramulus mori extract, Licorice extract, Glabridin, Liquiritin, Kojic acid, Methyl gentisate, Aloesin, Azelaic acid, Vitamin C, Thioctic acid, Soya bean extracts, Niacinamide, α and β-hydroxy acids, Lactic acid, Chamomile extract, and Ellagic acid. Some of the widely used natural anti-aging products as natural antioxidants, collagen, hyaluronic acid, and coenzyme Q can counteract the effects of reactive oxygen species in skin cells and have anti-aging properties on the skin. It was concluded that many natural products including antioxidants can prevent UV-induced skin damage and have whitening and anti-aging effects. It is very important to develop and stabilize appropriate methods for the evaluation of the whitening and anti-aging capacity of natural products and their exact mechanism of action to ensure real efficacy based on evidence-based studies. The attention should be oriented on the formulations and the development of an appropriate vehicle to ensure suitable absorption of these natural products in addition to evaluating the suitable concentration of these molecules required having the desired effects without causing harmful side effects.
Collapse
Affiliation(s)
- Abdel Naser Zaid
- Pharmacy Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| | - Rowa' Al Ramahi
- Pharmacy Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory, Occupied
| |
Collapse
|
9
|
Cheraif K, Bakchiche B, Gherib A, Bardaweel SK, Çol Ayvaz M, Flamini G, Ascrizzi R, Ghareeb MA. Chemical Composition, Antioxidant, Anti-Tyrosinase, Anti-Cholinesterase and Cytotoxic Activities of Essential Oils of Six Algerian Plants. Molecules 2020; 25:E1710. [PMID: 32276465 PMCID: PMC7181011 DOI: 10.3390/molecules25071710] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, the essential oils (EOs) of six Algerian plants (Artemisia campestris L., Artemisia herba-alba Asso, Juniperus phoenicea L., Juniperus oxycedrus L., Mentha pulegium L. and Lavandula officinalis Chaix) were obtained by hydrodistillation, and their compositions determined by GC-MS and GC-FID. The antioxidant activity of the EOS was evaluated via 2,2'-diphenyl-1-picrylhydrazyl (DPPH), ferric-reducing/antioxidant power (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays. Moreover, their cytotoxic effect was evaluated-as well as their tyrosinase, acetyl- and butyryl-cholinesterase (AChE and BuChE) inhibitory activities. The chemical analyses detected 44, 45, 51, 53, 26 and 40 compounds in EOs of A. campestris, A. herba-alba, J. phoenicea, J. oxycedrus, M. pulegium and L. officinalis, respectively. A. campestris EO was mainly composed of β-pinene (20.7%), while A. herba-alba EO contained davanone D (49.5%) as the main component. α-Pinene (41.8%) was detected as the major constituent in both J. phoenicea (41.8%) and J. oxycedrus (37.8%) EOs. M. pulegium EO was characterized by pulegone as the most abundant (76.9%) compound, while linalool (35.8%) was detected as a major constituent in L. officinalis EO. The antioxidant power evaluation revealed IC50 values ranging from 2.61 to 91.25 mg/mL for DPPH scavenging activity, while the FRAP values ranged from 0.97-8.17 µmol Trolox equivalents (TX)/g sample. In the ABTS assay, the values ranged from 7.01 to 2.40 µmol TX/g sample. In the presence of 1 mg/mL of the samples, tyrosinase inhibition rates ranged from 11.35% to 39.65%, AChE inhibition rates ranged from 40.57% to 73.60% and BuChE inhibition rates ranged from 6.47% to 72.03%. A significant cytotoxic effect was found for A. herba-alba EO. The obtained results support some of the traditional uses of these species in food preservation and for protection against several diseases.
Collapse
Affiliation(s)
- Kadour Cheraif
- Laboratory of Process Engineering, Faculty of Technology, Amar Telidji University, Laghouat 03000, Algeria; (K.C.); (B.B.); (A.G.)
| | - Boulanouar Bakchiche
- Laboratory of Process Engineering, Faculty of Technology, Amar Telidji University, Laghouat 03000, Algeria; (K.C.); (B.B.); (A.G.)
| | - Abdelaziz Gherib
- Laboratory of Process Engineering, Faculty of Technology, Amar Telidji University, Laghouat 03000, Algeria; (K.C.); (B.B.); (A.G.)
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan;
| | - Melek Çol Ayvaz
- Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200 Ordu, Turkey;
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Boanno 6, 56126 Pisa, Italy;
| | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Boanno 6, 56126 Pisa, Italy;
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt;
| |
Collapse
|
10
|
Chemical Composition, Antioxidant, and Antimicrobial Activities of Vetiveria zizanioides (L.) Nash Essential Oil Extracted by Carbon Dioxide Expanded Ethanol. Molecules 2019; 24:molecules24101897. [PMID: 31108854 PMCID: PMC6572508 DOI: 10.3390/molecules24101897] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
In the present study, the composition of essential oil isolated from the roots of Vetiveria zizanioides (L.) Nash, harvested in China, was studied, along with the bioactivities. A green novel method using an eco-friendly solvent, CO2-pressurized ethanol, or carbon dioxide expanded ethanol (CXE) was employed to isolate the essential oil from the root of Vetiveria zizanioides (L.) Nash with the purpose of replacing the traditional method and supercritical fluid extraction (SFE). After investigating the major operating factors of CXE, the optimal conditions were obtained as follows: 8.4 MPa, 50 °C, 5 mL/min ethanol, and 0.22 mole fraction of CO2, presenting an extraction oil that ranged from 5.12% to 7.42%, higher than that of hydrodistillation (HD) or indirect vapor distillation (IVD). The Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that three major components, including valerenol (18.48%), valerenal (10.21%), and β-Cadinene (6.23%), are found in CXE oil, while a total of 23 components were identified, 48 components less than using conventional hydrodistillation. Furthermore, the antimicrobial activities of root oils were evaluated by the microdilution method, which showed that CXE oil exhibited an ability against Gram-positive bacteria, especially Staphylococcus aureus, approximately equivalent to traditional samples. Additionally, the DPPH free radical scavenging assay demonstrated that the antioxidant abilities of root oils were sorted in the descending order: IVD > HD > CXE > SFE. In conclusion, after a comprehensive comparison with the conventional methods, the CXE-related technique might be a promising green manufacturing pattern for the production of quality vetiver oil, due to the modification of ethanol by the variable addition of non-polar compressible CO2, ultimately resulting in a prominent dissolving capability for the extraction of vetiver solutes.
Collapse
|
11
|
Optimization of Flavonoid Extraction in Dendrobium officinale Leaves and Their Inhibitory Effects on Tyrosinase Activity. Int J Anal Chem 2019; 2019:7849198. [PMID: 31001339 PMCID: PMC6436366 DOI: 10.1155/2019/7849198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 11/30/2022] Open
Abstract
In order to establish the extraction technology of flavonoids from Dendrobium officinale leaves, a method combining Plackett–Burman design (PBD), steepest ascent design, and central composite design was developed to optimize the extraction of flavonoids. In addition, the tyrosinase activity inhibition of flavonoids was further tested in vitro. PBD results showed that ethanol concentration and number of extractions were key factors. Response surface methodology (RSM) indicated that the optimal extraction conditions were 78% ethanol concentration, six extraction times, 2 h, and 1:50 solid-liquid ratio. Under these conditions, the total flavonoid content could reach 35 mg/50 mL. In vitro tyrosinase experiment, the extracted total flavonoids had better inhibitory effect on tyrosinase activity than β-arbutin, and its inhibition rate for monophenolase and diphenolase exceeded 100% and 70%, respectively. These results indicate that RSM can effectively improve the extraction of flavonoids from Dendrobium officinale leaves and the flavonoids have the prospect of being applied to foods and cosmetics.
Collapse
|
12
|
Orchard A, van Vuuren SF, Viljoen AM, Kamatou G. The in vitro antimicrobial evaluation of commercially essential oils and their combinations against acne. Int J Cosmet Sci 2018; 40:226-243. [PMID: 29574906 DOI: 10.1111/ics.12456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/28/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The study investigated the efficacy of commercial essential oil combinations against the two pathogens responsible for acne with the aim to identify synergy and favourable oils to possibly use in a blend. MATERIALS AND METHODS Antimicrobial activity was assessed using the minimum inhibitory concentration (MIC) assay against Staphylococcus epidermidis (ATCC 2223) and Propionibacterium acnes (ATCC 11827), and the fractional inhibitory concentration index (ΣFIC) was calculated. Combinations displaying synergistic interactions were further investigated at varied ratios and the results plotted on isobolograms. RESULTS From the 408 combinations investigated, 167 combinations were identified as displaying noteworthy antimicrobial activity (MIC value ≤1.00 mg mL-1 ). Thirteen synergistic interactions were observed against S. epidermidis, and three synergistic combinations were observed against P. acnes. It was found that not one of the synergistic interactions identified were based on the combinations recommended in the layman's aroma-therapeutic literature. Synergy was evident rather from leads based on antimicrobial activity from previous studies, thus emphasizing the importance of scientific validation. Leptospermum scoparium J.R.Forst. and G.Forst (manuka) was the essential oil mostly involved in synergistic interactions (four) against S. epidermidis. Cananga odorata (Lam.) Hook.f. and Thomson (ylang ylang) essential oil was also frequently involved in synergy where synergistic interactions could be observed against both pathogens. The combination with the lowest MIC value against both acne pathogens was Vetiveria zizanioides Stapf (vetiver) with Cinnamomum verum J.Presl (cinnamon bark) (MIC values 0.19-0.25 mg mL-1 ). Pogostemon patchouli Benth. (patchouli), V. zizanioides, C. verum and Santalum spp. (sandalwood) could be identified as the oils that contributed the most noteworthy antimicrobial activity towards the combinations. The different chemotypes of the essential oils used in the combinations predominantly resulted in similar antimicrobial activity. CONCLUSIONS The investigated essential oil combinations resulted in at least 50% of the combinations displaying noteworthy antimicrobial activity. Most of the synergistic interactions do not necessarily correspond to the recommended layman's aroma-therapeutic literature, which highlights a need for scientific validation of essential oil antimicrobial activity. No antagonism was observed.
Collapse
Affiliation(s)
- A Orchard
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - S F van Vuuren
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - A M Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
- Department of Pharmaceutical Sciences, SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - G Kamatou
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
- Department of Pharmaceutical Sciences, SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
13
|
Chao WW, Su CC, Peng HY, Chou ST. Melaleuca quinquenervia essential oil inhibits α-melanocyte-stimulating hormone-induced melanin production and oxidative stress in B16 melanoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:191-201. [PMID: 28899502 DOI: 10.1016/j.phymed.2017.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 06/29/2017] [Accepted: 08/20/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND Essential oils are odorous, volatile products of plant secondary metabolism, which are found in many leaves and stems. They show important biological activities, which account for the development of aromatherapy used in complementary and alternative medicine. The essential oil extracted from Melaleuca quinquenervia (Cav.) S.T. Blake (paperbark) (MQ-EO) has various functional properties. PURPOSE The aim of this study is to investigate the chemical composition of MQ-EO by using gas chromatography-mass spectrometry (GC-MS) and evaluate its tyrosinase inhibitory activity. METHODS Gas chromatography-mass spectrometry (GC-MS)-based metabolomics was used to identify 18 components in MQ-EO. The main components identified were 1,8-cineole (21.60%), α-pinene (15.93%), viridiflorol (14.55%), and α-terpineol (13.73%). B16 melanoma cells were treated with α-melanocyte-stimulating hormone (α-MSH) in the presence of various concentrations of MQ-EO or its major compounds. Cell viability was accessed by MTT assay and cellular tyrosinase activity and melanin content were determined by using spectrophotographic methods. The antioxidant mechanism of MQ-EO in α-MSH stimulated B16 cells was also investigated. RESULTS In α-melanocyte-stimulating hormone (α-MSH)-stimulated murine B16 melanoma cells, MQ-EO, 1,8-cineole, α-pinene, and α-terpineol significantly reduced melanin content and tyrosinase activity. Moreover, MQ-EO, 1,8-cineole, α-pinene, and α-terpineol decreased malondialdehyde (MDA) levels. In addition, restored glutathione (GSH) levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase activities were increased in α-MSH-stimulated B16 cells. MQ-EO not only decreased apoptosis but also reduced DNA damage in α-MSH stimulated B16 cells. These results showed that MQ-EO and its main components, 1,8-cineole, α-pinene, and α-terpineol, possessed potent anti-tyrosinase and anti-melanogenic activities besides the antioxidant properties. CONCLUSIONS The active functional components of MQ-EO were found to be 1,8-cineole, α-pinene, and α-terpineol. Consequently, the results of present study suggest that MQ-EO is non-cytotoxic and can be used as a skin-whitening agent, both medically and cosmetically.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Chia-Chi Su
- Department of Food and Nutrition, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung, 43301 Taiwan
| | - Hsin-Yi Peng
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan
| | - Su-Tze Chou
- Department of Food and Nutrition, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung, 43301 Taiwan.
| |
Collapse
|
14
|
Burger P, Landreau A, Watson M, Janci L, Cassisa V, Kempf M, Azoulay S, Fernandez X. Vetiver Essential Oil in Cosmetics: What Is New? MEDICINES 2017; 4:medicines4020041. [PMID: 28930256 PMCID: PMC5590077 DOI: 10.3390/medicines4020041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022]
Abstract
Background: Vetiver is a key ingredient for the perfume industry nowadays. However, with the constant and rapid changes of personal tastes, this appeal could vanish and this sector could decline quite quickly. New dissemination paths need to be found to tap this valuable resource. Methods: In this way, its potential use in cosmetics either as an active ingredient per se (with cosmeceutical significance or presenting antimicrobial activity) has hence been explored in vitro. Results: In this contribution, we demonstrated that vetiver essential oil displays no particularly significant and innovative cosmetic potential value in formulations apart from its scent already largely exploited. However, evaluated against twenty bacterial strains and two Candida species using the in vitro microbroth dilution method, vetiver oil demonstrated notably some outstanding activities against Gram-positive strains and against one Candida glabrata strain. Conclusions: Based on these findings, vetiver essential oil appears to be an appropriate aspirant for the development of an antimicrobial agent for medicinal purposes and for the development of a cosmetic ingredient used for its scent and displaying antimicrobial activity as an added value.
Collapse
Affiliation(s)
- Pauline Burger
- Université Côte d'Azur, CNRS, ICN, Nice CEDEX 2, 06108 Parc Valrose, France.
| | - Anne Landreau
- Université Côte d'Azur, CNRS, ICN, Nice CEDEX 2, 06108 Parc Valrose, France.
- Université d'Angers, UFR Santé, 16 Boulevard Daviers, CEDEX 01, 49045 Angers, France.
| | - Marie Watson
- Extraits de Bourbon, 2 rue Maxime Rivière, La Réunion, 97490 Ste Clothilde, France.
| | - Laurent Janci
- Extraits de Bourbon, 2 rue Maxime Rivière, La Réunion, 97490 Ste Clothilde, France.
| | - Viviane Cassisa
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire, 4 rue Larrey, CEDEX 09, 49933 Angers, France.
| | - Marie Kempf
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire, 4 rue Larrey, CEDEX 09, 49933 Angers, France.
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, ICN, Nice CEDEX 2, 06108 Parc Valrose, France.
| | - Xavier Fernandez
- Université Côte d'Azur, CNRS, ICN, Nice CEDEX 2, 06108 Parc Valrose, France.
| |
Collapse
|
15
|
Lavanya P, Ramaiah S, Anbarasu A. Ethyl 4-(4-methylphenyl)-4-pentenoate from Vetiveria zizanioides Inhibits Dengue NS2B-NS3 Protease and Prevents Viral Assembly: A Computational Molecular Dynamics and Docking Study. Cell Biochem Biophys 2016; 74:337-51. [PMID: 27324039 DOI: 10.1007/s12013-016-0741-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/09/2016] [Indexed: 12/16/2022]
Abstract
Around 50 % of the world's population is at the risk of dengue, a viral infection. Presently, there are not many drugs and prophylactic measures available to control dengue viral infection, and hence, there is an urgent need to develop effective antidengue compound from natural sources. In the current study, we explored the antiviral properties of the medicinal plant Vetiveria zizanioides against dengue virus. Initially, the antiviral properties of active compounds were examined using docking analysis along with reference ligand. The enzyme-ligand complex which showed higher binding affinity than the reference ligand was employed for subsequent analysis. The stability of the top scoring enzyme-ligand complex was further validated using molecular simulation studies. On the whole, the study reveals that the compound Ethyl 4-(4-methylphenyl)-4-pentenoate has an effective antiviral property, which can serve as a potential lead molecule in drug discovery process.
Collapse
Affiliation(s)
- P Lavanya
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
16
|
Sharma K, Joshi N, Goyal C. Critical review of Ayurvedic Varṇya herbs and their tyrosinase inhibition effect. Anc Sci Life 2015; 35:18-25. [PMID: 26600663 PMCID: PMC4623628 DOI: 10.4103/0257-7941.165627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION The aspiration for light skin (fair complexion) is becoming pronounced in a greater number of people in the present times with natural products being more in demand than their synthetic counterparts. Research in the area of skin-lightening agents is an expanding field with the knowledge being updated regularly. In Ayurveda, varṇya, raktaprasādana, tvacya are few terms specifying skin lightening with respect to its modern counterpart i.e., Tyrosinase inhibition, the most commonly reported method of skin lightening. AIM The present review is undertaken for screening twenty herbs from Varṇya Mahākaṣāya, Lodhrādi varṇya gaṇa, Elādi varṇa prasādana gaṇa and few varṇya formulations to evaluate their probable modes of action through which the skin lightening is effected as per both Ayurveda and biomedical concepts. MATERIALS AND METHODS Critical review of herbs to show varṇya property is compiled from various Ayurvedic texts as well as from multiple articles on the internet to justify their skin lightening property on the basis of data collected. RESULT AND CONCLUSION All the twenty herbs reviewed are found to act as varṇya directly (citation as varṇya) or indirectly (alleviation of pitta and rakta) as per Ayurveda and to interfere in melanogenesis pathway through tyrosinase inhibition as per biomedicine. This shows their potential to act as good skin whitening agents. Śuṇṭhi being a part of many varṇya formulations, is the only herb among all reviewed in the present study found to exhibit tyrosinase inhibition without any Ayurvedic citation of varṇya property.
Collapse
Affiliation(s)
- Khemchand Sharma
- Department of Rasa Shastra and Bhaishjya Kalpana, Rishikul Govt. P. G. Ayurvedic College and Hospital, Haridwar, Uttarakhand, India
| | - Namrata Joshi
- Department of Rasa Shastra and Bhaishjya Kalpana, Rishikul Govt. P. G. Ayurvedic College and Hospital, Haridwar, Uttarakhand, India
| | - Chinky Goyal
- Department of Rasa Shastra and Bhaishjya Kalpana, Rishikul Govt. P. G. Ayurvedic College and Hospital, Haridwar, Uttarakhand, India
| |
Collapse
|
17
|
Lee SM, Chiang SH, Wang HY, Wu PS, Lin CC. Curcumin enhances the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells. Biosci Biotechnol Biochem 2015; 79:247-52. [DOI: 10.1080/09168451.2014.972324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Curcumin is the major component of the yellow extract derived from the rhizome of the Curcuma longa, which is also a main bioactive polyphenol and has been generally used as a spice, food additive, and herbal medicine. In this presented study, we found that curcumin can enhance the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells via increasing ELN and FBN1 promoters’ activities. With 2 μM curcumin treatment, the enhanced tropoelastin and fibrillin-1 protein amounts in Detroit 551 cells were approximately 134 and 130% of control, respectively. Therefore, our results demonstrated that curcumin may be used as a functional compound and applied to drugs, foods, and cosmetics in the future.
Collapse
Affiliation(s)
- Shu-Mei Lee
- Department of Cosmetic Science and Management, Mackay Medicine, Nursing and Management College, Taipei, Taiwan, ROC
| | - Shu-Hua Chiang
- Department of Food and Beverage Management, Taiwan Hospitality and Tourism College, Hualien, Taiwan, ROC
| | | | - Pey-Shiuan Wu
- Department of Cosmetic Science, Providence University, Taichung, Taiwan, ROC
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung, Taiwan, ROC
| |
Collapse
|
18
|
Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression. Int J Mol Sci 2015; 16:1495-508. [PMID: 25584612 PMCID: PMC4307316 DOI: 10.3390/ijms16011495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/04/2015] [Indexed: 12/20/2022] Open
Abstract
Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.
Collapse
|
19
|
Kinetics of mushroom tyrosinase and melanogenesis inhibition by N-acetyl-pentapeptides. ScientificWorldJournal 2014; 2014:409783. [PMID: 25136665 PMCID: PMC4130364 DOI: 10.1155/2014/409783] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/27/2014] [Accepted: 07/06/2014] [Indexed: 01/05/2023] Open
Abstract
We investigated the kinetics of 4N-acetyl-pentapeptides, Ac-P1, Ac-P2, Ac-P3, and Ac-P4, regarding inhibition of mushroom tyrosinase activity. The peptides sequences of Ac-P1, Ac-P2, Ac-P3, and Ac-P4 were Ac-RSRFK, Ac-KSRFR, Ac-KSSFR, and Ac-RSRFS, respectively. The 4N-acetyl-pentapeptides were able to reduce the oxidation of l-DOPA by tyrosinase in a dose-dependent manner. Of the 4N-acetyl-pentapeptides, only Ac-P4 exhibited lag time (80 s) at a concentration of 0.5 mg/mL. The tyrosinase inhibitory effects of Ac-P4 (IC50 0.29 mg/mL) were more effective than those of Ac-P1, Ac-P2, and Ac-P3, in which IC50s were 0.75 mg/mL, 0.78 mg/mL, and 0.81 mg/mL, respectively. Kinetic analysis demonstrated that all 4N-acetyl-pentapeptides were mixed-type tyrosinase inhibitors. Furthermore, 0.1 mg/mL of Ac-P4 exhibited significant melanogenesis inhibition on B16F10 melanoma cells and was more effective than kojic acid. The melanogenesis inhibition of Ac-P4 was dose-dependent and did not induce any cytotoxicity on B16F10 melanoma cells.
Collapse
|